What is the use of this class<T> - c#

The following code I saw in one of StackOverflow sites. But it is not explained in detail and I am unable to understand. Would anyone explain this?
public class MyArray<T>
{
T[] array = new T[10];
public T GetItem(int index)
{
return array[index];
}
}
I would like to know if this is a class.
How to instantiate this class?
How can I use the T array in the class?
Whether the array need to be created outside or inside in the class?

Generic classes <T> have type parameters. Separate classes, each with a different field type in them, can be replaced with a single generic class. The generic class introduces a type parameter. This becomes part of the class definition itself. It allows you to define type-safe data structures, without committing to actual data types. The most common use of generics is to create collection classes. This results in a significant performance boost and higher quality code, because you get to reuse data processing algorithms without duplicating type-specific code.
The letter T denotes a type that is only known based on the calling location. The program can act upon the instance of T like it is a real type, but it is not.
I would like to know if this is a class.
Yes it is a class
How to instantiate this class?
MyArray<int> = new MyArray<int>();
or
MyArray<string> = new MyArray<string>();
Or anyother type you like
How can I use the T array in the class?
Since we know that one of the common use of generics is to create collection classes. So you can also use it that way.
Whether the array need to be created outside or inside in the class?
Question is little vague bcoz which class you are talking about the declaring class or the implementation class. But assuming that you are talking about the class where you implement or create the object of Class. It should be inside the class like normal object initiator.

1: Yes, it's a class; hence the use of the class keyword.
2: var myArray = new MyArray<Something>(); where Something could be any type (with maybe the odd exception).
3: From within the class, just refer to array. You won't be able to do a lot with the items themselves, though, since you don't know what type they are.
4: The code you posted creates the array inside the class. The array is hidden, and the only access to it is through the GetItem method. What you posted must be incomplete, though, since that would not be useful and would not work. You need to be able to do more than try to get an item.

I would like to know if this is a class.
Yes this is a class and are called as Generic Classes, A Generic
classes encapsulate operations that are not specific to a particular
data type. The most common use for generic classes is with collections
like linked lists, hash tables, stacks, queues, trees, and so on.
Operations such as adding and removing items from the collection are
performed in basically the same way regardless of the type of data
being stored.
How to instantiate this class?
MyArray<int> myArrayInstance= new MyArray<int>();
How can I use the T array in the class?
You can use the name of the variable array to use them inside the class. and use the reference to access it from outside the class.
Whether the array need to be created outside or inside in the class
You can populate the array inside the class or it can be populated from the MyArray Constructor. like the following:
public MyArray(T[] inputArrayElements)
{
array = inputArrayElements;
}
Additional note, How to use GetItem
You can use myArrayInstance, the instance of the class to call the method. the calling will be like the following:
int itemAtIndexs = myArrayInstance.GetItem<int>(5);
// which will give you the item # 5th index

This is a generic class. This means that <T> will be a type when it's instantiated. For example, based on your code example, you would instantiate it as:
MyArray<int> integerArray = new MyArray<int>();
This would instantiate a strongly typed array of integers. It does this by passing T throughout the class. The same class could be used to store strings by doing the following.
MyArray<string> stringArray = new MyArray<string>();
The reason for this is to allow container classes to be more flexible in terms of what types they can contain. This makes them more reusable. Before generics, if you wanted a dynamic list, you needed to use an ArrayList which cast everything to type Object and then required you to manually upcast it back to the type it was meant to be.
There are plenty of built in generic classes such as List<T>, Dictionary<TKey, TValue>, etc. They can be found in the System.Generics module.

