I have the following scenario for declaring export plugins for my application:
public abstract class PluginBase : NinjectModule
{
protected PluginBase(IDataSource source)
{
// ...
}
public override void Load()
{
Bind<PluginBase>().To(GetType());
}
}
public class RealPlugin : PluginBase
{
public RealPlugin(IDataSource source)
{
// ...
}
}
Unfortunatelly, Kernel.Load(AssemblyName) doesn't seem to detect RealPlugin as loadable element and the Load() method is never called. It works if I add an extra public constructor with no arguments to both classes. However, I actually don't want to do that because I don't want anyone to create an instance of RealPlugin without specifying the data source.
An ugly workaround seems to be to mark the parameterless constructors with [Obsolete], which at least prevents accidental usage of them.
Of course, I could also create separate classes deriving from NinjectModule to create the Bindings, but that requires another class for each of my Plugins, which is also not so nice (and prevents binding to the dynamic type of the instance, as seen above)
Anyone got an idea how such a plugin can be registered without having a public parameterless constructor?
In Reflection, by default, only "public" types are considered. Apparently ninject uses the default values. So you'll have to roll your own implementation which uses reflection to find all classes which match all of these criteria:
inheriting from NinjectModule (also indirectly)
not abstract
has a parameter-less constructor
then these need to be instanciated and passed on to Kernel.Load(NinjectModule).
You could, just as well, look at the source code of Kernel.Load(AssemblyName) and copy and modify it according to your needs. Most likely the code making use of reflection will just require a false switched to a true in one or two places - or using a different method overload which considers non-public members, too.
Related
I'm writing a log4net appender. They have an AppenderSkeleton class which implements IAppender:
public abstract class AppenderSkeleton : IBulkAppender,
IAppender, IOptionHandler
They way the AppenderSkeleton class works is they implement the DoAppend() method of IAppender and do a bunch of work for you, like calling the filter chain, and then call an abstract method called Append(). While this is reasonable, I would like to execute some of my code before the filters run. I could implement the IAppender interface myself but at first I figured I would just try to override DoAppend() in my derived class, do my stuff, and then call base.DoAppend(). It was at this point where I noticed the AppenderSkeleton didn't mark DoAppend() as virtual since I got a compiler error indicating I couldn't override the method since it wasn't marked virtual.
I then had my class derive from IAppender and explicitly implemented the IAppender.DoAppend() method. I was surprised that the code compiled without issues. Below is my DoAppend() method:
void IAppender.DoAppend(LoggingEvent evnt)
{
.
.
.
base.DoAppend(evnt);
}
I haven't tried running it yet but wondering if someone might now what the runtime will end up doing with this implementation?
Thanks,
Nick
#Rob's answer is right - which method (base or derived) is called would depend on how you invoked it. That would make it rather fragile code.
What I'd recommend is to use composition and not inheritance. Don't make your class inherit from AppenderSkeleton, make it contain an instance of AppenderSkeleton and use its methods where you choose to.
Visual Studio even has a quick "Implement interface through private variable" option if you declare a private variable that implements one of the interfaces your class also implements. It quickly generates a proxy pattern for your class, calling the corresponding methods on the private member.
If someone has not marked his method as virtual, then there is no way to override this. The only option is to implement your own IAppender.
Also, note that you do not override interface methods, you implement them.
However, you even do not need to override this method.
According to documentation, DoAppend
performs threshold checks and invokes filters before delegating actual logging to the subclasses specific Append method.
You don't need to override DoAppend method, since it describes the generic algorithm.
It is sort of Template method.
You need to override Append method which is abstract:
protected override void Append(LogginEvent loggingEvent)
{
// Your actions here
}
I've been searching for a while on this because I'm naturally forgetful and I thought it would be nice to build something (an abstract class, interface, etc.?) that would force me to implement certain bits of code in a class I was writing.
