Which corner case unit test would this fail? - c#

I tried the Fish problem on Codility and I secured 75% marks for correctness because the results reported that my code failed one simple test case. The results do not report what input was provided for the test case.
Could you please help me find out what is wrong with my code and what corner case it would fail?
using System;
public class Solution
{
// Time complexity: O(N)
// Space complexity: O(N)
public int solution(int[] sizes, int[] direction)
{
if (sizes == null || direction == null)
throw new ArgumentNullException();
var sizesLen = sizes.Length;
var directionLen = direction.Length;
if (sizesLen != direction.Length)
throw new ArgumentException();
var len = sizesLen;
if (len <= 1) return len;
var survivors = new Fish[len];
survivors[0] = new Fish(sizes[0], direction[0]);
var curr = 0;
for (int i = 1; i < len; i++)
{
var fish = new Fish(sizes[i], direction[i]);
if (survivors[curr].Direction == 1 && fish.Direction == 0)
{
if (fish.Size < survivors[curr].Size) continue;
while(curr >= 0 &&
fish.Size > survivors[curr].Size &&
survivors[curr].Direction == 1)
{
curr--;
}
}
survivors[++curr] = fish;
}
return ++curr;
}
}
public class Fish
{
public Fish(int size, int direction)
{
Size = size;
Direction = direction;
}
public int Size { get; set; }
public int Direction { get; set; }
}

As mentioned in your code, your Solution is O(M*N). As stated in the problem link, the code should run in linear time. Hence, I will not correct your solution as it will eventually fail on bigger test cases. I will provide you a linear algorithm that you can easily implement.
Keep a Stack S, empty initially.
Iterate over the array A, i from 0 to n-1
When you encounter an element, say A[i], do the following
If the stack S is empty, then push both (A[i], B[i]) as a pair
Else, extract the top pair from the stack S and compare the value of B[top] and B[i].
While B[top] is 1 and B[i] is 0, then one of the fishes will eat the other one. So pop from stack S, the top element. Now, compare which fish is bigger with values A[top] and A[i]. Whichever is bigger, that fish stays alive. Push that pair in the stack S, that corresponds to the fish that stays alive. Continue the while loop till the condition fails
If B[top] is not 1 and B[i] is not 0, then simply push the new pair (A[i],B[i])
The size of the stack S at the end, is your answer.
Note: You might not be passing that test case, for which your solution times out. For example, for N=100000, your solution will time out.
In my solution, the worst case time complexity is O(N+N) = O(2N) = O(N). N times because of the iteration over array A and another N times worst case, due to the Stack if it keeps shrinking, for the while condition holds true.
Hope it helps!!!
Edit: suppose A = [ 99, 98, 92, 91, 93 ], and B = [1, 1, 1, 1, 0]. Your code gives answer as 3. Expected answer = 2
Edit-2: This is your modified code that will pass every test case
public int solution(int[] sizes, int[] direction)
{
if (sizes == null || direction == null)
throw new ArgumentNullException();
var sizesLen = sizes.Length;
var directionLen = direction.Length;
if (sizesLen != direction.Length)
throw new ArgumentException();
var len = sizesLen;
if (len <= 1) return len;
var survivors = new Fish[len];
survivors[0] = new Fish(sizes[0], direction[0]);
var curr = 0;
for (int i = 1; i < len; i++)
{
var fish = new Fish(sizes[i], direction[i]);
if (survivors[curr].Direction == 1 && fish.Direction == 0)
{
if (fish.Size < survivors[curr].Size) continue;
while(curr >= 0 &&
fish.Size > survivors[curr].Size &&
survivors[curr].Direction == 1)
{
curr--;
}
if (curr >= 0)
{
if (fish.Size < survivors[curr].Size &&
survivors[curr].Direction == 1)
continue;
}
}
survivors[++curr] = fish;
}
return ++curr;
}
}
public class Fish
{
public Fish(int size, int direction)
{
Size = size;
Direction = direction;
}
public int Size { get; set; }
public int Direction { get; set; }
}

I think the intention here is to use Stack or Queue. Here is a solution with two Stack.
public static int Fish(int[] A, int[] B)
{
var downStreamFish = new Stack<int>(B.Length);
var upStreamFish = new Stack<int>(B.Length);
var result = B.Length;
for (var i = 0; i < B.Length; i++)
{
// push the fish into up/down stream stack.
if (B[i] == 1)
downStreamFish.Push(i);
else
upStreamFish.Push(i);
// check to see whether it's possible to eat a fish
while (downStreamFish.Count > 0 && upStreamFish.Count > 0)
{
var dfIndex = downStreamFish.Peek();
var ufIndex = upStreamFish.Peek();
//NOTE:downstream fish index must be less than upstream fish index in order for 'eat' to happen
if (dfIndex < ufIndex)
{
if (A[dfIndex] > A[ufIndex])
upStreamFish.Pop();
else
downStreamFish.Pop();
result--; // one fish is eatten
}
else
break; // eat condition is not met
}
}
return result;
}