I am preferring to post an answer based on what others guided me with the hope that it will be helpful people like me who are in the lower rung of C# and learning something new.
namespace GenericArray
{
public class MyArray<T>
{
T[] array = new T[5];
public MyArray(int size)
{ //Not used in this programme, because the no. of elements is already set above.
}
public void SetItem(int index, T value)
{
array[0] = value;
}
public T GetItem(int index)
{
return array[index];
}
}
}
In the button event, I code like this.
private void button4_Click(object sender, EventArgs e)
{
MyArray<int> myInt = new MyArray<int>(5); //Initializing the generic class.
myInt.SetItem(0, 1); //array element 0 is going to be assigned a value of 1.
MessageBox.Show(myInt.GetItem(0).ToString());
//You can also use the same class, to set string values.
}

Related

How to define derived List with methods and populate them in C#

I have the class Columns which is derived from List<Column>. I want to populate the class inside one of its methods named GetColumns(). But I'm having trouble doing this. Maybe I'm missing something very very obvious here.
What I'm trying to do is to define Collections as classes that derive from `List and I want to extend these classes to populate them and other stuff.
public class Columns : List<Column>
{
public void GetColumns()
{`
this = Building.PColumns;
}
}
You can't assign to this in a class. (You could do so in a struct.)
Instead of:
this = Building.PColumns;
Try:
this.Clear();
this.AddRange(Building.PColumns);
If you're extending List you should just be able to call all the usual methods ie (add, addrange, remove etc..). Personally I would either extend IEnumerable or use Columns as a wrapper class with a member of type List but each to their own and it of course depends on what you're doing. Especially since you know the type of the list beforehand and you're handling the login in internal functions anyway, i would just have it as a member.
Change the body of the method GetColumns. It is a bit unclear where Building.PColumns is defined. In neither case the this pointer can be reassigned. Furthermore, the name GetColumns suggests that something is returned. However this is not the case as its return type is void. Change the return type of GetColumns to the type of Building.PColumns and return Building.PColumns.

Why use IList or List?