In particular, I would like to force a new class to always have a constructor that takes a single parameter typed as itself in order to make duplication of the object easier. I've seen articles/questions elsewhere that talk about this, but I'm not sure this particular question has been asked (at least that I can find) or I'm simply not understanding enough of the other articles/questions to realize it. My apologies in advance.
I'm not interested in having a constructor in an abstract class, interface, etc. actually do anything. I'm merely interested in defining the requirement for a constructor signature in a derived class.
My ideal class would look like this:
public class GoodClass
{
public GoodClass(GoodClass goodClass)
{
// copy components of goodClass to this instance
}
}
So, I first began researching interfaces and also started reading up on abstract classes. I was thinking something like the code below would work, but alas I get errors. Is what I'm trying to do even possible? Is there any other way I could accomplish my goal without putting a sticky note on my monitor? :)
abstract class SelfConstructor
{
abstract public SelfConstructor(SelfConstructor) { }
}
class NewClass : SelfConstructor
{
//Required by SelfConstructor:
public NewClass(NewClass newClass)
{
// copy components of newClass to this instance
}
}
You could write a ReSharper plugin that recognises this case and highlights the class if it doesn't have a "copy constructor". This would be a daemon stage that would process the file as it's being edited, and add highlights. You can look through the abstract syntax tree of the file, look for all instances of IConstructorDeclaration, and then get the constructor's parameters from the ParameterDeclarations property. You can check that there is a constructor that only has one parameter, and that parameter is the same type as the class it's declared in.
You can compare the types by getting the constructor's parameter's TypeUsage and trying to downcast to IUserTypeUsage. You can then use ScalarTypeName.Reference.Resolve() to get an instance of IDeclaredElement. Compare this against the class's IClassDeclaration.DeclaredElement to see if they're the same instance.
In C++, what you are talking about is a copy constructor, you actually get one by default!
C# doesn't have that concept (though of course you can define one); however, it is easier (and preferred) to simply implement ICloneable (MSDN), which requires you to implement the Clone method, that does the same thing.
Instead of:
object myObj = new CloneableObject(otherObj);
You write:
object myObj = otherObj.Clone();
The other thing you could do is force a constructor signature by not having a default:
public class BaseClass
{
//No abstract constructors!
public BaseClass(BaseClass copy)
{
}
}
Now when you derive, you have to use that overload in the constructor. Nothing will force the derived signature, but at least you have to explicitly use it:
public class DerivedClass : BaseClass
{
public DerivedClass() : base(this)
{
}
}
The above example clearly shows that it doesn't "force" you to have a copy constructor, but like a sticky note, would serve as a good reminder.
I would definitely go the interface route, as that is what is there for (and you can use an abstract implementation!).
Note that you can take advantage of Object.MemberwiseClone if you want a shallow copy for free. All objects get this, no interface required.
I have a .net-app that provides a mechanism to extend the app with plugins. Each plugin must implement a plugin-interface and must provide furthermore a constructor that receives one parameter (a resource context).
During the instantiation of the plugin-class I look via reflection, if the needed constructor exists and if yes, I instantiate the class (via Reflection). If the constructor does not exists, I throw an exception that says that the plugin not could be created, because the desired constructor is not available.
My question is, if there is a way to declare the signature of a constructor in the plugin-interface so that everyone that implements the plugin-interface must also provide a constructor with the desired signature. This would ease the creation of plugins.
I don’t think that such a possibility exists because I think such a feature falls not in the main purpose for what interfaces were designed for but perhaps someone knows a statement that does this, something like:
public interface IPlugin {
ctor(IResourceContext resourceContext);
int AnotherPluginFunction();
}
I want to add that I don't want to change the constructor to be parameterless and then set the resource-context through a property, because this will make the creation of plugins much more complicated. The persons that write plugins are not persons with deep programming experience. The plugins are used to calculate statistical data that will be visualized by the app.
Thanks for all the answers.