Related

c# finding even or odd numbers

Question: You are given an array (which will have a length of at least 3, but could be very large) containing integers. The array is either entirely comprised of odd integers or entirely comprised of even integers except for a single integer N. Write a method that takes the array as an argument and returns this "outlier" N.
Examples
[2, 4, 0, 100, 4, 11, 2602, 36]
Should return: 11 (the only odd number)
[160, 3, 1719, 19, 11, 13, -21]
Should return: 160 (the only even number)
Problem: I can find the target number. It is "6" in this instance. But when i try to write it, it is written 3 times. I did not understand why it is not written once.
namespace sayitoplamları
{
class Program
{
static void Main(string[] args)
{
int[] integers;
integers = new int[] {1,3,5,6};
int even = 0;
int odd = 0;
foreach (var num in integers)
{
if (num%2==0)
{
even += 1;
}
else
{
odd += 1;
}
if (even>1)
{
foreach (var item in integers)
{
if (item%2!=0)
{
Console.WriteLine(item);
}
}
}
else if (odd>1)
{
foreach (var item in integers)
{
if (item%2==0)
{
Console.WriteLine(item);
}
}
}
}
}
}
}```
Since we are doing this assignment for a good grade :)
We really don't need to count both odd and even elements and can just count odd once as it more convenient - just add up all remainders ( odd % 2 = 1, even % 2 = 0). If we would need number of even elements it would be array.Length - countOdd.
int countOdd = 0;
for (int i = 0; i < array.Length; i++) // or foreach
{
countOdd += array[i] % 2;
}
If you feel that trick with counting is too complicated and only needed for A+ mark on the assignment than variant of your original code is fine:
int countOdd = 0;
foreach (int element in array)
{
if (element % 2 == 1)
countOdd ++; // which is exactly countOdd += 1, just shorter.
}
Now for the second part - finding the outlier. We don't even need to know if it is Odd or Even but rather just reminder from "% 2". We now know how many odd element - which could be either 1 (than desired remainder is 1 - we are looking for odd element) or more than one (then desired remainder is 0 as we are looking for even one).
int desiredRemainder = countOdd == 1 ? 1 : 0;
Now all its left is to check which element has desired remainder and return from our method:
foreach (int element in array)
{
if (element % 2 == desiredRemainder)
{
return element;
}
}
Please note that assignment asks for "return" and not "print". Printing the value does not allow it to be used by the caller of the method unlike returning it. Using early return also saves some time to iterate the rest of array.
Complete code:
int FindOutlier(int[] array)
{
int desiredReminder = array.Sum(x => x % 2) == 1 ? 1 : 0;
return array.First(x => x % 2 == desiredReminder);
}
Alternative solution would be to iterate array only once - since we need to return first odd or first even number as soon as we figure out which one repeats similar how your tried with nested foreach. Notes since we are guaranteed that outlier present and is only one we don't need to try to remember first number - just current is ok.
int FindOutlier(int[] array)
{
int? odd = null; // you can use separate int + bool instead
int? even = null;
int countOdd = 0;
int countEven = 0;
foreach (int element in array)
{
bool isEven = element % 2 == 0;
if (isEven)
{
countEven++;
even = element;
}
else
{
countOdd++;
odd = element;
}
if (countEven > 1 && odd.HasValue)
return odd.Value;
if (countOdd > 1 && even.HasValue)
return even.Value;
}
throw new Exception("Value must be found before");
}
And if you ok to always iterate whole list code will be simple as again we'd need to only keep track of count of odd numbers (or even, just one kind) and return would not need to check if we found the value yet as we know that both type of numbers are present in the list:
int FindOutlier(int[] array)
{
int odd = 0;
int even = 0;
int countEven = 0;
foreach (int element in array)
{
if (element % 2 == 0)
{
countEven++;
even= element;
}
else
{
odd = element;
}
}
return countEven > 1 ? odd : even;
}
You are mixing everything into a single algorithm. In most cases it's a better idea to have separate steps. In your case, the steps could be:
Count odds and evens
Find the outlier
Print the result
That way you can make sure that the output does not interfere with the loops.
class Program
{
static void Main(string[] args)
{
int[] integers;
integers = new int[] {1,3,5,6};
int even = 0;
int odd = 0;
// Count odds and evens
foreach (var num in integers)
{
if (num%2==0)
{
even += 1;
}
else
{
odd += 1;
}
}
// Find the outlier
var outlier = 0;
foreach (var item in integers)
{
if (even == 1 && item%2==0)
{
outlier = item;
break;
}
if (odd == 1 && item%2!=0)
{
outlier = item;
break;
}
}
// Print the result
Console.WriteLine(outlier);
}
}
You could even make this separate methods. It also makes sense due to SoC (separation of concerns) and if you want to achieve testability (unit tests).
You want a method anyway and use the return statement, as mentioned in the assignment
Write a method that takes the array as an argument and returns this "outlier" N.
Maybe you want to check the following code, which uses separate methods:
class Program
{
static void Main(string[] args)
{
int[] integers;
integers = new int[] { 1, 3, 5, 6 };
var outlier = FindOutlier(integers);
Console.WriteLine(outlier);
}
private static int FindOutlier(int[] integers)
{
if (integers.Length < 3) throw new ArgumentException("Need at least 3 elements.");
bool isEvenOutlier = IsEvenOutlier(integers);
var outlier = FindOutlier(integers, isEvenOutlier ? 0:1);
return outlier;
}
static bool IsEvenOutlier(int[] integers)
{
// Count odds and evens
int even = 0;
int odd = 0;
foreach (var num in integers)
{
if (num % 2 == 0)
{
even += 1;
}
else
{
odd += 1;
}
}
// Check which one occurs only once
if (even == 1) return true;
if (odd == 1) return false;
throw new ArgumentException("No outlier in data.", nameof(integers));
}
private static int FindOutlier(int[] integers, int remainder)
{
foreach (var item in integers)
{
if (item % 2 == remainder)
{
return item;
}
}
throw new ArgumentException("No outlier in argument.", nameof(integers));
}
}
The reason it is printing '6' 3 times is because you iterate over the inetegers inside a loop where you iterate over the integers. Once with num and again with item.
Consider what happens when you run it against [1,3,5,6].
num=1, you get odd=1 and even=0. Neither of the if conditions are true so we move to the next iteration.
num=3, you get odd=2 and even=0. odd > 1 so we iterate over the integers (with item) again and print '6' when item=6.
num=5, you get odd=3 and even=0. Again, this will print '6' when item=6.
num=6, you get odd=3 and even=1. Even though we incremented the even count, we still have odd > 3 so will print '6' when item=6.
It is best to iterate over the values once and store the last even and last odd numbers along with the count (it is more performant as well).
You can then print the last odd number if even > 0 (as there will only be one odd number, which will be the last one) or the last even number if odd > 0.
I.e.
namespace sayitoplamları
{
class Program
{
static void Main(string[] args)
{
int[] integers;
integers = new int[] { 1, 3, 5, 6 };
int even = 0;
int? lastEven = null;
int odd = 0;
int? lastOdd = null;
foreach (var num in integers)
{
if (num % 2 == 0)
{
even += 1;
lastEven = num;
}
else
{
odd += 1;
lastOdd = num;
}
}
if (even > 1)
{
Console.WriteLine(lastOdd);
}
else if (odd > 1)
{
Console.WriteLine(lastEven);
}
}
}
}
because you didn't close the the first foreach loop before printing...
namespace sayitoplamları
{
class Program
{
static void Main(string[] args)
{
int[] integers;
integers = new int[] {1,3,5,6};
int even = 0;
int odd = 0;
foreach (var num in integers)
{
if (num%2==0)
{
even += 1;
}
else
{
odd += 1;
}//you need to close it here
if (even>1)
{
foreach (var item in integers)
{
if (item%2!=0)
{
Console.WriteLine(item);
}
}
}
else if (odd>1)
{
foreach (var item in integers)
{
if (item%2==0)
{
Console.WriteLine(item);
}
}
}
}
}//not here
}
}