I know there has been a lot of posts on this but it still confuses me why should you pass in an interface like IList and return an interface like IList back instead of the concrete list.
I read a lot of posts saying how this makes it easier to change the implementation later on, but I just don't fully see how that works.
Say if I have this method
public class SomeClass
{
public bool IsChecked { get; set; }
}
public void LogAllChecked(IList<SomeClass> someClasses)
{
foreach (var s in someClasses)
{
if (s.IsChecked)
{
// log
}
}
}
I am not sure how using IList will help me out in the future.
How about if I am already in the method? Should I still be using IList?
public void LogAllChecked(IList<SomeClass> someClasses)
{
//why not List<string> myStrings = new List<string>()
IList<string> myStrings = new List<string>();
foreach (var s in someClasses)
{
if (s.IsChecked)
{
myStrings.Add(s.IsChecked.ToString());
}
}
}
What do I get for using IList now?
public IList<int> onlySomeInts(IList<int> myInts)
{
IList<int> store = new List<int>();
foreach (var i in myInts)
{
if (i % 2 == 0)
{
store.Add(i);
}
}
return store;
}
How about now? Is there some new implementation of a list of int's that I will need to change out?
Basically, I need to see some actual code examples of how using IList would have solved some problem over just taking List into everything.
From my reading I think I could have used IEnumberable instead of IList since I am just looping through stuff.
Edit
So I have been playing around with some of my methods on how to do this. I am still not sure about the return type(if I should make it more concrete or an interface).
public class CardFrmVm
{
public IList<TravelFeaturesVm> TravelFeaturesVm { get; set; }
public IList<WarrantyFeaturesVm> WarrantyFeaturesVm { get; set; }
public CardFrmVm()
{
WarrantyFeaturesVm = new List<WarrantyFeaturesVm>();
TravelFeaturesVm = new List<TravelFeaturesVm>();
}
}
public class WarrantyFeaturesVm : AvailableFeatureVm
{
}
public class TravelFeaturesVm : AvailableFeatureVm
{
}
public class AvailableFeatureVm
{
public Guid FeatureId { get; set; }
public bool HasFeature { get; set; }
public string Name { get; set; }
}
private IList<AvailableFeature> FillAvailableFeatures(IEnumerable<AvailableFeatureVm> avaliableFeaturesVm)
{
List<AvailableFeature> availableFeatures = new List<AvailableFeature>();
foreach (var f in avaliableFeaturesVm)
{
if (f.HasFeature)
{
// nhibernate call to Load<>()
AvailableFeature availableFeature = featureService.LoadAvaliableFeatureById(f.FeatureId);
availableFeatures.Add(availableFeature);
}
}
return availableFeatures;
}
Now I am returning IList for the simple fact that I will then add this to my domain model what has a property like this:
public virtual IList<AvailableFeature> AvailableFeatures { get; set; }
The above is an IList itself as this is what seems to be the standard to use with nhibernate. Otherwise I might have returned IEnumberable back but not sure. Still, I can't figure out what the user would 100% need(that's where returning a concrete has an advantage over).
Edit 2
I was also thinking what happens if I want to do pass by reference in my method?
private void FillAvailableFeatures(IEnumerable<AvailableFeatureVm> avaliableFeaturesVm, IList<AvailableFeature> toFill)
{
foreach (var f in avaliableFeaturesVm)
{
if (f.HasFeature)
{
// nhibernate call to Load<>()
AvailableFeature availableFeature = featureService.LoadAvaliableFeatureById(f.FeatureId);
toFill.Add(availableFeature);
}
}
}
would I run into problems with this? Since could they not pass in an array(that has a fixed size)? Would it be better maybe for a concrete List?
There are three questions here: what type should I use for a formal parameter? What should I use for a local variable? and what should I use for a return type?
Formal parameters:
The principle here is do not ask for more than you need. IEnumerable<T> communicates "I need to get the elements of this sequence from beginning to end". IList<T> communicates "I need to get and set the elements of this sequence in arbitrary order". List<T> communicates "I need to get and set the elements of this sequence in arbitrary order and I only accept lists; I do not accept arrays."
By asking for more than you need, you (1) make the caller do unnecessary work to satisfy your unnecessary demands, and (2) communicate falsehoods to the reader. Ask only for what you're going to use. That way if the caller has a sequence, they don't need to call ToList on it to satisfy your demand.
Local variables:
Use whatever you want. It's your method. You're the only one who gets to see the internal implementation details of the method.
Return type:
Same principle as before, reversed. Offer the bare minimum that your caller requires. If the caller only requires the ability to enumerate the sequence, only give them an IEnumerable<T>.
The most practical reason I've ever seen was given by Jeffrey Richter in CLR via C#.
The pattern is to take the basest class or interface possible for your arguments and return the most specific class or interface possible for your return types. This gives your callers the most flexibility in passing in types to your methods and the most opportunities to cast/reuse the return values.
For example, the following method
public void PrintTypes(IEnumerable items)
{
foreach(var item in items)
Console.WriteLine(item.GetType().FullName);
}
allows the method to be called passing in any type that can be cast to an enumerable. If you were more specific
public void PrintTypes(List items)
then, say, if you had an array and wished to print their type names to the console, you would first have to create a new List and fill it with your types. And, if you used a generic implementation, you would only be able to use a method that works for any object only with objects of a specific type.
When talking about return types, the more specific you are, the more flexible callers can be with it.
public List<string> GetNames()
you can use this return type to iterate the names
foreach(var name in GetNames())
or you can index directly into the collection
Console.WriteLine(GetNames()[0])
Whereas, if you were getting back a less specific type
public IEnumerable GetNames()
you would have to massage the return type to get the first value
Console.WriteLine(GetNames().OfType<string>().First());
IEnumerable<T> allows you to iterate through a collection. ICollection<T> builds on this and also allows for adding and removing items. IList<T> also allows for accessing and modifying them at a specific index. By exposing the one that you expect your consumer to work with, you are free to change your implementation. List<T> happens to implement all three of those interfaces.
If you expose your property as a List<T> or even an IList<T> when all you want your consumer to have is the ability to iterate through the collection. Then they could come to depend on the fact that they can modify the list. Then later if you decide to convert the actual data store from a List<T> to a Dictionary<T,U> and expose the dictionary keys as the actual value for the property (I have had to do exactly this before). Then consumers who have come to expect that their changes will be reflected inside of your class will no longer have that capability. That's a big problem! If you expose the List<T> as an IEnumerable<T> you can comfortably predict that your collection is not being modified externally. That is one of the powers of exposing List<T> as any of the above interfaces.
