How to cast an `IEnumerable<Unknown T>` to `IEnumerable<Whatever>` - c#

I am working on a project to filter a list in a generic way. I am retrieving an IEnumerable<T> at runtime but I don't know what is T. I need to cast the list I am retrieving to IEnumerable<T> and not IEnumerable, because I need extension methods like ToList and Where. Here is my code.
private IList<object> UpdateList(KeyValuePair<string, string>[] conditions)
{
// Here I want to get the list property to update
// The List is of List<Model1>, but of course I don't know that at runtime
// casting it to IEnumerable<object> would give Invalid Cast Exception
var listToModify = (IEnumerable<object>)propertyListInfoToUpdate.GetValue(model);
foreach (var condition in conditions)
{
// Filter is an extension method defined below
listToModify = listToModify.Filter(condition .Key, condition .Value);
}
// ToList can only be invoked on IEnumerable<T>
return listToModify.ToList();
}
public static IEnumerable<T> Filter<T>(this IEnumerable<T> source, string propertyName, object value)
{
var parameter = Expression.Parameter(typeof(T), "x");
var property = Expression.Property(parameter, propertyName);
var propertyType = ((PropertyInfo)property.Member).PropertyType;
Expression constant = Expression.Constant(value);
if (((ConstantExpression)constant).Type != propertyType)
{ constant = Expression.Convert(constant, propertyType); }
var equality = Expression.Equal(property, constant);
var predicate = Expression.Lambda<Func<T, bool>>(equality, parameter);
var compiled = predicate.Compile();
// Where can only be invoked on IEnumerable<T>
return source.Where(compiled);
}
Also please note that I cannot retrieve the List like this
((IEnumerable)propertyListInfoToUpdate.GetValue(model)).Cast<object>()
since it will generate the below exception in the Filter extention
ParameterExpression of type 'Model1' cannot be used for delegate parameter of type 'System.Object'

Use GetGenericArguments and MakeGenericMethod to interface generic signatures.
private IList<object> UpdateList(KeyValuePair<string, string> conditions)
{
var rawList = (IEnumerable)propertyListInfoToUpdate.GetValue(model);
var listItemType = propertyListInfoToUpdate.PropertyType.GetGenericArguments().First();
var filterMethod = this.GetType().GetMethod("Filter").MakeGenericMethod(genericType);
object listToModify = rawList;
foreach (var condition in conditions)
{
listToModify = filterMethod.Invoke(null, new object[] { listToModify, condition.Key, condition.Value })
}
return ((IEnumerable)listToModify).Cast<object>().ToList();
}
Assuming your propertyListInfoToUpdate is a PropertyInfo and the property type is List<T>.

Why are you using Expression at all? It's hard to understand your question without a good Minimal, Complete, and Verifiable code example. Even if we could solve the casting question, you're still returning IList<object>. It's not like the consumer of the code will benefit from the casting.
And it's not really possible to solve the casting problem, at least not in the way you seem to want. A different approach would be to call the Filter() dynamically. In the olden days, we'd have to do this by using reflection, but the dynamic type gives us runtime support. You could get it to work something like this:
private IList<object> UpdateList(KeyValuePair<string, string>[] conditions)
{
dynamic listToModify = propertyListInfoToUpdate.GetValue(model);
foreach (var condition in conditions)
{
// Filter is an extension method defined below
listToModify = Filter(listToModify, condition.Key, condition.Value);
}
// ToList can only be invoked on IEnumerable<T>
return ((IEnumerable<object>)Enumerable.Cast<object>(listToModify)).ToList();
}
NOTE: your original code isn't valid; I made the assumption that conditions is supposed to be an array, but of course if you change it to anything that has a GetEnumerator() method, that would be fine.
All that said, it seems to me that given the lack of a compile-time type parameter, it would be more direct to just change your Filter() method so that it's not generic, and so that you use object.Equals() to compare the property value to the condition value. You seem to be jumping through a lot of hoops to use generics, without gaining any of the compile-time benefit of generics.
Note that if all this was about was executing LINQ query methods, that could be addressed easily simply by using Enumerable.Cast<object>() and using object.Equals() directly. It's the fact that you want to use expressions to access the property value (a reasonable goal) that is complicating the issue. But even there, you can stick with IEnumerable<object> and just build the object.Equals() into your expression.