How to optimize a loops going through arrays?

I've been going though www.testdome.com to test my skills and opened a list of public questions. One of the practice questions was:
Implement function CountNumbers that accepts a sorted array of
integers and counts the number of array elements that are less than
the parameter lessThan.
For example, SortedSearch.CountNumbers(new int[] { 1, 3, 5, 7 }, 4)
should return 2 because there are two array elements less than 4.
And my answer was:
using System;
public class SortedSearch
{
public static int CountNumbers(int[] sortedArray, int lessThan)
{
int count = 0;
int l = sortedArray.Length;
for (int i = 0; i < l; i++) {
if (sortedArray [i] < lessThan)
count++;
}
return count;
}
public static void Main(string[] args)
{
Console.WriteLine(SortedSearch.CountNumbers(new int[] { 1, 3, 5, 7 }, 4));
}
}
It seems that I've failed on two counts:
Performance test when sortedArray contains lessThan: Time limit exceeded
and
Performance test when sortedArray doesn't contain lessThan: Time limit exceeded
To be honest I'm not sure what to optimize there? Maybe I'm using a wrong method and there is a similar way to speed up the calculation?
If someone could point out my mistake or explain what I'm going wrong, I'd really appreciate it!
Because the array is sorted, you can stop counting as soon as you reach or exceed the lessThan parameter.
else break would probably do it.
Does it have to be really a loop? You could do Lambda exp for that
public static int CountNumbers(int[] sortedArray, int lessThan)
{
return sortedArray.ToList().Where(x=>x < lessThan).Count();
}
Harold's answer and approach is spot on.
Find below another code sample in case you're practicing for technical interviews. It handles cases when the array is null or empty, when lessThan is presented in the array (including duplicates), etc.
private static int CountNumbers(int[] sortedArray, int lessThan)
{
if (sortedArray == null)
{
throw new ArgumentNullException("Sorted array cannot be null.");
}
if (sortedArray.Length == 0)
{
throw new ArgumentException("Sorted array cannot be empty.");
}
int start = 0;
int end = sortedArray.Length;
int middle = int.MinValue;
while (start < end)
{
middle = (start + end) / 2;
if (sortedArray[middle] == lessThan)
{
break; // Found the "lessThan" number in the array, we can stop and move left
}
else if (sortedArray[middle] < lessThan)
{
start = middle + 1;
}
else
{
end = middle - 1;
}
}
// Adjust the middle pointer based on the "current" and "lessThan" numbers in the sorted array
while (middle >= 0 && sortedArray[middle] >= lessThan)
{
middle--;
}
// +1 because middle is calculated through 0-based (e.g. start)
return middle + 1;
}