This level of abstraction goes the other direction when it belongs to method parameters. When you pass your list to a method that accepts IEnumerable<T> you can be sure that your list is not going to be modified. When you are the person implementing the method and you say you accept an IEnumerable<T> because all you need to do is iterate through that list. Then the person calling the method is free to call it with any data type that is enumerable. This allows your code to be used in unexpected, but perfectly valid ways.
From this it follows that your method implementation can represent its local variables however you wish. The implementation details are not exposed. Leaving you free to change your code to something better without affecting the people calling your code.
You cannot predict the future. Assuming that a property's type will always be beneficial as a List<T> is immediately limiting your ability to adapt to unforeseen expectations of your code. Yes, you may never change that data type from a List<T> but you can be sure that if you have to. Your code is ready for it.
Short Answer:
You pass the interface so that no matter what concrete implementation of that interface you use, your code will support it.
If you use a concrete implementation of list, another implementation of the same list will not be supported by your code.
Read a bit on inheritance and polymorphism.
Here's an example: I had a project once where our lists got very large, and resulting fragmentation of the large object heap was hurting performance. We replaced List with LinkedList. LinkedList does not contain an array, so all of a sudden, we had almost no use of the large object heap.
Mostly, we used the lists as IEnumerable<T>, anyway, so there was no further change needed. (And yes, I would recommend declaring references as IEnumerable if all you're doing is enumerating them.) In a couple of places, we needed the list indexer, so we wrote an inefficient IList<T> wrapper around the linked lists. We needed the list indexer infrequently, so the inefficiency was not a problem. If it had been, we could have provided some other implementation of IList, perhaps as a collection of small-enough arrays, that would have been more efficiently indexable while also avoiding large objects.
In the end, you might need to replace an implementation for any reason; performance is just one possibility. Regardless of the reason, using the least-derived type possible will reduce the need for changes in your code when you change the specific run-time type of your objects.
Inside the method, you should use var, instead of IList or List. When your data source changes to come from a method instead, your onlySomeInts method will survive.
The reason to use IList instead of List as parameters, is because many things implement IList (List and [], as two examples), but only one thing implements List. It's more flexible to code to the interface.
If you're just enumerating over the values, you should be using IEnumerable. Every type of datatype that can hold more than one value implements IEnumerable (or should) and makes your method hugely flexible.
Using IList instead of List makes writing unit tests significantly easier. It allows you to use a 'Mocking' library to pass and return data.
The other general reason for using interfaces is to expose the minimum amount of knowledge necessary to the user of an object.
Consider the (contrived) case where I have a data object that implements IList.
public class MyDataObject : IList<int>
{
public void Method1()
{
...
}
// etc
}
Your functions above only care about being able to iterate over a list. Ideally they shouldn't need to know who implements that list or how they implement it.
In your example, IEnumerable is a better choice as you thought.
It is always a good idea to reduce the dependencies between your code as much as possible.
Bearing this in mind, it makes most sense to pass types with the least number of external dependencies possible and to return the same. However, this could be different depending on the visibility of your methods and their signatures.
If your methods form part of an interface, the methods will need to be defined using types available to that interface. Concrete types will probably not be available to interfaces, so they would have to return non-concrete types. You would want to do this if you were creating a framework, for example.
However, if you are not writing a framework, it may be advantageous to pass parameter with the weakest possible types (i.e. base classes, interfaces, or even delegates) and return concrete types. That gives the caller the ability to do as much as possible with the returned object, even if it is cast as an interface. However, this makes the method more fragile, as any change to the returned object type may break the calling code. In practice though, that generally isn't a major problem.
You accept an Interface as a parameter for a method because that allows the caller to submit different concrete types as arguments. Given your example method LogAllChecked, the parameter someClasses could be of various types, and for the person writing the method, all might be equivalent (i.e. you'd write the exact same code regardless of the type of the parameter). But for the person calling the method, it can make a huge difference -- if they have an array and you're asking for a list, they have to change the array to a list or v.v. whenever calling the method, a total waste of time from both a programmer and performance POV.
Whether you return an Interface or a concrete type depends upon what you want to let your callers do with the object you created -- this is an API design decision, and there's no hard and fast rule. You have to weigh their ability to make full use of the object against their ability to easily use a portion of the objects functionality (and of course whether you WANT them to be making full use of the object). For instance, if you return an IEnumerable, then you are limiting them to iterating -- they can't add or remove items from your object, they can only act against the objects. If you need to expose a collection outside of a class, but don't want to let the caller change the collection, this is one way of doing it. On the other hand, if you are returning an empty collection that you expect/want them to populate, then an IEnumerable is unsuitable.
Here's my answer in this .NET 4.5+ world.
Use IList<T> and IReadonlyList<T>,
instead of List<T>, because ReadonlyList<T> doesn't exist.
IList<T> looks so consistent with IReadonlyList<T>
Use IEnumerable<T> for minimum exposure (property) or requirement (parameter) if foreach is the only way to use it.
Use IReadonlyList<T> if you also need to expose/use Count and [] indexer.
Use IList<T> if you also allow callers to add/update/delete elements
because List<T> implements IReadonlyList<T>, it doesn't need any explicit casting.
An example class:
// manipulate the list within the class
private List<int> _numbers;
// callers can add/update/remove elements, but cannot reassign a new list to this property
public IList<int> Numbers { get { return _numbers; } }
// callers can use: .Count and .ReadonlyNumbers[idx], but cannot add/update/remove elements
public IReadOnlyList<int> ReadonlyNumbers { get { return _numbers; } }

