Generic function declaration in C# - c#

I'm trying to create some stats about method call duration in a library.
Instead of wrapping each method call to the library with lines to time and track it, I want to create a generic action and function which does these recurring steps.
E.g. for methods that don't return a value, I have created this:
private readonly Action<string, Action> timedAction = (name, action) =>
{
var sw = Stopwatch.StartNew();
action.Invoke();
trackDuration(name, sw.ElapsedMilliseconds);
};
That can be invoked with timedAction("methodname", () => lib.methodname()).
I want to do something similar for methods that return a value, but obviously Action can't be used for that purpose, since it can't return a value.
Is there a way to do this with a generic Func, so I don't have to declare one for each combination of library method parameters?

You can use a generic function like this:
private static TValue FuncHandler<TValue>(string name, Func<TValue> func)
{
var sw = Stopwatch.StartNew();
var result = func();
trackDuration(name, sw.ElapsedMilliseconds);
return result;
}
Call it like this:
var result = FuncHandler("name", () => MyMethod(param1));

Indeed, AOP will buy you more than this sort of tediousness:
https://dotnetfiddle.net/5PLCmM
// Needs to be replicated after Func<T1, TResult>, Func<T1, T2, TResult>, etc, for all the functions arities you'll want to wrap with it
public static TResult Timed<T1, /*T2, etc*/TResult>(out long duration, Func<T1, /*T2, etc*/TResult> func, T1 arg1/*T2 arg2, etc*/)
{
//start timing
var t0 = DateTime.Now;
var result = func(arg1/*, arg2, etc*/);
//end timing
duration = (long)DateTime.Now.Subtract(t0).TotalMilliseconds;
return result;
}
public int Factorial(int n)
{
return n > 0 ? n * Factorial(n - 1) : 1;
}
public int Fibonacci(int n)
{
return n > 1 ? Fibonacci(n - 2) + Fibonacci(n - 1) : n;
}
public static void Main()
{
var program = new Program();
long duration;
var _12bang = Timed(out duration, program.Factorial, 12);
Console.WriteLine("{0}! = {1} in {2} ms", 12, _12bang, duration);
var fib31 = Timed(out duration, program.Fibonacci, 31);
Console.WriteLine("Fib {0} = {1} in {2} ms", 31, fib31, duration);
}
(yes, I know about StopWatch; was just too lazy to put it in there)
'Hope this helps.

In your case AOP will be more tedious. Here is my solution which works:
Class1.cs
using System;
namespace ClassLibrary1
{
public class Class1
{
public void WriteNoParam()
{
Console.WriteLine("void");
}
public void WriteWithParam(string name)
{
Console.WriteLine("My name is: " + name);
}
}
}
Program.cs
using System;
namespace ConsoleApplication2
{
using System.Diagnostics;
using System.Reflection;
using ClassLibrary1;
class Program
{
static void Main(string[] args)
{
var prReflection = new TestReflection<Class1>();
var elapsed = prReflection.TestFunc(new Class1(), #"C:\Users\yasir\Documents\visual studio 2013\Projects\ConsoleApplication2\ClassLibrary1\bin\Debug\ClassLibrary1.dll", "WriteNoParam", new string[0]);
Console.WriteLine("Elapsed time for non parameter method: "+elapsed);
elapsed = prReflection.TestFunc(new Class1(), #"C:\Users\yasir\Documents\visual studio 2013\Projects\ConsoleApplication2\ClassLibrary1\bin\Debug\ClassLibrary1.dll", "WriteWithParam", new[]{"Yasir"});
Console.WriteLine("Elapsed time for parameter method: " + elapsed);
Console.ReadLine();
}
}
public class TestReflection<T> where T: class
{
public Func<T, string, string, string[], long> TestFunc = (arg1, s, s2, arr) =>
{
var assembly = Assembly.LoadFile(s);
var type = assembly.GetType(typeof (T).ToString());
long executionTime;
if (type != null)
{
var methodInfo = type.GetMethod(s2);
if (methodInfo != null)
{
ParameterInfo[] parameters = methodInfo.GetParameters();
object classInstance = Activator.CreateInstance(type, null);
var stopWatch = new Stopwatch();
if (parameters.Length == 0)
{
// This works fine
stopWatch.Start();
methodInfo.Invoke(classInstance, null);
return stopWatch.ElapsedMilliseconds;
}
stopWatch.Start();
methodInfo.Invoke(classInstance, arr); ;
return stopWatch.ElapsedMilliseconds;
}
}
return 0;
};
}
}
I have run in debug mode to test if the console is able to output in milliseconds and it works.
If you don't run in debug, execution will be really fast and console will output 0.