I’ve decided, that I let it be an interface because I don’t like to force the plugin-programmers to inherit from an abstract class so that he or she loses the possibility to inherit from an own base-class. Furthermore, deriving from an abstract class does not ensure that the plugin programmer really provides the needed constructor. It makes it only more probable (The programmer has still the possibility to add only one constructor that contains the desired parameter but that also has additional parameters, and that’s also bad. See the comments to the answer of Ken Browning).
Although I mentioned in my post that I don’t want such a property, I marked the answer of Danny Varod as accepted because I think in my situation it’s the most appropriate solution. Thanks to all who answered.
Plug-in extendability is a favorite of mine...
What I do is make sure the plug-in either implements the interface or inherits the base class of the appropriate "plugin socket".
In some places base classes are more appropriate (if the plug-in is a kind of X),
in some interfaces are more appropriate (if the plug-in does IX).
I do not pass the context to the construct, instead I use a property for that and a parameterless public constructor.
This also enables easier deserialization of plug-ins using reflection.
Interfaces cannot declare constructors. You might consider using an abstract class instead.
No, this does not exist. You are probably looking for an abstract class here.
Alternatively, you might try using a factory: make the constructor signature a method signature of another type:
public abstract class PluginFactory
{
public abstract IPlugin Create(IResourceContext context);
}
and then something like (and I always mess up this part if I want it to be short, hence the edit):
public class PluginContainer
{
public IPlugin LoadPlugin<T>(IResourceContext context) where T: PluginFactory, new()
{
var factory = new T();
return factory.Create(context);
}
}
Unfortunately, interfaces in C# can only contain methods, properties, events or indexers.
You could use and abstract class that all plugins would inherit from. You'd be able to force them to implement the constructor signature in that case.
The interface can't declare / enforce a constructor.
Define the interface and create an abstract base class that provides the most likely implementation of the constructor -- probably just saving the resource context passed in.
Encourage, but don't require, plugin authors to derive from the base class. There may be other useful methods that the base class could also provide.
Continue to use reflection to check the plugins.
As others have alluded to, using an abstract class to take care of the plumbing details is a common pattern for what you're trying to accomplish. Here is one design that avoids the need for a constructor with special parameters if the consumer inherits from the abstract base class Plugin:
public interface IPlugin
{
void Initialize(IResourceContext context);
//Other methods...
}
public abstract class Plugin : IPlugin
{
protected IResourceContext Context { get; private set; }
void IPlugin.Initialize(IResourceContext context)
{
Context = context;
}
//Abstract declaration of other methods...
}
Your code has to call Initialize behind the scenes after creating the Plugin, but this detail is hidden from typical users, as they generally don't have to implement IPlugin directly. Your typical user can just define a Plugin descendant and work with the Context property.
You might also want to look into various dependency injection frameworks (such as Ninject), though they're probably overkill for what you're doing. Still, looking at how they work may give you some ideas on different ways dependency injection can be managed.
I have a Base Class with two constructors, requiring a parameter:
public abstract class StoreBase
{
private readonly SomeObject_sobj;
protected StoreBase(SomeObject sobj)
{
_sobj = sobj;
}
protected StoreBase(OtherObject oobj)
{
_sobj = new SomeObject(oobj);
}
}
Then I have a derived class:
public class MyDerived: StoreBase
{
}
This causes a compilation error as base class doesn't contain parameterless constructor.
My understanding is that because MyDerived doesn't contain a constructor, the compiler adds a parameterless constructor (that's well known and nothing to do with derived classes). However, as it derives from another class, the base class constructor needs to run first, and there is no way to determine which constructor should run from the empty MyDerived constructor.
Basically I'm asking: can I avoid copy/pasting all constructors from Base into Derived class if I really don't need additional constructor logic? Can I say "Take all constructors from base" without adding them all?
(And yes, I know I could/should refactor this into a parameterless constructor and a protected virtual Initialize() method. but I still wonder if I can work with constructors and still avoid copy/paste)
No - you will need to implement the (appropriate) constructors in the derived class, as well.