C# Simple Constrained Weighted Average Algorithm with/without Solver

I'm at a loss as to why I can't get this seemingly simple problem solved using Microsoft Solver Foundation.
All I need is to modify the weights (numbers) of certain observations to ensure that no 1 observation's weight AS A PERCENTAGE exceeds 25%. This is for the purposes of later calculating a constrained weighted average with the results of this algorithm.
For example, given the 5 weights of { 45, 100, 33, 500, 28 }, I would expect the result of this algorithm to be { 45, 53, 33, 53, 28 }, where 2 of the numbers had to be reduced such that they're within the 25% threshold of the new total (212 = 45+53+33+53+28) while the others remained untouched. Note that even though initially, the 2nd weight of 100 was only 14% of the total (706), as a result of decreasing the 4th weight of 500, it subsequently pushed up the % of the other observations and therein lies the only challenge with this.
I tried to recreate this using Solver only for it to tell me that it is the solution is "Infeasible" and it just returns all 1s. Update: solution need not use Solver, any alternative is welcome so long as it is fast when dealing with a decent number of weights.
var solver = SolverContext.GetContext();
var model = solver.CreateModel();
var decisionList = new List<Decision>();
decisionList.Add(new Decision(Domain.IntegerRange(1, 45), "Dec1"));
decisionList.Add(new Decision(Domain.IntegerRange(1, 100), "Dec2"));
decisionList.Add(new Decision(Domain.IntegerRange(1, 33), "Dec3"));
decisionList.Add(new Decision(Domain.IntegerRange(1, 500), "Dec4"));
decisionList.Add(new Decision(Domain.IntegerRange(1, 28), "Dec5"));
model.AddDecisions(decisionList.ToArray());
int weightLimit = 25;
foreach (var decision in model.Decisions)
{
model.AddConstraint(decision.Name + "weightLimit", 100 * (decision / Model.Sum(model.Decisions.ToArray())) <= weightLimit);
}
model.AddGoal("calcGoal", GoalKind.Maximize, Model.Sum(model.Decisions.ToArray()));
var solution = solver.Solve();
foreach (var decision in model.Decisions)
{
Debug.Print(decision.GetDouble().ToString());
}
Debug.Print("Solution Quality: " + solution.Quality.ToString());
Any help with this would be very much appreciated, thanks in advance.
I ditched Solver b/c it didn't live up to its name imo (or I didn't live up to its standards :)). Below is where I landed. Because this function gets used many times and on large lists of input weights, efficiency and performance are key so this function attempts to do the least # of iterations possible (let me know if anyone has any suggested improvements though). The results get used for a weighted average so I use "AttributeWeightPair" to store the value (attribute) and its weight and the function below is what modifies the weights to be within the constraint when given a list of these AWPs. The function assumes that weightLimit is passed in as a %, e.g. 25% gets passed in as 25, not 0.25 --- ok I'll stop stating what'll be obvious from the code - so here it is:
public static List<AttributeWeightPair<decimal>> WeightLimiter(List<AttributeWeightPair<decimal>> source, decimal weightLimit)
{
weightLimit /= 100; //convert to percentage
var zeroWeights = source.Where(w => w.Weight == 0).ToList();
var nonZeroWeights = source.Where(w => w.Weight > 0).ToList();
if (nonZeroWeights.Count == 0)
return source;
//return equal weights if given infeasible constraint
if ((1m / nonZeroWeights.Count()) > weightLimit)
{
nonZeroWeights.ForEach(w => w.Weight = 1);
return nonZeroWeights.Concat(zeroWeights).ToList();
}
//return original list if weight-limiting is unnecessary
if ((nonZeroWeights.Max(w => w.Weight) / nonZeroWeights.Sum(w => w.Weight)) <= weightLimit)
{
return source;
}
//sort (ascending) and store original weights
nonZeroWeights = nonZeroWeights.OrderBy(w => w.Weight).ToList();
var originalWeights = nonZeroWeights.Select(w => w.Weight).ToList();
//set starting point and determine direction from there
var initialSumWeights = nonZeroWeights.Sum(w => w.Weight);
var initialLimit = weightLimit * initialSumWeights;
var initialSuspects = nonZeroWeights.Where(w => w.Weight > initialLimit).ToList();
var initialTarget = weightLimit * (initialSumWeights - (initialSuspects.Sum(w => w.Weight) - initialLimit * initialSuspects.Count()));
var antepenultimateIndex = Math.Max(nonZeroWeights.FindLastIndex(w => w.Weight <= initialTarget), 1); //needs to be at least 1
for (int i = antepenultimateIndex; i < nonZeroWeights.Count(); i++)
{
nonZeroWeights[i].Weight = originalWeights[antepenultimateIndex - 1]; //set cap equal to the preceding weight
}
bool goingUp = (nonZeroWeights[antepenultimateIndex].Weight / nonZeroWeights.Sum(w => w.Weight)) > weightLimit ? false : true;
//Procedure 1 - find the weight # at which a cap would result in a weight % just UNDER the weight limit
int penultimateIndex = antepenultimateIndex;
bool justUnderTarget = false;
while (!justUnderTarget)
{
for (int i = penultimateIndex; i < nonZeroWeights.Count(); i++)
{
nonZeroWeights[i].Weight = originalWeights[penultimateIndex - 1]; //set cap equal to the preceding weight
}
var currentMaxPcntWeight = nonZeroWeights[penultimateIndex].Weight / nonZeroWeights.Sum(w => w.Weight);
if (currentMaxPcntWeight == weightLimit)
{
return nonZeroWeights.Concat(zeroWeights).ToList();
}
else if (goingUp && currentMaxPcntWeight < weightLimit)
{
nonZeroWeights[penultimateIndex].Weight = originalWeights[penultimateIndex]; //reset
if (penultimateIndex < nonZeroWeights.Count() - 1)
penultimateIndex++; //move up
else break;
}
else if (!goingUp && currentMaxPcntWeight > weightLimit)
{
if (penultimateIndex > 1)
penultimateIndex--; //move down
else break;
}
else
{
justUnderTarget = true;
}
}
if (goingUp) //then need to back up a step
{
penultimateIndex = (penultimateIndex > 1 ? penultimateIndex - 1 : 1);
for (int i = penultimateIndex; i < nonZeroWeights.Count(); i++)
{
nonZeroWeights[i].Weight = originalWeights[penultimateIndex - 1];
}
}
//Procedure 2 - increment the modified weights (subject to a cap equal to their original values) until the weight limit is hit (allowing a very slight overage for the last term in some cases)
int ultimateIndex = penultimateIndex;
var sumWeights = nonZeroWeights.Sum(w => w.Weight); //use this counter instead of summing every time for condition check within loop
bool justOverTarget = false;
while (!justOverTarget)
{
for (int i = ultimateIndex; i < nonZeroWeights.Count(); i++)
{
if (nonZeroWeights[i].Weight + 1 > originalWeights[i])
{
if (ultimateIndex < nonZeroWeights.Count() - 1)
ultimateIndex++;
else justOverTarget = true;
}
else
{
nonZeroWeights[i].Weight++;
sumWeights++;
}
}
if ((nonZeroWeights.Last().Weight / sumWeights) >= weightLimit)
{
justOverTarget = true;
}
}
return nonZeroWeights.Concat(zeroWeights).ToList();
}
public class AttributeWeightPair<T>
{
public T Attribute { get; set; }
public decimal? Weight { get; set; }
public AttributeWeightPair(T attribute, decimal? count)
{
this.Attribute = attribute;
this.Weight = count;
}
}

How can I check if an object representing a number is greater than another?