I know this question already has an answer, but I think this solution can be interesting, if you don't want to have to pass the name, yourself, each time, you could do this:
(It was a lot inspired by #selami' answer.)
private MemberInfo GetMethodName<T>(Expression<T> expression)
{
Expression body = expression.Body;
// You might want to complete this
// depending on which expression you want to use
return ((MethodCallExpression)body).Method.Name;
}
// Works for both Action and Func
private object TimedMethodInvoke<T>(Expression<T> funcExpression)
{
var sw = Stopwatch.StartNew();
var result = ((Delegate)(object)funcExpression.Compile()).DynamicInvoke();
trackDuration(GetMethodName(funcExpression), sw.ElapsedMilliseconds);
return result;
}
And your final methods:
public void TimeMethod(Expression<Action> actionExpression)
{
TimedMethodInvoke(actionExpression);
}
public TValue TimeMethod<TValue>(Expression<Func<TValue>> funcExpression)
{
return (TValue)TimedMethodInvoke(funcExpression);
}
I didn't run a benchmark over this solution, but I guess you should encounter a little performance hit, but if you don't mind about that and want to avoid to type the name each time, this could help.

Related

Cast a function as variable

Let be the following function Measure for measurement of execution time for some functnion method
public static TimeSpan Measure(Action method)
{
var stopwatch = new Stopwatch();
stopwatch.Start();
method.Invoke();
stopwatch.Stop();
return stopwatch.Elapsed;
}
This method is launched by the following line of code
var ExecTime = ComplexityCounters.Measure(() => method(int a, int b));
As we can see it's a very huge recall of Measure, so, let's try to short it by the following function
public static TimeSpan ExecTime (Action method)
{
var ExecutionTime = Measure(() => method.Invoke());
return ExecutionTime;
}
But
var ExecTime = ExecTime(method(int a, int b));
gives the error c# cannot convert from 'void' to 'System.Action'. How to fix it ? Or may be is there a way to compose those two function in one ?
here full example
public static TimeSpan Measure(Action method)
{
var stopwatch = new Stopwatch();
stopwatch.Start();
method.Invoke();
stopwatch.Stop();
return stopwatch.Elapsed;
}
public static TimeSpan ExecTime(Action method)
{
var ExecutionTime = Measure(() => method.Invoke());
return ExecutionTime;
}
private static void Main(string[] args)
{
var spentTime = ExecTime(() => Sum(1,2));
}
public static int Sum(int t1, int t2)
{
return t1 + t2;
}
actually you are declaring your variable ExecTime same as your method name ExecTime

How to mock a generic method with delegate in it using Fakes

I am having a method as below which I want to mock using Fakes. Any help in this regard is really appreciated?
IEnumerable<T> ExecuteReader<T>(
string commandText,
Func<IDataRecord, T> returnFunc,
int timeOut = 30);
Assuming you've generated the fakes assembly for the interface/class in question then it depends if you're using an interface (or virtual method) to define the method or only a class. If an interface or virtual method, you can use a stub like
[TestMethod]
public void StubFuncTest()
{
StubITestReader stubClass = new StubITestReader();
stubClass.ExecuteReaderOf1StringFuncOfIDataRecordM0Int32<int>((str, func, timeout) =>
{
int[] retVal = {12, 25, 15};
return retVal;
});
ITestReader reader = stubClass;
IEnumerable<int> curInt = reader.ExecuteReader<int>("testText", TestFunc);
foreach (var i in curInt)
{
Console.WriteLine(i);
}
}
or if just a standard method, you'll need to use a shim (I would advise to use the first option)
[TestMethod]
public void ShimFuncTest()
{
TestUnitTestClass tutClass = new TestUnitTestClass();
using (ShimsContext.Create())
{
ShimTestUnitTestClass shimClass = new ShimTestUnitTestClass(tutClass);
shimClass.ExecuteReaderOf1StringFuncOfIDataRecordM0Int32<int>((str, func, timeout) =>
{
int[] retVal = {12, 25, 15};
return retVal;
});
IEnumerable<int> curInt = tutClass.ExecuteReader<int>("testText", TestFunc);
foreach (var i in curInt)
{
Console.WriteLine(i);
}
}
}
Adding response to comment
It's a bit easier for normal methods. Using the stub, it would be something like
[TestMethod]
public void StubRegFuncTest()
{
StubITestReader stubClass = new StubITestReader();
stubClass.ExecuteNonQueryStringInt32 = (str, timeout) => timeout * 2;
ITestReader reader = stubClass;
int curInt = reader.ExecuteNonQuery("testText");
Console.WriteLine(curInt);
curInt = reader.ExecuteNonQuery("testText", 10);
Console.WriteLine(curInt);
}
The not-so-obvious difference is the generic method is enclosed in parenthesis while the normal method is just lambda expression and code block.