The derived class only needs to use one of the base constructors - so the constructors required in it may be completely different than the base class. They will need to be implemented by hand, even if that's just:
public class MyDerived : StoreBase
{
public MyDerived(SomeObject sobj) : base(sobj) {}
public MyDerived(OtherObject oobj) : base(oobj) {}
}
Also:
(And yes, I know I could/should refactor this into a parameterless constructor and a protected virtual Initialize() method. but I still wonder if I can work with constructors and still avoid copy/paste)
Although I see this touted, I believe this is not always a good practice. In many cases, this is actually problematic, as you're relying on the subclass to properly call Initialize if they override your protected virtual method. For example, if the subclass did this, it could potentially be very bad:
public class MyDerived : StoreBase
{
// .. other stuff
protected override void Initialize()
{
// Leave out, intentionally or accidentally, the following:
// base.Initialize();
}
}
I actually avoid this in most situations, and initialize in the constructors (or in a private, non-virtual initialize method). Not doing this breaks any guarantees you have that your initialization will always occur the way you intend.
Constructors and constructor chaining provide the same functionality, with much better guarantees.
No, constructors are not inherited, and there is no shortcut for creating copies of the base constructors.
The closest is to implement constructors that call the base constructors. I guess you want to make them public anyway, so that you can actually create an instance of the class:
public MyDerived(SomeObject sobj) : base(sobj) {}
public MyDerived(OtherObject oobj) : base(oobj) {}
The compiler will only generate a default (parameterless) constructor if you haven't provided any constructor yourself. Once you define a constructor, the compiler won't generate one for you.
This can be important to keep in mind if you plan on serializing your class since serialization requires a default constructor. If your give your class a constructor other than a default one, then you'll also need to provide a default one to support serialization because, again, once you provide any constructor, the compiler won't provide one for you automatically.
Unfortunately the answer is no.
One thing you can do is call base from your MyDerived constructor:
class MyDerived: StoreBase
{
public MyDerived(OtherObject obj) : base (obj) {}
}
Can I say "Take all constructors from base" without adding them all?
No. :-(
Is there a way?
I need all types that implement a specific interface to have a parameterless constructor, can it be done?
I am developing the base code for other developers in my company to use in a specific project.
There's a proccess which will create instances of types (in different threads) that perform certain tasks, and I need those types to follow a specific contract (ergo, the interface).
The interface will be internal to the assembly
If you have a suggestion for this scenario without interfaces, I'll gladly take it into consideration...
Not to be too blunt, but you've misunderstood the purpose of interfaces.
An interface means that several people can implement it in their own classes, and then pass instances of those classes to other classes to be used. Creation creates an unnecessary strong coupling.
It sounds like you really need some kind of registration system, either to have people register instances of usable classes that implement the interface, or of factories that can create said items upon request.
You can use type parameter constraint
interface ITest<T> where T: new()
{
//...
}
class Test: ITest<Test>
{
//...
}
Juan Manuel said:
that's one of the reasons I don't understand why it cannot be a part of the contract in the interface
It's an indirect mechanism. The generic allows you to "cheat" and send type information along with the interface. The critical thing to remember here is that the constraint isn't on the interface that you are working with directly. It's not a constraint on the interface itself, but on some other type that will "ride along" on the interface. This is the best explanation I can offer, I'm afraid.
By way of illustration of this fact, I'll point out a hole that I have noticed in aku's code. It's possible to write a class that would compile fine but fail at runtime when you try to instantiate it:
public class Something : ITest<String>
{
private Something() { }
}
Something derives from ITest<T>, but implements no parameterless constructor. It will compile fine, because String does implement a parameterless constructor. Again, the constraint is on T, and therefore String, rather than ITest or Something. Since the constraint on T is satisfied, this will compile. But it will fail at runtime.
To prevent some instances of this problem, you need to add another constraint to T, as below:
public interface ITest<T>
where T : ITest<T>, new()
{
}
Note the new constraint: T : ITest<T>. This constraint specifies that what you pass into the argument parameter of ITest<T> must also derive from ITest<T>.