Creating an expression and compiling it every time is very expensive. You should either use Reflection directly or a library like FastMember (or cache the expressions). In addition, your code uses Expression.Equal which translates into the equality operator (==), which is not a good way of comparing objects. You should be using Object.Equals.
Here is the code using FastMember:
private IList<object> UpdateList(KeyValuePair<string, string>[] conditions)
{
var listToModify = ((IEnumerable)propertyListInfoToUpdate.GetValue(model)).Cast<object>();
foreach (var condition in conditions)
{
listToModify = listToModify.Where(o => Equals(ObjectAccessor.Create(o)[condition.Key], condition.Value));
}
return listToModify.ToList();
}
Side note - your Filter method doesn't really need generics. It can be changed to accept and return an IEnumerable<object> by tweaking the expression, which also would've solved your problem.

Related

Using Reflection on Type T to create Expression<Func<T, TValue>> for Properties that have attributes

I'm currently exploring the viability to encapsulate some logic that would typically be iterative. Using a 3rd party library it has a generic Html Helper method that allows you to map properties from a Generic T class to a table component. Typically you'd have to write something to the effect of:
HtmlHelper.GenerateTable<ClassName>
.configure(tableDefinition =>{
// Adding each property you want to render here
tableDefinition.add(myClassRef => myClassRef.propertyA);
tableDefinition.add(myClassRef => myClassRef.propertyB);
})
I'm exploring the idea of adding attributes to properties such as a standard Display attribute and then using reflection, adding that property to the container. The add method only accepts an argument of type Expression<Func<T, TValue>>. With my current understanding of reflection I know I can property identify properties that would be applicable by looping through PropertyInfo and checking for the attribute I want using GetCustomAttribute.
What I'm stumped on is if it's possible using reflection to supply the argument type that the add method expects?
I'll throw the helper method logic I've started using so far. My assumption is that this is leading me towards Expression and Lambda classes, but I haven't been able to flesh out anything that works since I don't technically have a TValue.
var t = typeof(T);
List<PropertyInfo> properties = t.GetProperties().ToList();
foreach(var prop in properties)
{
var attr = (DisplayAttribute[])prop.GetCustomAttributes(typeof(DisplayAttribute), false);
if (attr.Length > 0)
{
// TODO: Call add with expression?
}
}
You can achieve this fairly easily with the methods on the Expression class. To start with, it's easiest to write expressions using lambdas (e.g. Expression<Func<A, B>> expr = x => x.PropertyA), then inspect it in a debugger to see what the compiler constructs.
In your case, something like this should work:
// The parameter passed into the expression (myClassRef) in your code
var parameter = Expression.Parameter(typeof(T), "myClassRef");
// Access the property described by the PropertyInfo 'prop' on the
// myClassRef parameter
var propertyAccess = Expression.Property(parameter, prop);
// Since we're returning an 'object', we'll need to make sure we box value types.
var box = Expression.Convert(propertyAccess, typeof(object));
// Construct the whole lambda
var lambda = Expression.Lambda<Func<T, object>>(box, parameter);
tableDefinition.add(lambda);
Note that I'm passing an Expression<Func<T, object>> into add, rather than an Expression<Func<T, TValue>>. I'm guessing that this doesn't matter, and it avoids having to call add using reflection. When I've written methods similar to add in the past, I don't care about TValue at all: I just inspect the Expression and fetch the PropertyInfo from the property access.
If you do need to pass an Expression<Func<T, TValue>> you'll have to do something like:
var delegateType = typeof(Func<,>).MakeGenericType(typeof(T), prop.PropertyType);
var lambda = Expression.Lambda(delegateType, propertyAccess, parameter);
// I'm assuming that your `add` method looks like:
// void add<T, TValue>(Expression<Func<T, TValue>> expr)
// I'm also assuming there's only one method called 'add' -- be smarter in that
// 'GetMethod' call if not.
var addMethod = typeof(TableDefinition)
.GetMethod("add")
.MakeGenericMethod(typeof(T), prop.PropertyType);
addMethod.Invoke(tableDefinition, new object[] { lambda });
Note that you don't need the Expression.Convert(..., typeof(object)) in this case.

