What is and is not recursion? - c#

I'm trying to understand what exactly is recursion and have not been able to find an answer to the following.
My current understanding of recursion is that it is anytime a method calls itself.
I.E
Menu()
{
if(i<2)
{Console.WriteLine();}
else
{Menu();}
}
The above is an example of recursion a method calling itself.
What I'm not sure about is a scenario like:
Menu()
{
if(i<2)
{Console.WriteLine();}
else
{Console.WriteLine("Something Went Wrong!"); MenuError();}
}
MenuError()
{
Console.WriteLine("Something went wrong!");
Menu();
}
If the method calls a method which then calls it is this still recursion ?

My current understanding of recursion is that it is anytime a method
calls itself.
That is correct. Recursive definitions are self-referencing definitions.
Two interesting properties of recursive definitions are productivity and termination. A program is productive if it continues to yields output, though the full output may never come (hence it may not terminate). A program terminates if it yields its full output in finite time.
For example, this is a productive, non-terminating program:
Naturals(int i) {
Console.WriteLine(i);
Naturals(i + 1);
}
This is a terminating program:
UpToTen(int i) {
Console.WriteLine(i);
if (i < 10) UpToTen(i + 1);
}
This is a non-productive program:
DoNothing() {
DoNothing();
}
If Menu calls MenuError, and MenuError calls Menu, this is sometimes called mutual recursion. The only difference is our organisation; we can rewrite the code to just have one method by inlining MenuError.
Menu() {
if (i < 2) {
Console.WriteLine();
}
else {
Console.WriteLine("Something Went Wrong!");
Console.WriteLine("Something went wrong!");
Menu();
}
}
You can in fact abstract recursion itself:
// General definition
A Fix<A>(Func<Func<A>,A> f) {
return f(() => Fix(f));
}
// Special definition for void functions
void Fix(Action<Action> f) {
f(() => Fix(f));
}
void Menu(Action menu) {
if (i < 2) {
Console.WriteLine();
}
else {
Console.WriteLine("Something Went Wrong!");
Console.WriteLine("Something went wrong!");
menu();
}
}
Fix(Menu);
Here is another example using Fix to define the factorial function.
Func<int, int> Fac(Func<Func<int, int>> fac) {
return i => i == 0 ? 1 : i * fac()(i - 1);
}
// Fix<Func<int, int>>(Fac) is the factorial function
You may wonder why Fix does not have the signature A Fix<A>(Func<A,A> f) instead. This is because C# is a strict language, meaning it evaluates arguments before it evaluates function application. With the simpler signature the C# program would end up in infinite recursion.

Yes it is still recursion. There are different types of recursion like Tail recursion, Tree Recursion etc. You can check out google for rest.
By the way, in the second case, if value of i is greater than or equal to 2, you will get stack overflow error as each one will call another one.

Related

Trying to merge sort a linked list and getting a stackoverflow exception. How might I prevent that? [duplicate]