Setting Values on a derived class from the base class constructor using Reflection

I have two classes like this:
public abstract class MyBase
{
protected MyBase(){
Initialize();
}
protected IDictionary<string,string> _data;
private void Initialize() {
// Use Reflection to get all properties
// of the derived class (e.g., call new MyDerived() then
// I want to know the names "Hello" and "ID" here
var data = GetDataFromBackend(propertyNamesFromDerived);
_data = data;
}
}
public class MyConcrete : MyBase
{
public MyConcrete(){
// Possibly use Reflection here
Hello = _data["Hello"];
ID = new Guid(data["ID"]);
}
public string Hello {get;set;}
public Guid ID {get; set;}
}
As you see, I want the constructor of my base class to know about the properties of the derived class I'm instantiating.
Now, this seems like a huge and big code smell, so let me give some more background about my intentions, maybe there is a better way.
I have a backend system that stores Key/Value Pairs, essentially a Dictionary<string,string>. I want to abstract away working with this backend system in a way where people can create classes whose properties are Keys into the backend system. When they construct this object, it will automatically load the data from that system and initialize all the variables to it.
In other words, I've just reinvented serialization, except that I don't control the backend system and just rather make working with it really painless. I don't want callers to have to call Initialize() after constructing the object, because in 100% of the cases you have to initalize it after constructing.
I don't want to move the initialize code into the Derived Classes, except for string-to-business-object conversion.
Would I have to use a Factory? Or is it considered safe to look at the property names of a derived class in a base constructor? (Don't care about their values and that they aren't initialized, just need the names).
Or is there a better way altogether to provide a facade between a Dictionary of strings and a concrete business object?
Edit: This is .net 3.5, so no System.Dynamic which would make this trivial :(
Edit 2: After looking at the Answers and thinking through this some more, I guess my question really boils down to this now: Is calling GetType().GetProperties() from a base constructor in order to get the Names of Properties and if they are decorated with a certain Attribute safe?
Wait, let's stop here for a second and do this properly. It shouldn't be MyBase's responsibility to do this.
So you write a class that manages getting stuff out of the backend for you, and you write a method on that class that is something like
T Get<T>() where T : new()
and you make Get responsible for reading the dictionary out of the backend and using reflection to populate an instance of T. Thus, you say
var concrete = foo.Get<MyConcrete>();
This isn't hard, and it's the right way to do it.
Incidentally, the code for Get is going to look something like
T t = new T();
var properties = typeof(T).GetProperties();
foreach(var property in properties) {
property.SetValue(t, dictionary[property.Name], null);
}
return t;
where dictionary is your loaded up key/value pairs. It turns out there are more optimal ways to do this, but unless it's a bottleneck I wouldn't worry about it.
The better way to do this would be to make the classes use the dictionary directly:
public string Hello {
get { return (string)base.data["Hello"]; }
set { base.data["Hello"] = value; }
}
You may want to call TryGetValue in the getter so that you can return a default value if the key isn't there. (You should probably do that in a separate method in the base class)
You can make a code snippet to make the properties easier to create.
If you don't want to do it this way, you can call GetType().GetProperties() to get PropertyInfo objects for the properties in your class, then call SetValue(this, value).
This will be slow; there are various tricks you can use to speed it up using expression trees, CreateDelegate, or IL generation.
Maybe try the Template method pattern
Have you considered using an ExpandoObject? With it you can dynamically add properties and inspect them (when serializing for example).
I'm not sure if it's what you really should do, but here's what you asked for (put this in Initialize, and you'll get a list of the derived property names):
var derivedProps = this.GetType().GetProperties();
var propNames = new List<string>(derivedProps.Select(x => x.Name));
From there, using the PropertyInfos in derivedProps, you can set the properties.
You can't really safely do anything to those properties in the base-class constructor anyway as some derived constructor may reset them anyway. You're much better off doing a two-phased load (e.g. call Initialize explicitly)