I'm currently in the process of writing a class that can represent an infinitely large number (in theory). The constructor of this class creates the object from a string value, which is why the number could be of an extremely large, yet unknown, size.
The reason I started writing this class was because I wanted to be able to make a program that would be able to perform mathematical calculations with numbers of arbitrarily large size. Thus, I started writing a class that could handle values well over the standard ranges of integers, floats, doubles, (hopefully) decimals, etc.
Here are the declarations and the main constructor for the class:
/// <summary>
/// Creates a new instance of the LargeDecimal class, which represents either a whole or decimal number.
/// </summary>
/// <param name="number">The string representation of the number.</param>
public LargeDecimal(string value)
{
string number = value.Replace(" ", "");
if (number.Contains("-") && (number.IndexOf('-') == 0)) {
number = number.Replace("-", "");
IsNegative = true;
}
// Determining whether the number is whole or contains a decimal.
if (number.IndexOf('.') == -1) {
// Does not contain a decimal.
for (int i = 0; i < number.Length; i++)
wholeDigits.Add(int.Parse(number[i].ToString()));
IsWhole = true;
}
else {
// Still check if number is whole. Add all decimal digits.
string[] numArray = number.Split('.');
int sumOfDecimalDigits = 0;
for (int i = 0; i < numArray[1].ToString().Length; i++)
sumOfDecimalDigits += int.Parse(numArray[1].ToString()[i].ToString());
if (sumOfDecimalDigits <= 0) {
// Is a whole number.
for (int i = 0; i < numArray[0].ToString().Length; i++)
wholeDigits.Add(int.Parse(numArray[0].ToString()[i].ToString()));
IsWhole = true;
}
else {
// Is not a whole number.
for (int i = 0; i < numArray[0].ToString().Length; i++)
wholeDigits.Add(int.Parse(numArray[0].ToString()[i].ToString()));
for (int i = 0; i < numArray[1].ToString().Length; i++)
decimalDigits.Add(int.Parse(numArray[1].ToString()[i].ToString()));
IsWhole = false;
}
}
}
The class is basically a representation of a number through two lists of type int, where one list represents the digits that make up the whole partition of the number, and the other list represents the digits that make up the decimal partition of the number (if applicable).
I have written an Add method which accepts two LargeDecimal objects, adds their values together, and returns a new LargeDecimal object with the sum as its value. Though incomplete, it does work with LargeDecimal objects that are whole numbers only, and are both positive or both negative (picture!).
I have realized that adding methods to compare two values (greater than / less than / equal to) would be extremely useful in calculations. However, I am not sure how to check whether the value of a LargeDecimal object is greater or less than the value of another LargeDecimal.
There are cases where I can just compare the amount of items in the wholeDigits list, but that is only when the amounts of items are different for both values.
I am unsure about how to compare two numbers such as: 15498765423654973246 and 15499111137583924246.
And I think it will get more difficult if I will try and compare two fractional numbers: 8573819351.86931 and 8573809999.85999
I do not wish to use integer calculations in conjunction with place values (e.g. in the number 831, the value of the number 8 would be 8 * 100, the value of 3 would be 3 * 10, and the value of 1 would be 1 * 1), because I would like this class to be able to represent values of any given size and length and range (while an int cannot handle values up to 2147483647).
Any help regarding this would be highly appreciated! Thank you all!
I would start by implementing IComparable:
public class LargeDecimal : IComparable<LargeDecimal>
And the implementation would look like:
public int CompareTo(LargeDecimal other)
{
if (other == null) return 1;
if (ReferenceEquals(this, other)) return 0;
if (IsNegative != other.IsNegative)
{
if (other.IsNegative) return 1;
return -1;
}
int multiplier = (IsNegative) ? -1 : 1;
if (wholeDigits.Count > other.wholeDigits.Count) return 1 * multiplier;
if (wholeDigits.Count < other.wholeDigits.Count) return -1 * multiplier;
for (int i = 0; i < wholeDigits.Count; i++)
{
if (wholeDigits[i] > other.wholeDigits[i]) return 1 * multiplier;
if (wholeDigits[i] < other.wholeDigits[i]) return -1 * multiplier;
}
for (int i = 0; i < Math.Min(decimalDigits.Count, other.decimalDigits.Count); i++)
{
if (decimalDigits[i] > other.decimalDigits[i]) return 1 * multiplier;
if (decimalDigits[i] < other.decimalDigits[i]) return -1 * multiplier;
}
if (decimalDigits.Count > other.decimalDigits.Count) return 1 * multiplier;
if (decimalDigits.Count < other.decimalDigits.Count) return -1 * multiplier;
return 0;
}
Update
This project was sitting on my brain at dinner tonight, so I went at it some more for fun. Not sure if this is helpful, but figured I'd share what I came up with.
First, I added fields to make the class actually work:
public bool IsNegative { get; private set; }
public bool IsWhole { get; private set; }
private List<int> wholeDigits;
private List<int> decimalDigits;
Second, I overrode the ToString method so the numbers display nicely:
public override string ToString()
{