using expression trees to compare objects by a single property nets InvalidOperationException

I am trying to use Expression Trees because based on description, that seems to be the most correct (performant, configurable) approach.
I expect to be able to craft a statement that gets the first item from the existingItems collection that matches the propertyNameToCompareOn value of the incomingItem.
I have a method with the following signature and simulated code body...
DetectDifferences<T>(List<T> incomingItems, List<T> existingItems)
{
var propertyNameToCompareOn = GetThisValueFromAConfigFile(T.FullName());
//does this belong outside of the loop?
var leftParam = Expression.Parameter(typeof(T), "left");
var leftProperty = Expression.Property(leftParam, identField);
var rightParam = Expression.Parameter(typeof(T), "right");
var rightProperty = Expression.Property(rightParam, identField);
//this throws the error
var condition = Expression.Lambda<Func<T, bool>>(Expression.Equal(leftProperty, rightProperty));
foreach (var incomingItem in incomingItems) //could be a parallel or something else.
{
// also, where am I supposed to provide incomingItem to this statement?
var existingItem = existingItems.FirstOrDefault(expression/condition/idk);
// the statement for Foo would be something like
var existingFoos = exsistingItems.FirstOrDefault(f => f.Bar.Equals(incomingItem.Bar);
//if item does not exist, consider it new for persistence
//if item does exist, compare a configured list of the remaining properties between the
// objects. If they are all the same, report no changes. If any
// important property is different, capture the differences for
// persistence. (This is where precalculating hashes seems like the
// wrong approach due to expense.)
}
}
At the marked line above, I get an "Incorrect number of parameters supplied for lambda declaration" InvalidOperationException. At this point I am just hacking crap together from the web and I really dont know what this wants. There are a bunch of overloads that VS can full my screen with, and none of the examples make sense from the articles on MSDN/SO.
PS - I dont really want an IComparer or similar implementation if it can be helped. I can do that with reflection. I do need to make this as rapid as possible, but allow it to be called for multiple types, hence the choice of expression trees.
When working with expression trees, it's important to first understand, in real code, what you want to do.
I always begin by first writing out (in static code) what the resulting expression looks like with real C# lambda syntax.
Based on your description, your stated goal is that you should be able to (dynamically) look up some property of the type T that gives some sort of quick comparison. How would you write this if both T and TProperty were both known at compile time?
I suspect it would look something like this:
Func<Foo, Foo, bool> comparer = (Foo first, Foo second) =>
first.FooProperty == second.FooProperty;
Right away we can see that your Expression is wrong. You don't need one input T, you need two!
It should also be obvious why you're getting the InvalidOperationException as well. You never supplied any parameters to your lambda expression, only the body. Above, 'first' and 'second' are the parameters provided to the lambda. You'll need to provide them to the Expression.Lambda()call as well.
var condition = Expression.Lambda<Func<T,T, bool>>(
Expression.Equal(leftProperty, rightProperty),
leftParam,
rightParam);
This simply uses the Expression.Lambda(Expression, ParameterExpression[]) overload for Expression.Lambda. Each ParameterExpression is the parameter that is used in the body. That's it. Don't forget to .Compile() your expression into a delegate if you want to actually invoke it.
Of course this doesn't mean that your technique will be necessarily fast. If you're using fancy expression trees to compare two lists with a naive O(n^2) approach, it won't matter.
Here's a method to make a property access expression;
public static Expression<Func<T, object>> MakeLambda<T>(string propertyName)
{
var param = Expression.Parameter(typeof(T));
var propertyInfo = typeof(T).GetProperty(propertyName);
var expr = Expression.MakeMemberAccess(param, propertyInfo);
var lambda = Expression.Lambda<Func<T, object>>(expr, param);
return lambda;
}
which you can use like this;
var accessor = MakeLambda<Foo>("Name").Compile();
accessor(myFooInstance); // returns name
Making your missing line
var existingItem = existingItems.FirstOrDefault(e => accessor(e) == accessor(incomingItem));
Be aware the == only works well for value types like ints; careful of comparing objects.
Here's proof the lambda approach is much faster;
static void Main(string[] args)
{
var l1 = new List<Foo> { };
for(var i = 0; i < 10000000; i++)
{
l1.Add(new Foo { Name = "x" + i.ToString() });
}
var propertyName = nameof(Foo.Name);
var lambda = MakeLambda<Foo>(propertyName);
var f = lambda.Compile();
var propertyInfo = typeof(Foo).GetProperty(nameof(Foo.Name));
var sw1 = Stopwatch.StartNew();
foreach (var item in l1)
{
var value = f(item);
}
sw1.Stop();
var sw2 = Stopwatch.StartNew();
foreach (var item in l1)
{
var value = propertyInfo.GetValue(item);
}
sw2.Stop();
Console.WriteLine($"{sw1.ElapsedMilliseconds} vs {sw2.ElapsedMilliseconds}");
}
As someone's also pointed out, though, the double-loop in the OP is O(N^2) and that should probably be the next consideration if efficiency is the driver here.