How to get arguments from an Expression where TDelegate is a callback

I'm attempting to write a simple generic cache but running into problems with generating unique enough keys with using System.Func as a callback.
What I ideally want is to be able to pass in an invocable delegate of some description so that the cache itself can get the value, and determine a key all from the same expression. Right now I'm getting exceptions because I'm not passing in an argument that implements or inherits from MethodCallExpression. What should I be using instead of a System.Func for this intended behaviour?
public class SimpleCacheKeyGenerator : ICacheKey
{
public string GetCacheKey<T>(Expression<Func<T>> action)
{
var body = (MethodCallExpression) action.Body; //!!! Exception Raised - action.Body is FieldExpression
ICollection<object> parameters = (from MemberExpression expression in body.Arguments
select
((FieldInfo) expression.Member).GetValue(
((ConstantExpression) expression.Expression).Value)).ToList();
var sb = new StringBuilder(100);
sb.Append(body.Type.Namespace);
sb.Append("-");
sb.Append(body.Method.Name);
parameters.ToList().ForEach(x =>
{
sb.Append("-");
sb.Append(x);
});
return sb.ToString();
}
}
public class InMemoryCache : ICacheService
{
private readonly ICachePolicy _cachePolicy;
private readonly ICacheKey _cacheKey;
public InMemoryCache(ICachePolicy cachePolicy, ICacheKey cacheKey)
{
_cachePolicy = cachePolicy;
_cacheKey = cacheKey;
}
public T Get<T>(Func<T> getItemCallback) where T : class
{
var cacheID = _cacheKey.GetCacheKey(() => getItemCallback);
var item = HttpRuntime.Cache.Get(cacheID) as T;
if (item == null)
{
item = getItemCallback();
if (_cachePolicy.RenewLeaseOnAccess)
{
HttpContext.Current.Cache.Insert(cacheID, getItemCallback, null, System.Web.Caching.Cache.NoAbsoluteExpiration, _cachePolicy.ExpiresAfter);
}
else
{
HttpContext.Current.Cache.Insert(cacheID, getItemCallback, null, DateTime.UtcNow + _cachePolicy.ExpiresAfter, System.Web.Caching.Cache.NoSlidingExpiration);
}
}
return item;
}
}
The problem is, you can't easily use both the Expression> and Func representing the same thing without duplicating the code.
You could possibly convert Expression> to a Func with LambdaExpression>.Compile() method, but that could create a performance problem, since Compile actually uses assembly emit, which is quite expensive.
Here is how i would implement the same thing without using Expressions and compilation.
You can find the same pattern everywhere in the standard Linq extensions.
Pass your argument as a separate object.
The type you use as an argument will be used for type inference for the delegate, and the argument itself will provide the arguments for the delegate at the same type.
Note that the cache in this implementation works because of the default ToString implementation of the anonimous objects used as arguments.
void Main()
{
var computeCount = 0;
var item1 = GetCached(new{x = 1, y = 2}, (arg)=>{computeCount++; return arg.x + arg.y;});
Console.WriteLine(item1);
var item2 = GetCached(new{x = 1, y = 2}, (arg)=>{computeCount++; return arg.x + arg.y;});
Console.WriteLine(item2);
var item3 = GetCached(new{x = 1, y = 3}, (arg)=>{computeCount++; return arg.x + arg.y;});