return string.Format("{0}{1}{2}{3}",
(IsNegative) ? "-" : "",
string.Join("", wholeDigits),
(IsWhole) ? "" : ".",
(IsWhole) ? "" : string.Join("", decimalDigits));
}
Then I implemented the Equals methods so they work as expected for a number type:
public static bool Equals(LargeDecimal first, LargeDecimal second)
{
return ReferenceEquals(first, null)
? ReferenceEquals(second, null)
: first.Equals(second);
}
public override bool Equals(object obj)
{
return Equals(obj as LargeDecimal);
}
protected bool Equals(LargeDecimal other)
{
return CompareTo(other) == 0;
}
public override int GetHashCode()
{
unchecked
{
var hashCode = (wholeDigits != null)
? wholeDigits.GetHashCode()
: 0;
hashCode = (hashCode * 397) ^
(decimalDigits != null ? decimalDigits.GetHashCode() : 0);
hashCode = (hashCode * 397) ^ IsNegative.GetHashCode();
hashCode = (hashCode * 397) ^ IsWhole.GetHashCode();
return hashCode;
}
}
Next, I added some utility methods to help out with some upcoming tasks:
private void ResetToZero()
{
wholeDigits = new List<int> { 0 };
decimalDigits = new List<int> { 0 };
IsWhole = true;
IsNegative = false;
}
private void NormalizeLists()
{
RemoveLeadingZeroes(wholeDigits);
RemoveTrailingZeroes(decimalDigits);
IsWhole = (decimalDigits.Count == 0
|| (decimalDigits.Count == 1 && decimalDigits[0] == 0));
}
private void AddLeadingZeroes(List<int> list, int numberOfZeroes)
{
if (list == null) return;
for (int i = 0; i < numberOfZeroes; i++)
{
list.Insert(0, 0);
}
}
private void AddTrailingZeroes(List<int> list, int numberOfZeroes)
{
if (list == null) return;
for (int i = 0; i < numberOfZeroes; i++)
{
list.Add(0);
}
}
private void RemoveLeadingZeroes(List<int> list, bool leaveOneIfEmpty = true)
{
if (list == null) return;
var temp = list;
for (int i = 0; i < temp.Count; i++)
{
if (temp[i] == 0)
{
list.RemoveAt(i);
}
else
{
break;
}
}
if (leaveOneIfEmpty && !list.Any()) list.Add(0);
}
private void RemoveTrailingZeroes(List<int> list, bool leaveOneIfEmpty = true)
{
if (list == null) return;
var temp = list;
for (int i = temp.Count -1; i >= 0; i--)
{
if (temp[i] == 0)
{
list.RemoveAt(i);
}
else
{
break;
}
}
if (leaveOneIfEmpty && !list.Any()) list.Add(0);
}
Next, I added some constructors. A default that sets the number to '0', one that parses a string, and another that copies the values from another LargeDecimal:
public LargeDecimal() : this("0") { }
public LargeDecimal(string value)
{
if (value == null) throw new ArgumentNullException("value");
string number = value.Replace(" ", ""); // remove spaces
number = number.TrimStart('0'); // remove leading zeroes
IsNegative = (number.IndexOf('-') == 0); // check for negative
number = number.Replace("-", ""); // remove dashes
// add a zero if there were no numbers before a decimal point
if (number.IndexOf('.') == 0) number = "0" + number;
// Initialize lists
wholeDigits = new List<int>();
decimalDigits = new List<int>();
// Get whole and decimal parts of the number
var numberParts = number.Split(new[] {'.'},
StringSplitOptions.RemoveEmptyEntries);
IsWhole = numberParts.Length == 1;
// Add whole digits to the list
wholeDigits.AddRange(numberParts[0].Select(n => int.Parse(n.ToString())));
// Add decimal digits to the list (if there are any)
if (numberParts.Length > 1 &&
numberParts[1].Sum(n => int.Parse(n.ToString())) > 0)
{
numberParts[1] = numberParts[1].TrimEnd('0');
decimalDigits.AddRange(numberParts[1].Select(n => int.Parse(n.ToString())));
}
NormalizeLists();
}
public LargeDecimal(LargeDecimal initializeFrom)
{
wholeDigits = initializeFrom.wholeDigits
.GetRange(0, initializeFrom.wholeDigits.Count);
decimalDigits = initializeFrom.decimalDigits
.GetRange(0, initializeFrom.decimalDigits.Count);
IsWhole = initializeFrom.IsWhole;
IsNegative = initializeFrom.IsNegative;
NormalizeLists();
}
Then I implemented the Add and Subtract methods
public void Add(LargeDecimal other)
{
if (other == null) return;
if (IsNegative != other.IsNegative)
{
// Get the absolue values of the two operands
var absThis = new LargeDecimal(this) {IsNegative = false};
var absOther = new LargeDecimal(other) {IsNegative = false};
// If the signs are different and the values are the same, reset to 0.
if (absThis == absOther)
{
ResetToZero();
return;
}
// Since the signs are different, we will retain the sign of the larger number
IsNegative = absThis < absOther ? other.IsNegative : IsNegative;
// Assign the difference of the two absolute values
absThis.Subtract(absOther);
wholeDigits = absThis.wholeDigits.GetRange(0, absThis.wholeDigits.Count);
decimalDigits = absThis.decimalDigits.GetRange(0, absThis.decimalDigits.Count);
NormalizeLists();
return;
}
// start with the larger decimal digits list
var newDecimalDigits = new List<int>();
newDecimalDigits = decimalDigits.Count > other.decimalDigits.Count
? decimalDigits.GetRange(0, decimalDigits.Count)
: other.decimalDigits.GetRange(0, other.decimalDigits.Count);
// and add the smaller one to it
int carry = 0; // Represents the value of the 'tens' digit to carry over
for (int i = Math.Min(decimalDigits.Count, other.decimalDigits.Count) - 1; i >= 0; i--)
{
var result = decimalDigits[i] + other.decimalDigits[i] + carry;
carry = Convert.ToInt32(Math.Floor((decimal) result / 10));
result = result % 10;
newDecimalDigits[i] = result;
}
var newWholeDigits = new List<int>();