Expression parsing - Possible to get array of property names as string?

Is it possible to complete this method? Is it possible in the latest version of C#? Thinking about this as a DSL to configure a system for watching for certain property changes on certain objects.
List<string> list = GetProps<AccountOwner>(x => new object[] {x.AccountOwnerName, x.AccountOwnerNumber});
// would return "AccountOwnerName" and "AccountOwnerNumber"
public List<string> GetProps<T>(Expression<Func<T, object[]>> exp)
{
// code here
}
In C# 6, you'd use:
List<string> list = new List<string>
{
nameof(AccountOwner.AccountOwnerName),
nameof(AccountOwner.AccountOwnerNumber)
};
Before that, you could certainly break the expression tree apart - the easiest way of working out how is probably to either use an expression tree visualizer, or use the code you've got and put a break point in the method (just make it return null for now) and examine the expression tree in the debugger. I'm sure it won't be very complicated - just a bit more than normal due to the array.
You could possibly simplify it using an anonymous type, if you use:
List<string> list = Properties<AccountOwner>.GetNames(x => new {x.AccountOwnerName, x.AccountOwnerNumber});
Then you could have:
public static class Properties<TSource>
{
public static List<string> GetNames<TResult>(Func<TSource, TResult> ignored)
{
// Use normal reflection to get the properties
}
}
If you don't care about the ordering, you could just use
return typeof(TResult).GetProperties().Select(p => p.Name).ToList();
If you do care about the ordering, you'd need to look at the names the C# compiler gives to the constructor parameters instead - it's a bit ugly. Note that we don't need an expression tree though - we only need the property names from the anonymous type. (An expression tree would work just as well, admittedly.)
Without c# 6 and nameof, you could get a property name from a expression tree like:
using System.Linq.Expressions;
//...
static string GetNameOf<T>(Expression<Func<T>> property)
{
return (property.Body as MemberExpression).Member.Name;
}
Using it like:
GetNameOf(() => myObject.Property);
Not directly usable for an array of objects, but you could make an overload to take an array of expressions... something like:
static string[] GetNameOf(IEnumerable<Expression<Func<object>>> properties)
{
return properties.Select(GetNameOf).ToArray();
}
And use it like
GetNameOf(
new Expression<Func<object>>[]
{
() => x.AccountOwnerName,
() => x.AccountOwnerNumber
}
);
Demonstrating fiddle: https://dotnetfiddle.net/GsV96t
Update
If you go this route, the original GetNameOf for a single property won't work for value types (since they get boxed to object in the Expression and now the expression uses Convert internally). This is easily solvable by changing the code to something like:
static string GetNameOf<T>(Expression<Func<T>> property)
{
var unary = property.Body as UnaryExpression;
if (unary != null)
return (unary.Operand as MemberExpression).Member.Name;
return (property.Body as MemberExpression).Member.Name;
}
Updated fiddle: https://dotnetfiddle.net/ToXRuu
Note: in this updated fiddle I've also updated the overloaded method to return a List instead of an array, since that's what was on your original code

Is reflection used when retrieving information from a linq expression?