Console.WriteLine(item3);
Console.WriteLine("Compute count:");
Console.WriteLine(computeCount);
}
Dictionary<string, object> _cache = new Dictionary<string, object>();
E GetCached<T, E>(T arg, Func<T,E> getter)
{
// Creating the cache key.
// Assuming T implements ToString correctly for cache to work.
var cacheKey = arg.ToString();
object result;
if (!_cache.TryGetValue(cacheKey, out result))
{
var newItem = getter(arg);
_cache.Add(cacheKey, newItem);
return newItem;
}
else
{
Console.WriteLine("Cache hit: {0}", cacheKey);
}
return (E)result;
}
Console output:
3
Cache hit: { x = 1, y = 2 }
3
4
Compute count:
2
You get this exception because (() => getItemCallback) means (() => { return getItemCallback; })
That's why action.Body is not a method call, it is the return statement. If you change your code to (() => getItemCallback()) you should not have the error. But you won't have any arguments.
To obtain arguments of the base call, you will have to change your code to accept an Expression and Compile your lambda.
public T Get<T>(Expression<Func<T>> getItemCallbackExpression) where T : class
{
var cacheID = _cacheKey.GetCacheKey(getItemCallbackExpression);
var item = HttpRuntime.Cache.Get(cacheID) as T;
if (item == null)
{
item = getItemCallback.Compile()();
if (_cachePolicy.RenewLeaseOnAccess)
{
HttpContext.Current.Cache.Insert(cacheID, getItemCallback, null, System.Web.Caching.Cache.NoAbsoluteExpiration, _cachePolicy.ExpiresAfter);
}
else
{
HttpContext.Current.Cache.Insert(cacheID, getItemCallback, null, DateTime.UtcNow + _cachePolicy.ExpiresAfter, System.Web.Caching.Cache.NoSlidingExpiration);
}
}
return item;
}
I won't recommend this approach because compiling an expression takes time.
It may be easier and more performant to manually generate cache keys. If you really want to automatically manage cache keys. You may have a look to Aspect Oriented Programmation using castle.Core or PostSharp. Theses tools will allow you to automatically add code to some of your methods and automatically add cache logic.
I modified the code as below, I got the expected result this way, so you can try this, I hope this would be helpful.
public class SimpleCacheKeyGenerator
{
public string GetCacheKey<T, TObject>(Expression<Func<T, TObject>> action)
{
var body = (MethodCallExpression) action.Body;
ICollection<object> parameters = body.Arguments.Select(x => ((ConstantExpression) x).Value).ToList();
var sb = new StringBuilder(100);
sb.Append(body.Type.Namespace);
sb.Append("-");
sb.Append(body.Method.Name);
parameters.ToList().ForEach(x =>
{
sb.Append("-");
sb.Append(x);
});
return sb.ToString();
}
}
public class InMemoryCache
{
public void Get<T, TObject>(Expression<Func<T, TObject>> getItemCallback)
{
var generator = new SimpleCacheKeyGenerator();
Console.WriteLine(generator.GetCacheKey(getItemCallback));
}
}
main:
private static void Main(string[] args)
{
var cache = new InMemoryCache();
var tt = new SomeContextImpl();
cache.Get<SomeContextImpl, string>(x => x.Any("hello", "hi"));
Console.ReadKey();
}
somcontextimpl:
public class SomeContextImpl
{
public string Any(string parameter1, string parameter2) { return ""; }
}