Even so this will not prevent all cases of the hole. The code below will compile fine, because A has a parameterless constructor. But since B's parameterless constructor is private, instantiating B with your process will fail at runtime.
public class A : ITest<A>
{
}
public class B : ITest<A>
{
private B() { }
}
Juan,
Unfortunately there is no way to get around this in a strongly typed language. You won't be able to ensure at compile time that the classes will be able to be instantiated by your Activator-based code.
(ed: removed an erroneous alternative solution)
The reason is that, unfortunately, it's not possible to use interfaces, abstract classes, or virtual methods in combination with either constructors or static methods. The short reason is that the former contain no explicit type information, and the latter require explicit type information.
Constructors and static methods must have explicit (right there in the code) type information available at the time of the call. This is required because there is no instance of the class involved which can be queried by the runtime to obtain the underlying type, which the runtime needs to determine which actual concrete method to call.
The entire point of an interface, abstract class, or virtual method is to be able to make a function call without explicit type information, and this is enabled by the fact that there is an instance being referenced, which has "hidden" type information not directly available to the calling code. So these two mechanisms are quite simply mutually exclusive. They can't be used together because when you mix them, you end up with no concrete type information at all anywhere, which means the runtime has no idea where to find the function you're asking it to call.
So you need a thing that can create instances of an unknown type that implements an interface. You've got basically three options: a factory object, a Type object, or a delegate. Here's the givens:
public interface IInterface
{
void DoSomething();
}
public class Foo : IInterface
{
public void DoSomething() { /* whatever */ }
}
Using Type is pretty ugly, but makes sense in some scenarios:
public IInterface CreateUsingType(Type thingThatCreates)
{
ConstructorInfo constructor = thingThatCreates.GetConstructor(Type.EmptyTypes);
return (IInterface)constructor.Invoke(new object[0]);
}
public void Test()
{
IInterface thing = CreateUsingType(typeof(Foo));
}
The biggest problem with it, is that at compile time, you have no guarantee that Foo actually has a default constructor. Also, reflection is a bit slow if this happens to be performance critical code.
The most common solution is to use a factory:
public interface IFactory
{
IInterface Create();
}
public class Factory<T> where T : IInterface, new()
{
public IInterface Create() { return new T(); }
}
public IInterface CreateUsingFactory(IFactory factory)
{
return factory.Create();
}
public void Test()
{
IInterface thing = CreateUsingFactory(new Factory<Foo>());
}
In the above, IFactory is what really matters. Factory is just a convenience class for classes that do provide a default constructor. This is the simplest and often best solution.
The third currently-uncommon-but-likely-to-become-more-common solution is using a delegate:
public IInterface CreateUsingDelegate(Func<IInterface> createCallback)
{
return createCallback();
}
public void Test()
{
IInterface thing = CreateUsingDelegate(() => new Foo());
}
The advantage here is that the code is short and simple, can work with any method of construction, and (with closures) lets you easily pass along additional data needed to construct the objects.
Call a RegisterType method with the type, and constrain it using generics. Then, instead of walking assemblies to find ITest implementors, just store them and create from there.
void RegisterType<T>() where T:ITest, new() {
}
I don't think so.
You also can't use an abstract class for this.
I would like to remind everyone that:
Writing attributes in .NET is easy
Writing static analysis tools in .NET that ensure conformance with company standards is easy
Writing a tool to grab all concrete classes that implement a certain interface/have an attribute and verifying that it has a parameterless constructor takes about 5 mins of coding effort. You add it to your post-build step and now you have a framework for whatever other static analyses you need to perform.
The language, the compiler, the IDE, your brain - they're all tools. Use them!
No you can't do that. Maybe for your situation a factory interface would be helpful? Something like:
interface FooFactory {
Foo createInstance();
}
For every implementation of Foo you create an instance of FooFactory that knows how to create it.
You do not need a parameterless constructor for the Activator to instantiate your class. You can have a parameterized constructor and pass all the parameters from the Activator. Check out MSDN on this.