newWholeDigits = wholeDigits.Count > other.wholeDigits.Count
? wholeDigits.GetRange(0, wholeDigits.Count)
: other.wholeDigits.GetRange(0, other.wholeDigits.Count);
for (int i = Math.Min(wholeDigits.Count, other.wholeDigits.Count) - 1; i >= 0; i--)
{
var result = wholeDigits[i] + other.wholeDigits[i] + carry;
carry = Convert.ToInt32(Math.Floor((decimal)result / 10));
result = result % 10;
newWholeDigits[i] = result;
}
if (carry > 0) newWholeDigits.Insert(0, carry);
wholeDigits = newWholeDigits.GetRange(0, newWholeDigits.Count);
decimalDigits = newDecimalDigits.GetRange(0, newDecimalDigits.Count);
NormalizeLists();
}
public void Subtract(LargeDecimal other)
{
if (other == null) return;
// If the other value is the same as this one, then the difference is zero
if (Equals(other))
{
ResetToZero();
return;
}
// Absolute values will be used to determine how we subtract
var absThis = new LargeDecimal(this) {IsNegative = false};
var absOther = new LargeDecimal(other) {IsNegative = false};
// If the signs are different, then the difference will be the sum
if (IsNegative != other.IsNegative)
{
absThis.Add(absOther);
wholeDigits = absThis.wholeDigits.GetRange(0, absThis.wholeDigits.Count);
decimalDigits = absThis.decimalDigits.GetRange(0, absThis.decimalDigits.Count);
NormalizeLists();
return;
}
// Subtract smallNumber from bigNumber to get the difference
LargeDecimal bigNumber;
LargeDecimal smallNumber;
if (absThis < absOther)
{
bigNumber = new LargeDecimal(absOther);
smallNumber = new LargeDecimal(absThis);
}
else
{
bigNumber = new LargeDecimal(absThis);
smallNumber = new LargeDecimal(absOther);
}
// Pad the whole number and decimal number lists where necessary so that both
// LargeDecimal objects have the same count of whole and decimal numbers.
AddTrailingZeroes(
bigNumber.decimalDigits.Count < smallNumber.decimalDigits.Count
? bigNumber.decimalDigits
: smallNumber.decimalDigits,
Math.Abs(bigNumber.decimalDigits.Count - smallNumber.decimalDigits.Count));
AddLeadingZeroes(smallNumber.wholeDigits,
Math.Abs(bigNumber.wholeDigits.Count - smallNumber.wholeDigits.Count));
var newWholeDigits = new List<int>();
var newDecimalDigits = new List<int>();
bool borrowed = false; // True if we borrowed 1 from next number
for (int i = bigNumber.decimalDigits.Count - 1; i >= 0; i--)
{
if (borrowed)
{
bigNumber.decimalDigits[i] -= 1; // We borrowed one from this number last time
borrowed = false;
}
if (bigNumber.decimalDigits[i] < smallNumber.decimalDigits[i])
{
bigNumber.decimalDigits[i] += 10; // Borrow from next number and add to this one
borrowed = true;
}
// Since we're working from the back of the list, always add to the front
newDecimalDigits.Insert(0, bigNumber.decimalDigits[i] - smallNumber.decimalDigits[i]);
}
for (int i = bigNumber.wholeDigits.Count - 1; i >= 0; i--)
{
if (borrowed)
{
bigNumber.wholeDigits[i] -= 1;
borrowed = false;
}
if (bigNumber.wholeDigits[i] < smallNumber.wholeDigits[i])
{
bigNumber.wholeDigits[i] += 10;
borrowed = true;
}
newWholeDigits.Insert(0, bigNumber.wholeDigits[i] - smallNumber.wholeDigits[i]);
}
if (absThis < absOther) IsNegative = !IsNegative;
wholeDigits = newWholeDigits.GetRange(0, newWholeDigits.Count);
decimalDigits = newDecimalDigits.GetRange(0, newDecimalDigits.Count);
NormalizeLists();
}
And finally overrode the numeric operators:
public static LargeDecimal operator +(LargeDecimal first, LargeDecimal second)
{
if (first == null) return second;
if (second == null) return first;
var result = new LargeDecimal(first);
result.Add(second);
return result;
}
public static LargeDecimal operator -(LargeDecimal first, LargeDecimal second)
{
if (first == null) return second;
if (second == null) return first;
var result = new LargeDecimal(first);
result.Subtract(second);
return result;
}
public static bool operator >(LargeDecimal first, LargeDecimal second)
{
if (first == null) return false;
return first.CompareTo(second) > 0;
}
public static bool operator <(LargeDecimal first, LargeDecimal second)
{
if (second == null) return false;
return second.CompareTo(first) > 0;
}
public static bool operator >=(LargeDecimal first, LargeDecimal second)
{
if (first == null) return false;
return first.CompareTo(second) >= 0;
}
public static bool operator <=(LargeDecimal first, LargeDecimal second)
{
if (second == null) return false;
return second.CompareTo(first) >= 0;
}
public static bool operator ==(LargeDecimal first, LargeDecimal second)
{
return Equals(first, second);
}
public static bool operator !=(LargeDecimal first, LargeDecimal second)
{
return !Equals(first, second);
}
Thanks for the fun challenge!!
Assuming that this implementation looks something like this:
List<int> WholeList;
List<int> FactionalList;
bool IsNegative;
and they both grow away from the decimal point, then a comparison algorithm would go like this
First compare signs. Negative is always less than positive.
Compare lengths of WholeList, longer has larger magnitude (larger number is dependent on sign)
If WholeList.Count the same. Compare each digit starting with most significant (aka WholeList[Count-1] first), first that are different between numbers will determine larger magnitude.
If you make it into the FractionalList, and then run out of digits in one list. The number with the longer FractionalList will be the larger magnitude.