Creating a type that can be used as a Func/method

I have been playing around with LINQ to Z3 for fun (not production use).
I've ended up with this syntax as a start:
var i = 123;
var test2 = from t in TheormProver.NewTheorm()
let f = TheormProver.Func<int, bool>()
let a = TheormProver.Int
let g = TheormProver.Func<bool, int>()
where !f(a * 2) && g(f(g(f(4)))) == i * a && a < g(f(a))
select new { f = f.ToString(), g = g.ToString(), a, asd = "Test extra property" };
var solution = test2.Solve(); // Edited in for clarification
// note that test2 is a TheormProver<T> which has a "T Solve()" method defined.
The static TheromProver.Int and TheormProver.Func methods/properties simply return a basic type (as per their name) currently.
Moving forwards I want to make a sort of Variable<T> type that contains more information than just a value.
TL;DR: The problem I'm having is that I want f and g variables to be a custom type that I can add fields and properties to, but I still want to be able to use them with the syntax I've got in the where clause (i.e. as a method/Func).
So, How do I create a custom type that can be used in method syntax while adding/having my own properties?
Note that I don't care if calling the method does nothing, or doesn't work as I'll be manipulating the where clause so they'll never get invoked/executed.
Example:
var test2 = from t in TheormProver.NewTheorm()
let f = TheormProver.Func<int, bool>()
let a = TheormProver.Int
where !f(a * 2) && a > 3 // f is used to create a method call expression
select new { f , a };
var testSolution = test2.Solve();
var fSolution = testSolution.f; // F is its own type with unique properties/fields.
var fConstraints = fSolution.Constraints;
var fSomeProperty = fSolution.SomeProperty;
foreach(var constraint in fConstraints)
{
//.....
}
I've mocked up a quick example of the work in progress syntax I have so far:
http://liveworkspace.org/code/3Fm6JM$0
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Linq.Expressions;
namespace ConsoleApplication1
{
class TheormProver
{
public static int Int { get { return default(int); } } // Really this would return my Variable<int>
public static Func<T, TResult> Func<T, TResult>() { return default(Func<T, TResult>); } // Really this would return my Variable<Func<T, TResult>>
protected List<Expression> Constraints; // Holds constraints / where clauses that get translated into the Z3 language
//This gets called when we do the first "let" and gets us into the correctly typed world with a generic parameter
public virtual TheormProver<T> Select<T>(Func<TheormProver, T> sel)
{
return new TheormProver<T>(Constraints);
}
}
// This is what the user of the library sees and is returned by a from t in new TheormProver(). T will be the anonymous type from the last let
class TheormProver<T> : TheormProver
{
public TheormProver(List<Expression> Constraints)
{
}
// This gets called on subsequent "let"s, going from the anonymous type with one property "f" to one with 2, "f, g". Chaining this way allows as many lets as we want
public virtual TheormProver<U> Select<U>(Expression<Func<T, U>> sel)
{
return new TheormProver<T, U>(sel, Constraints.ToList());
}
public virtual TheormProver<T> Where(Expression<Func<T, bool>> constraint)
{
var result = (TheormProver<T>)this; // This should be a clone to allow composable queries
result.Constraints.Add(constraint);
return result;
}
public virtual T Solve(out bool foundSolution)
{
// TODO: Call Z3 and get a solution
foundSolution = false;
return default(T);
}
}
internal class TheormProver<T, U> : TheormProver<U>
{
private LambdaExpression Selector;
private TheormProver<T> InternalTheorumProver;
public TheormProver(Expression<Func<T, U>> selector, List<Expression> constraints)