I have the following extension method:
public static string ToPropertyName<T,E>(this Expression<Func<E, T>> propertyExpression)
{
if (propertyExpression == null)
return null;
string propName;
MemberExpression propRef = (propertyExpression.Body as MemberExpression);
UnaryExpression propVal = null;
// -- handle ref types
if (propRef != null)
propName = propRef.Member.Name;
else
{
// -- handle value types
propVal = propertyExpression.Body as UnaryExpression;
if (propVal == null)
throw new ArgumentException("The property parameter does not point to a property", "property");
propName = ((MemberExpression)propVal.Operand).Member.Name;
}
return propName;
}
I use linq expression when passing property names instead of strings to provide strong typing and I use this function to retrieving the name of the property as a string. Does this method use reflection?
My reason for asking is this method is used quite a lot in our code and I want it to be reasonably fast enough.
As far as I know, reflection is not involved in the sense that some kind of dynamic type introspection happens behind the scenes. However, types from the System.Reflection such as Type or PropertyInfo are used together with types from the System.Linq.Expressions namespace. They are used by the compiler only to describe any Func<T,E> passed to your method as an abstract syntax tree (AST). Since this transformation from a Func<T,E> to an expression tree is done by the compiler, and not at run-time, only the lambda's static aspects are described.
Remember though that building this expression tree (complex object graph) from a lambda at run-time might take somewhat longer than simply passing a property name string (single object), simply because more objects need to be instantiated (the number depends on the complexity of the lambda passed to your method), but again, no dynamic type inspection à la someObject.GetType() is involved.
Example:
This MSDN article shows that the following lambda expression:
Expression<Func<int, bool>> lambda1 = num => num < 5;
is transformed to something like this by the compiler:
ParameterExpression numParam = Expression.Parameter(typeof(int), "num");
ConstantExpression five = Expression.Constant(5, typeof(int));
BinaryExpression numLessThanFive = Expression.LessThan(numParam, five);
Expression<Func<int, bool>> lambda1 =
Expression.Lambda<Func<int, bool>>(
numLessThanFive,
new ParameterExpression[] { numParam });
Beyond this, nothing else happens. So this is the object graph that might then be passed into your method.
Since you're method naming is ToPropertyName, I suppose you're trying to get the typed name of some particular property of a class. Did you benchmark the Expression<Func<E, T>> approach? The cost of creating the expression is quite larger and since your method is static, I see you're not caching the member expression as well. In other words even if the expression approach doesn't use reflection the cost can be high. See this question: How do you get a C# property name as a string with reflection? where you have another approach:
public static string GetName<T>(this T item) where T : class
{
if (item == null)
return string.Empty;
return typeof(T).GetProperties()[0].Name;
}
You can use it to get name of property or a variable, like this:
new { property }.GetName();
To speed up further, you would need to cache the member info. If what you have is absolutely Func<E, T> then your approach suits. Also see this: lambda expression based reflection vs normal reflection
A related question: Get all the property names and corresponding values into a dictionary

How can I get back from an un-typed Expression to a typed one?

I just ran into a problem involving Expressions.
In my class<T> have a field
Dictionary<Expression, ProjectedCollection> mCache;
where both Expression and ProjectedCollection cannot be specified as Expression<T, S> and ProjectedCollection<S> because the S will be different things at runtime:
void AddSomething<S>(Expression<Func<T, S>> projection)
{
if (!mCache.ContainsKey(projection))
{
var runnable = projection.Compile();
var allProjected = from elm in mList
select runnable(elm);
mCache.Add(projection, new ProjectedCollection<S>(allProjected));
}
}
Now at some point where I don't know S, I want to iterate over everything in my cache and apply the expression to a new thing.
foreach (KeyValuePair<Expression, ProjectedCollection> keyValuePair in mCache)
{
// Want something like
var func = keyValuePair.Key.Compile();
keyValuePair.Value.SignalAdd(func(newThing));
}
But the Compile() method is not available for the un-typed Expression. And casting is also not possible without knowing S.
Does anybody have an idea how to tackle this?
Cast to a LambdaExpression and call Compile on it. It will return an untyped delegate. You can...
...cast this delegate to one of the Func/Action types
...inspect its structure using reflection
...use Delegate.DynamicInvoke to call it

Categories

Resources