Combination Algorithm

Length = input Long(can be 2550, 2880, 2568, etc)
List<long> = {618, 350, 308, 300, 250, 232, 200, 128}
The program takes a long value, for that particular long value we have to find the possible combination from the above list which when added give me a input result(same value can be used twice). There can be a difference of +/- 30.
Largest numbers have to be used most.
Ex:Length = 868
For this combinations can be
Combination 1 = 618 + 250
Combination 2 = 308 + 232 + 200 +128
Correct Combination would be Combination 1
But there should also be different combinations.
public static void Main(string[] args)
{
//subtotal list
List<int> totals = new List<int>(new int[] { 618, 350, 308, 300, 250, 232, 200, 128 });
// get matches
List<int[]> results = KnapSack.MatchTotal(2682, totals);
// print results
foreach (var result in results)
{
Console.WriteLine(string.Join(",", result));
}
Console.WriteLine("Done.");
}
internal static List<int[]> MatchTotal(int theTotal, List<int> subTotals)
{
List<int[]> results = new List<int[]>();
while (subTotals.Contains(theTotal))
{
results.Add(new int[1] { theTotal });
subTotals.Remove(theTotal);
}
if (subTotals.Count == 0)
return results;
subTotals.Sort();
double mostNegativeNumber = subTotals[0];
if (mostNegativeNumber > 0)
mostNegativeNumber = 0;
if (mostNegativeNumber == 0)
subTotals.RemoveAll(d => d > theTotal);
for (int choose = 0; choose <= subTotals.Count; choose++)
{
IEnumerable<IEnumerable<int>> combos = Combination.Combinations(subTotals.AsEnumerable(), choose);
results.AddRange(from combo in combos where combo.Sum() == theTotal select combo.ToArray());
}
return results;
}
public static class Combination
{
public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> elements, int choose)
{
return choose == 0 ?
new[] { new T[0] } :
elements.SelectMany((element, i) =>
elements.Skip(i + 1).Combinations(choose - 1).Select(combo => (new[] { element }).Concat(combo)));
}
}
I Have used the above code, can it be more simplified, Again here also i get unique values. A value can be used any number of times. But the largest number has to be given the most priority.
I have a validation to check whether the total of the sum is greater than the input value. The logic fails even there..
The algorithm you have shown assumes that the list is sorted in ascending order. If not, then you shall first have to sort the list in O(nlogn) time and then execute the algorithm.
Also, it assumes that you are only considering combinations of pairs and you exit on the first match.
If you want to find all combinations, then instead of "break", just output the combination and increment startIndex or decrement endIndex.
Moreover, you should check for ranges (targetSum - 30 to targetSum + 30) rather than just the exact value because the problem says that a margin of error is allowed.
This is the best solution according to me because its complexity is O(nlogn + n) including the sorting.
V4 - Recursive Method, using Stack structure instead of stack frames on thread
It works (tested in VS), but there could be some bugs remaining.
static int Threshold = 30;
private static Stack<long> RecursiveMethod(long target)
{
Stack<long> Combination = new Stack<long>(establishedValues.Count); //Can grow bigger, as big as (target / min(establishedValues)) values
Stack<int> Index = new Stack<int>(establishedValues.Count); //Can grow bigger
int lowerBound = 0;
int dimensionIndex = lowerBound;
long fail = -1 * Threshold;
while (true)
{
long thisVal = establishedValues[dimensionIndex];
dimensionIndex++;
long afterApplied = target - thisVal;
if (afterApplied < fail)
lowerBound = dimensionIndex;
else
{
target = afterApplied;
Combination.Push(thisVal);
if (target <= Threshold)
return Combination;
Index.Push(dimensionIndex);
dimensionIndex = lowerBound;
}
if (dimensionIndex >= establishedValues.Count)
{
if (Index.Count == 0)
return null; //No possible combinations
dimensionIndex = Index.Pop();
lowerBound = dimensionIndex;
target += Combination.Pop();
}
}
}
Maybe V3 - Suggestion for Ordered solution trying every combination
Although this isn't chosen as the answer for the related question, I believe this is a good approach - https://stackoverflow.com/a/17258033/887092(, otherwise you could try the chosen answer (although the output for that is only 2 items in set being summed, rather than up to n items)) - it will enumerate every option including multiples of the same value. V2 works but would be slightly less efficient than an ordered solution, as the same failing-attempt will likely be attempted multiple times.
V2 - Random Selection - Will be able to reuse the same number twice
I'm a fan of using random for "intelligence", allowing the computer to brute force the solution. It's also easy to distribute - as there is no state dependence between two threads trying at the same time for example.
static int Threshold = 30;
public static List<long> RandomMethod(long Target)
{
List<long> Combinations = new List<long>();
Random rnd = new Random();
//Assuming establishedValues is sorted
int LowerBound = 0;
long runningSum = Target;
while (true)
{
int newLowerBound = FindLowerBound(LowerBound, runningSum);
if (newLowerBound == -1)
{
//No more beneficial values to work with, reset
runningSum = Target;
Combinations.Clear();
LowerBound = 0;
continue;
}
LowerBound = newLowerBound;
int rIndex = rnd.Next(LowerBound, establishedValues.Count);
long val = establishedValues[rIndex];
runningSum -= val;
Combinations.Add(val);
if (Math.Abs(runningSum) <= 30)
return Combinations;
}
}
static int FindLowerBound(int currentLowerBound, long runningSum)
{
//Adjust lower bound, so we're not randomly trying a number that's too high
for (int i = currentLowerBound; i < establishedValues.Count; i++)
{
//Factor in the threshold, because an end aggregate which exceeds by 20 is better than underperforming by 21.
if ((establishedValues[i] - Threshold) < runningSum)
{
return i;
}
}
return -1;
}
V1 - Ordered selection - Will not be able to reuse the same number twice
Add this very handy extension function (uses a binary algorithm to find all combinations):
//Make sure you put this in a static class inside System namespace
public static IEnumerable<List<T>> EachCombination<T>(this List<T> allValues)
{
var collection = new List<List<T>>();
for (int counter = 0; counter < (1 << allValues.Count); ++counter)
{
List<T> combination = new List<T>();
for (int i = 0; i < allValues.Count; ++i)
{
if ((counter & (1 << i)) == 0)
combination.Add(allValues[i]);
}
if (combination.Count == 0)
continue;
yield return combination;
}
}
Use the function
static List<long> establishedValues = new List<long>() {618, 350, 308, 300, 250, 232, 200, 128, 180, 118, 155};
//Return is a list of the values which sum to equal the target. Null if not found.
List<long> FindFirstCombination(long target)
{
foreach (var combination in establishedValues.EachCombination())
{
//if (combination.Sum() == target)
if (Math.Abs(combination.Sum() - target) <= 30) //Plus or minus tolerance for difference
return combination;
}
return null; //Or you could throw an exception
}
Test the solution
var target = 858;
var result = FindFirstCombination(target);
bool success = (result != null && result.Sum() == target);
//TODO: for loop with random selection of numbers from the establishedValues, Sum and test through FindFirstCombination

Categories

Resources