: base(constraints)
{
Selector = selector;
InternalTheorumProver = new TheormProver<T>(constraints);
}
}
class Program
{
static void Main(string[] args)
{
var test = from t in new TheormProver()
let f = TheormProver.Func<int, bool>()
let g = TheormProver.Func<bool, int>()
let a = TheormProver.Int
where g(f(a)) == 0
select new { f, g, a };
bool foundSolution;
var testSolution = test.Solve(out foundSolution);
}
}
}
I've created a simple 'testbed' for your original code: http://liveworkspace.org/code/3Bl7wC$0.
With, a bit of dynamic magic, you can have the following class as a drop-in replacement for Func<T1, T2>:
public class MyCallable<T1, T2> : DynamicObject
{
private readonly Expression<Func<T1, T2> > _wrapped;
private readonly Func<T1, T2> _compiled;
public MyCallable(Expression<Func<T1, T2>> towrap)
{
_wrapped = towrap; _compiled = _wrapped.Compile();
}
public override bool TryInvoke(InvokeBinder binder, object[] args, out object result)
{
if ( (args.Length == 1) &&
(args[0].GetType() == typeof(T1)))
{
Console.WriteLine(#"Invoking ""{0}"" on {1}", _wrapped, args[0]);
result = _compiled((T1) args[0]);
return true;
}
else
{
//throw new ArgumentException("Cannot invoke " + _wrapped + " with the arguments passed");
result = null;
return false;
}
}
}
As you can see, it defines you class as being "dynamic" and allows you to try and invoke it as if it were a delegate/function/... a general callable:
// in "TheormProver"
public static dynamic Func<T1, T2>() { return new MyCallable<T1, T2>(arg1 => default(T2)); }
Here's proof it works: http://liveworkspace.org/code/4kBypd$0
Output:
Invoking "arg1 => False" on 0
Invoking "arg1 => False" on 4
Invoking "arg1 => 0" on False
Invoking "arg1 => False" on 0
Invoking "arg1 => 0" on False
Invoking "arg1 => False" on 0
Invoking "arg1 => 0" on False
Full code for reference:
using System;
using System.Linq;
using System.Linq.Expressions;
using System.Dynamic;
public class Program
{
public class MyCallable<T1, T2> : DynamicObject
{
private readonly Expression<Func<T1, T2> > _wrapped;
private readonly Func<T1, T2> _compiled;
public MyCallable(Expression<Func<T1, T2>> towrap)
{
_wrapped = towrap; _compiled = _wrapped.Compile();
}
public override bool TryInvoke(InvokeBinder binder, object[] args, out object result)
{
if ( (args.Length == 1) &&
(args[0].GetType() == typeof(T1)))
{
Console.WriteLine(#"Invoking ""{0}"" on {1}", _wrapped, args[0]);
result = _compiled((T1) args[0]);
return true;
}
else
{
//throw new ArgumentException("Cannot invoke " + _wrapped + " with the arguments passed");
result = null;
return false;
}
}
}
public static class TheormProver
{
public static object[] NewTheorm() { return new object[] { 1 }; }
public static dynamic Func<T1, T2>() { return new MyCallable<T1, T2>(arg1 => default(T2)); }
public static int Int { get; set; }
}
public static void Main(string[] args)
{
var i = 123;
var test2 = from t in TheormProver.NewTheorm()
let f = TheormProver.Func<int, bool>()
let a = TheormProver.Int
let g = TheormProver.Func<bool, int>()
where !f(a * 2) && g(f(g(f(4)))) == i * a && a < g(f(a))
select new { f = f.ToString(), g = g.ToString(), a, asd = "Test extra property" };
test2.ToList().ForEach(Console.WriteLine);
}
}
You can't add custom members to delegate types and you cannot overload operator () in C#. That leaves you with extension methods.
Now, you don't want to add extensions to very general delegate types like Func<int, int> because that pollutes the namespace. I suggest you create custom delegates like this:
delegate TResult Z3Func<T1, TResult>(T1 arg1);
Then you can add extensions to Z3Func.
The extension calls will end up as static method calls in the expression tree you are analyzing.