C# Get a list of all runtime constructed classes of a generic class

I'm trying to make a list of all the runtime constructed classes created by a generic class. In other words, if I have a class:
public GenericCls<T> {
public void Reset() { ... }
...
}
And I have code in various places like this:
GenericCls<int> gci = new GenericCls<int>();
GenericCls<String> gcs = new GenericCls<String>();
GenericCls<float> gcf = new GenericCls<float>();
...
Can I get something like this?:
Type[] allconstructed = GetAllConstructed(typeof(GenericCls<>));
which returns {GenericCls<int>,GenericCls<String>,GenericCls<float>,...}
The use case involves a generic allocator, that supports any type of object allocation (it's like new XXX(), but nicer to the garbage collector). I won't go into specifics, because it will just complicate the question. Basically, I will not know all the constructed classes at compile time, since the library is a dll intended to be used with a separate code project. So I will need some form of reflection that I can't seem to find on the interwebs.
Assembly.GetExecutingAssembly().GetExportedTypes() does not contain anything but the base generic class (i.e. typeof(GenericCls<>))
typeof(GenericCls<>).GetGenericArguments() returns only Type "T", which is not only an invalid type, but entirely useless.
Is it even possible to find all constructed classes of a generic class if you only know the generic class' type? (typeof(GenericCls<>);) I'm not sure if "constructed" is the right word - I want to know either all the concrete generic-derived classes currently active, or all of these that will ever exist (not sure how C# handles generic construction behind the scenes).
#David MÃ¥rtensson: Your answer gave me an idea. I could make a static list of types in any non-generic class, and register each constructed class as it was constructed (when T is known).
i.e.
static public class ConcreteList {
static public List<Type> concrete;
}
public class GenericCls<T> {
static GenericCls() {
ConcreteList.concrete.Add(typeof(GenericCls<T>));
}
}
I checked it with ConcreteList.concrete[x].GetGenericArguments(), and it's working. Oh snap.
You might use a factory class to create instances, that way the factory class could keep a list of all created classes.

List<BusinessObject> or BusinessObjectCollection?