I would like to either prevent or handle a StackOverflowException that I am getting from a call to the XslCompiledTransform.Transform method within an Xsl Editor I am writing. The problem seems to be that the user can write an Xsl script that is infinitely recursive, and it just blows up on the call to the Transform method. (That is, the problem is not just the typical programmatic error, which is usually the cause of such an exception.)
Is there a way to detect and/or limit how many recursions are allowed? Or any other ideas to keep this code from just blowing up on me?
From Microsoft:
Starting with the .NET Framework
version 2.0, a StackOverflowException
object cannot be caught by a try-catch
block and the corresponding process is
terminated by default. Consequently,
users are advised to write their code
to detect and prevent a stack
overflow. For example, if your
application depends on recursion, use
a counter or a state condition to
terminate the recursive loop.
I'm assuming the exception is happening within an internal .NET method, and not in your code.
You can do a couple things.
Write code that checks the xsl for infinite recursion and notifies the user prior to applying a transform (Ugh).
Load the XslTransform code into a separate process (Hacky, but less work).
You can use the Process class to load the assembly that will apply the transform into a separate process, and alert the user of the failure if it dies, without killing your main app.
EDIT: I just tested, here is how to do it:
MainProcess:
// This is just an example, obviously you'll want to pass args to this.
Process p1 = new Process();
p1.StartInfo.FileName = "ApplyTransform.exe";
p1.StartInfo.UseShellExecute = false;
p1.StartInfo.WindowStyle = ProcessWindowStyle.Hidden;
p1.Start();
p1.WaitForExit();
if (p1.ExitCode == 1)
Console.WriteLine("StackOverflow was thrown");
ApplyTransform Process:
class Program
{
static void Main(string[] args)
{
AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(CurrentDomain_UnhandledException);
throw new StackOverflowException();
}
// We trap this, we can't save the process,
// but we can prevent the "ILLEGAL OPERATION" window
static void CurrentDomain_UnhandledException(object sender, UnhandledExceptionEventArgs e)
{
if (e.IsTerminating)
{
Environment.Exit(1);
}
}
}
NOTE The question in the bounty by #WilliamJockusch and the original question are different.
This answer is about StackOverflow's in the general case of third-party libraries and what you can/can't do with them. If you're looking about the special case with XslTransform, see the accepted answer.
Stack overflows happen because the data on the stack exceeds a certain limit (in bytes). The details of how this detection works can be found here.
I'm wondering if there is a general way to track down StackOverflowExceptions. In other words, suppose I have infinite recursion somewhere in my code, but I have no idea where. I want to track it down by some means that is easier than stepping through code all over the place until I see it happening. I don't care how hackish it is.
As I mentioned in the link, detecting a stack overflow from static code analysis would require solving the halting problem which is undecidable. Now that we've established that there is no silver bullet, I can show you a few tricks that I think helps track down the problem.
I think this question can be interpreted in different ways, and since I'm a bit bored :-), I'll break it down into different variations.
Detecting a stack overflow in a test environment
Basically the problem here is that you have a (limited) test environment and want to detect a stack overflow in an (expanded) production environment.
Instead of detecting the SO itself, I solve this by exploiting the fact that the stack depth can be set. The debugger will give you all the information you need. Most languages allow you to specify the stack size or the max recursion depth.
Basically I try to force a SO by making the stack depth as small as possible. If it doesn't overflow, I can always make it bigger (=in this case: safer) for the production environment. The moment you get a stack overflow, you can manually decide if it's a 'valid' one or not.
To do this, pass the stack size (in our case: a small value) to a Thread parameter, and see what happens. The default stack size in .NET is 1 MB, we're going to use a way smaller value:
class StackOverflowDetector
{
static int Recur()
{
int variable = 1;
return variable + Recur();
}
static void Start()
{
int depth = 1 + Recur();
}
static void Main(string[] args)
{
Thread t = new Thread(Start, 1);
t.Start();
t.Join();
Console.WriteLine();