C# Memoization of functions with arbitrary number of arguments [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
Closed 4 years ago.
This question was caused by a typo or a problem that can no longer be reproduced. While similar questions may be on-topic here, this one was resolved in a way less likely to help future readers.
Edit the question to include desired behavior, a specific problem or error, and the shortest code necessary to reproduce the problem. This will help others answer the question.
Improve this question
I'm trying to create a memoization interface for functions with arbitrary number of arguments, but I'm failing miserably I feel like my solution is not very flexible. I tried to define an interface for a function which gets memoized automatically upon execution and each function will have to implement this interface. Here is an example with a two parameter Exponential Moving Average function:
class EMAFunction:IFunction
{
Dictionary<List<object>, List<object>> map;
class EMAComparer : IEqualityComparer<List<object>>
{
private int _multiplier = 97;
public bool Equals(List<object> a, List<object> b)
{
List<object> aVals = (List<object>)a[0];
int aPeriod = (int)a[1];
List<object> bVals = (List<object>)b[0];
int bPeriod = (int)b[1];
return (aVals.Count == bVals.Count) && (aPeriod == bPeriod);
}
public int GetHashCode(List<object> obj)
{
// Don't compute hash code on null object.
if (obj == null)
{
return 0;
}
List<object> vals = (List<object>) obj[0];
int period = (int) obj[1];
return (_multiplier * period.GetHashCode()) + vals.Count;
}
}
public EMAFunction()
{
NumParams = 2;
Name = "EMA";
map = new Dictionary<List<object>, List<object>>(new EMAComparer());
}
#region IFunction Members
public int NumParams
{
get;
set;
}
public string Name
{
get;
set;
}
public object Execute(List<object> parameters)
{
if (parameters.Count != NumParams)
throw new ArgumentException("The num params doesn't match!");
if (!map.ContainsKey(parameters))
{
//map.Add(parameters,
List<double> values = new List<double>();
List<object> asObj = (List<object>)parameters[0];
foreach (object val in asObj)
{
values.Add((double)val);
}
int period = (int)parameters[1];
asObj.Clear();
List<double> ema = TechFunctions.ExponentialMovingAverage(values, period);
foreach (double val in ema)
{
asObj.Add(val);
}
map.Add(parameters, asObj);
}
return map[parameters];
}
public void ClearMap()
{
map.Clear();
}
#endregion
}
Here are my tests of the function:
private void MemoizeTest()
{
DataSet dataSet = DataLoader.LoadData(DataLoader.DataSource.FROM_WEB, 1024);
List<String> labels = dataSet.DataLabels;
Stopwatch sw = new Stopwatch();
IFunction emaFunc = new EMAFunction();
List<object> parameters = new List<object>();
int numRuns = 1000;
long sumTicks = 0;
parameters.Add(dataSet.GetValues("open"));
parameters.Add(12);
// First call
for(int i = 0; i < numRuns; ++i)
{
emaFunc.ClearMap();// remove any memoization mappings
sw.Start();
emaFunc.Execute(parameters);
sw.Stop();
sumTicks += sw.ElapsedTicks;
sw.Reset();
}
Console.WriteLine("Average ticks not-memoized " + (sumTicks/numRuns));
sumTicks = 0;
// Repeat call
for (int i = 0; i < numRuns; ++i)
{
sw.Start();
emaFunc.Execute(parameters);
sw.Stop();
sumTicks += sw.ElapsedTicks;
sw.Reset();
}
Console.WriteLine("Average ticks memoized " + (sumTicks/numRuns));
}
Update:
Thanks for pointing out my n00bish error... I always forget to call Reset on the stopwatch!
I've seen another approach to memoization as well... it doesn't offer n-argument memoization, but my approach with the Interface is not much more advantageous since I have to write a class for each function. Is there a reasonable way that I can merge these ideas into something more robust? I want to make it easier to memoize a function without making the user write a class for each function that they intend to use.
How about this? First write a one-argument memoizer:
static Func<A, R> Memoize<A, R>(this Func<A, R> f)
{
var d = new Dictionary<A, R>();
return a=>
{
R r;
if (!d.TryGetValue(a, out r))
{
r = f(a);
d.Add(a, r);
}
return r;
};
}
Straightforward. Now write a function tuplifier:
static Func<Tuple<A, B>, R> Tuplify<A, B, R>(this Func<A, B, R> f)
{
return t => f(t.Item1, t.Item2);
}
And a detuplifier:
static Func<A, B, R> Detuplify<A, B, R>(this Func<Tuple<A, B>, R> f)
{
return (a, b) => f(Tuple.Create(a, b));
}
and now a two-argument memoizer is easy:
static Func<A, B, R> Memoize<A, B, R>(this Func<A, B, R> f)
{
return f.Tuplify().Memoize().Detuplify();
}
To write a three-argument memoizer just keep following this pattern: make a 3-tuplifier, a 3-untuplifier, and a 3-memoizer.