Prior to C# generics, everyone would code collections for their business objects by creating a collection base that implemented IEnumerable
IE:
public class CollectionBase : IEnumerable
and then would derive their Business Object collections from that.
public class BusinessObjectCollection : CollectionBase
Now with the generic list class, does anyone just use that instead? I've found that I use a compromise of the two techniques:
public class BusinessObjectCollection : List<BusinessObject>
I do this because I like to have strongly typed names instead of just passing Lists around.
What is your approach?
I am generally in the camp of just using a List directly, unless for some reason I need to encapsulate the data structure and provide a limited subset of its functionality. This is mainly because if I don't have a specific need for encapsulation then doing it is just a waste of time.
However, with the aggregate initializes feature in C# 3.0, there are some new situations where I would advocate using customized collection classes.
Basically, C# 3.0 allows any class that implements IEnumerable and has an Add method to use the new aggregate initializer syntax. For example, because Dictionary defines a method Add(K key, V value) it is possible to initialize a dictionary using this syntax:
var d = new Dictionary<string, int>
{
{"hello", 0},
{"the answer to life the universe and everything is:", 42}
};
The great thing about the feature is that it works for add methods with any number of arguments. For example, given this collection:
class c1 : IEnumerable
{
void Add(int x1, int x2, int x3)
{
//...
}
//...
}
it would be possible to initialize it like so:
var x = new c1
{
{1,2,3},
{4,5,6}
}
This can be really useful if you need to create static tables of complex objects. For example, if you were just using List<Customer> and you wanted to create a static list of customer objects you would have to create it like so:
var x = new List<Customer>
{
new Customer("Scott Wisniewski", "555-555-5555", "Seattle", "WA"),
new Customer("John Doe", "555-555-1234", "Los Angeles", "CA"),
new Customer("Michael Scott", "555-555-8769", "Scranton PA"),
new Customer("Ali G", "", "Staines", "UK")
}
However, if you use a customized collection, like this one:
class CustomerList : List<Customer>
{
public void Add(string name, string phoneNumber, string city, string stateOrCountry)
{
Add(new Customer(name, phoneNumber, city, stateOrCounter));
}
}
You could then initialize the collection using this syntax:
var customers = new CustomerList
{
{"Scott Wisniewski", "555-555-5555", "Seattle", "WA"},
{"John Doe", "555-555-1234", "Los Angeles", "CA"},
{"Michael Scott", "555-555-8769", "Scranton PA"},
{"Ali G", "", "Staines", "UK"}
}
This has the advantage of being both easier to type and easier to read because their is no need to retype the element type name for each element. The advantage can be particularly strong if the element type is long or complex.
That being said, this is only useful if you need static collections of data defined in your app. Some types of apps, like compilers, use them all the time. Others, like typical database apps don't because they load all their data from a database.
My advice would be that if you either need to define a static collection of objects, or need to encapsulate away the collection interface, then create a custom collection class. Otherwise I would just use List<T> directly.
It's recommended that in public API's not to use List<T>, but to use Collection<T>
If you are inheriting from it though, you should be fine, afaik.
I prefer just to use List<BusinessObject>. Typedefing it just adds unnecessary boilerplate to the code. List<BusinessObject> is a specific type, it's not just any List object, so it's still strongly typed.
More importantly, declaring something List<BusinessObject> makes it easier for everyone reading the code to tell what types they are dealing with, they don't have to search through to figure out what a BusinessObjectCollection is and then remember that it's just a list. By typedefing, you'll have to require a consistent (re)naming convention that everyone has to follow in order for it to make sense.
Use the type List<BusinessObject> where you have to declare a list of them. However,
where you return a list of BusinessObject, consider returning IEnumerable<T>, IList<T> or ReadOnlyCollection<T> - i.e. return the weakest possible contract that satisfies the client.
Where you want to "add custom code" to a list, code extension methods on the list type. Again, attach these methods to the weakest possible contract, e.g.
public static int SomeCount(this IEnumerable<BusinessObject> someList)
Of course, you can't and shouldn't add state with extension methods, so if you need to add a new property and a field behind it, use a subclass or better, a wrapper class to store this.
I've been going back and forth on 2 options:
public class BusinessObjectCollection : List<BusinessObject> {}
or methods that just do the following:
public IEnumerable<BusinessObject> GetBusinessObjects();
The benefits of the first approach is that you can change the underlying data store without having to mess with method signatures. Unfortunately if you inherit from a collection type that removes a method from the previous implementation, then you'll have to deal with those situations throughout your code.
You should probably avoid creating your own collection for that purpose. It's pretty common to want to change the type of data structure a few times during refactorings or when adding new features. With your approach, you would wind up with a separate class for BusinessObjectList, BusinessObjectDictionary, BusinessObjectTree, etc.
I don't really see any value in creating this class just because the classname is more readable. Yeah, the angle bracket syntax is kind of ugly, but it's standard in C++, C# and Java, so even if you don't write code that uses it you're going to run into it all the time.
I generally only derive my own collection classes if I need to "add value". Like, if the collection itself needed to have some "metadata" properties tagging along with it.
I do the exact same thing as you Jonathan... just inherit from List<T>. You get the best of both worlds. But I generally only do it when there is some value to add, like adding a LoadAll() method or whatever.
You can use both. For laziness - I mean productivity - List is a very useful class, it's also "comprehensive" and frankly full of YANGNI members. Coupled with the sensible argument / recommendation put forward by the MSDN article already linked about exposing List as a public member, I prefer the "third" way:
Personally I use the decorator pattern to expose only what I need from List i.e:
public OrderItemCollection : IEnumerable<OrderItem>
{
private readonly List<OrderItem> _orderItems = new List<OrderItem>();
void Add(OrderItem item)
{
_orderItems.Add(item)
}
//implement only the list members, which are required from your domain.
//ie. sum items, calculate weight etc...
private IEnumerator<string> Enumerator() {
return _orderItems.GetEnumerator();
}
public IEnumerator<string> GetEnumerator() {
return Enumerator();
}
}
Further still I'd probably abstract OrderItemCollection into IOrderItemCollection so I can swap my implementation of IOrderItemCollection over in the future in (I may prefer to use a different inner enumerable object such as Collection or more likley for perf use a Key Value Pair collection or Set.
I use generic lists for almost all scenarios. The only time that I would consider using a derived collection anymore is if I add collection specific members. However, the advent of LINQ has lessened the need for even that.
6 of 1, half dozen of another
Either way its the same thing. I only do it when I have reason to add custom code into the BusinessObjectCollection.
With out it having load methods return a list allows me to write more code in a common generic class and have it just work. Such as a Load method.
As someone else pointed out, it is recommended not to expose List publicly, and FxCop will whinge if you do so. This includes inheriting from List as in:
public MyTypeCollection : List<MyType>
In most cases public APIs will expose IList (or ICollection or IEnumerable) as appropriate.
In cases where you want your own custom collection, you can keep FxCop quiet by inheriting from Collection instead of List.
If you choose to create your own collection class you should check out the types in System.Collections.ObjectModel Namespace.
The namespace defines base classes thare are ment to make it easier for implementers to create a custom collections.
I tend to do it with my own collection if I want to shield the access to the actual list. When you are writing business objects, chance is that you need a hook to know if your object is being added/removed, in such sense I think BOCollection is better idea. Of coz if that is not required, List is more lightweight. Also you might want to check using IList to provide additional abstraction interface if you need some kind of proxying (e.g. a fake collection triggers lazy load from database)
But... why not consider Castle ActiveRecord or any other mature ORM framework? :)
At the most of the time I simply go with the List way, as it gives me all the functionality I need at the 90% of the time, and when something 'extra' is needed, I inherit from it, and code that extra bit.
I would do this:
using BusinessObjectCollection = List<BusinessObject>;
This just creates an alias rather than a completely new type. I prefer it to using List<BusinessObject> directly because it leaves me free to change the underlying structure of the collection at some point in the future without changing code that uses it (as long as I provide the same properties and methods).
try out this:
System.Collections.ObjectModel.Collection<BusinessObject>
it makes unnecessary to implement basic method like CollectionBase do
this is the way:
return arrays, accept IEnumerable<T>
=)

Categories

Resources