Of course, if you don't need them, there's no need to make the tuplifiers nominal methods:
static Func<A, B, R> Memoize<A, B, R>(this Func<A, B, R> f)
{
Func<Tuple<A, B>, R> tuplified = t => f(t.Item1, t.Item2);
Func<Tuple<A, B>, R> memoized = tuplified.Memoize();
return (a, b) => memoized(Tuple.Create(a, b));
}
UPDATE: You ask what to do if there is no tuple type. You could write your own; it's not hard. Or you could use anonymous types:
static Func<T, R> CastByExample<T, R>(Func<T, R> f, T t) { return f; }
static Func<A, B, R> Memoize<A, B, R>(this Func<A, B, R> f)
{
var example = new { A=default(A), B=default(B) };
var tuplified = CastByExample(t => f(t.A, t.B), example);
var memoized = tuplified.Memoize();
return (a, b) => memoized(new {A=a, B=b});
}
Slick, eh?
UPDATE: C# 7 now has value tuples built in to the language; use them rather than rolling your own or using anonymous types.
First, you need to call sw.Reset() between your tests. Otherwise your results for the second test will be in addition to the time from the first.
Second, you probably shouldn't use vals.GetHashCode() in your GetHashCode() override on the comparer, as this will lead you to getting different hash codes for objects that would evaluate to true for your Equals override. For now, I would worry about making sure that equivalent objects always get the same hash code rather than trying to get an even distribution of the codes. If the hash codes don't match, Equals will never be called, so you'll end up processing the same parameters multiple times.
StopWatch.Stop does not reset the stopwatch so you are accumulating time on each start/stop.
For example
Stopwatch sw = new Stopwatch();
sw.Start();
System.Threading.Thread.Sleep(100);
sw.Stop();
Debug.WriteLine(sw.ElapsedTicks);
sw.Start();
System.Threading.Thread.Sleep(100);
sw.Stop();
Debug.WriteLine(sw.ElapsedTicks);
Gives the following results
228221
454626
You can use StopWatch.Restart (Framework 4.0) to restart the stopwatch each time, or if not Framework 4.0, you can use StopWatch.Reset to reset the stopwatch.
Alternative (to tuples & anonymous types) approach might be as follows:
static void Main(string[] args)
{
var func = Memoize<int, int, int>(Func);
Console.WriteLine(func(3)(4));
Console.WriteLine(func(3)(5));
Console.WriteLine(func(2)(5));
Console.WriteLine(func(3)(4));
}
//lets pretend this is very-expensive-to-compute function
private static int Func(int i, int j)
{
return i + j;
}
private static Func<TArg1, Func<TArg2, TRes>> Memoize<TArg1, TArg2, TRes>(Func<TArg1, TArg2, TRes> func)
{
Func<TArg1, Func<TArg2, TRes>> func1 =
Memoize((TArg1 arg1) => Memoize((TArg2 arg2) => func(arg1, arg2)));
return func1;
}
private static Func<TArg, TRes> Memoize<TArg, TRes>(Func<TArg, TRes> func)
{
var cache = new Dictionary<TArg, TRes>();
return arg =>
{
TRes res;
if( !cache.TryGetValue(arg, out res) )
{
Console.WriteLine("Calculating " + arg.ToString());
res = func(arg);
cache.Add(arg, res);
}
else
{
Console.WriteLine("Getting from cache " + arg.ToString());
}
return res;
};
}
Based on these two Memoize funcs you can easily build extensions for as many args as you wish.
I initially came here just looking for an abstract memoization method for a no-parameter function. This isn't exactly an answer to the question but wanted to share my solution in case someone else came looking for the simple case.
public static class MemoizationExtensions
{
public static Func<R> Memoize<R>(this Func<R> f)
{
bool hasBeenCalled = false; // Used to determine if we called the function and the result was the same as default(R)
R returnVal = default(R);
return () =>
{
// Should be faster than doing null checks and if we got a null the first time,
// we really want to memoize that result and not inadvertently call the function again.
if (!hasBeenCalled)
{
hasBeenCalled = true;
returnVal = f();
}
return returnVal;
};
}
}
If you use LinqPad you can use the following code to easily test out the functionality through the use of LinqPad's super cool Dump method.
new List<Func<object>>(new Func<object>[] {
() => { "Entered func A1".Dump(); return 1; },
() => { "Entered func A2".Dump(); return default(int); },
() => { "Entered func B1".Dump(); return String.Empty; },
() => { "Entered func B2".Dump(); return default(string); },
() => { "Entered func C1".Dump(); return new {Name = String.Empty}; },
() => { "Entered func C2".Dump(); return null; },
})
.ForEach(f => {
var f1 = MemoizationExtensions.Memoize(f);
Enumerable
.Range(1,3)
.Select(i=>new {Run=i, Value=f1()})
.Dump();
});
P.S. You will need to include the MemoizationExtensions class in the code of the LinqPad script otherwise it won't work!

Categories

Resources