Console.ReadLine();
}
}
Note: we're going to use this code below as well.
Once it overflows, you can set it to a bigger value until you get a SO that makes sense.
Creating exceptions before you SO
The StackOverflowException is not catchable. This means there's not much you can do when it has happened. So, if you believe something is bound to go wrong in your code, you can make your own exception in some cases. The only thing you need for this is the current stack depth; there's no need for a counter, you can use the real values from .NET:
class StackOverflowDetector
{
static void CheckStackDepth()
{
if (new StackTrace().FrameCount > 10) // some arbitrary limit
{
throw new StackOverflowException("Bad thread.");
}
}
static int Recur()
{
CheckStackDepth();
int variable = 1;
return variable + Recur();
}
static void Main(string[] args)
{
try
{
int depth = 1 + Recur();
}
catch (ThreadAbortException e)
{
Console.WriteLine("We've been a {0}", e.ExceptionState);
}
Console.WriteLine();
Console.ReadLine();
}
}
Note that this approach also works if you are dealing with third-party components that use a callback mechanism. The only thing required is that you can intercept some calls in the stack trace.
Detection in a separate thread
You explicitly suggested this, so here goes this one.
You can try detecting a SO in a separate thread.. but it probably won't do you any good. A stack overflow can happen fast, even before you get a context switch. This means that this mechanism isn't reliable at all... I wouldn't recommend actually using it. It was fun to build though, so here's the code :-)
class StackOverflowDetector
{
static int Recur()
{
Thread.Sleep(1); // simulate that we're actually doing something :-)
int variable = 1;
return variable + Recur();
}
static void Start()
{
try
{
int depth = 1 + Recur();
}
catch (ThreadAbortException e)
{
Console.WriteLine("We've been a {0}", e.ExceptionState);
}
}
static void Main(string[] args)
{
// Prepare the execution thread
Thread t = new Thread(Start);
t.Priority = ThreadPriority.Lowest;
// Create the watch thread
Thread watcher = new Thread(Watcher);
watcher.Priority = ThreadPriority.Highest;
watcher.Start(t);
// Start the execution thread
t.Start();
t.Join();
watcher.Abort();
Console.WriteLine();
Console.ReadLine();
}
private static void Watcher(object o)
{
Thread towatch = (Thread)o;
while (true)
{
if (towatch.ThreadState == System.Threading.ThreadState.Running)
{
towatch.Suspend();
var frames = new System.Diagnostics.StackTrace(towatch, false);
if (frames.FrameCount > 20)
{
towatch.Resume();
towatch.Abort("Bad bad thread!");
}
else
{
towatch.Resume();
}
}
}
}
}
Run this in the debugger and have fun of what happens.
Using the characteristics of a stack overflow
Another interpretation of your question is: "Where are the pieces of code that could potentially cause a stack overflow exception?". Obviously the answer of this is: all code with recursion. For each piece of code, you can then do some manual analysis.
It's also possible to determine this using static code analysis. What you need to do for that is to decompile all methods and figure out if they contain an infinite recursion. Here's some code that does that for you:
// A simple decompiler that extracts all method tokens (that is: call, callvirt, newobj in IL)
internal class Decompiler
{
private Decompiler() { }
static Decompiler()
{
singleByteOpcodes = new OpCode[0x100];
multiByteOpcodes = new OpCode[0x100];
FieldInfo[] infoArray1 = typeof(OpCodes).GetFields();
for (int num1 = 0; num1 < infoArray1.Length; num1++)
{
FieldInfo info1 = infoArray1[num1];
if (info1.FieldType == typeof(OpCode))
{
OpCode code1 = (OpCode)info1.GetValue(null);
ushort num2 = (ushort)code1.Value;
if (num2 < 0x100)
{
singleByteOpcodes[(int)num2] = code1;
}
else
{
if ((num2 & 0xff00) != 0xfe00)
{
throw new Exception("Invalid opcode: " + num2.ToString());
}
multiByteOpcodes[num2 & 0xff] = code1;
}
}
}
}
private static OpCode[] singleByteOpcodes;
private static OpCode[] multiByteOpcodes;
public static MethodBase[] Decompile(MethodBase mi, byte[] ildata)
{
HashSet<MethodBase> result = new HashSet<MethodBase>();
Module module = mi.Module;
int position = 0;
while (position < ildata.Length)
{
OpCode code = OpCodes.Nop;
ushort b = ildata[position++];
if (b != 0xfe)
{
code = singleByteOpcodes[b];
}
else
{
b = ildata[position++];
code = multiByteOpcodes[b];
b |= (ushort)(0xfe00);
}
switch (code.OperandType)
{
case OperandType.InlineNone:
break;
case OperandType.ShortInlineBrTarget:
case OperandType.ShortInlineI:
case OperandType.ShortInlineVar:
position += 1;
break;
case OperandType.InlineVar:
position += 2;
break;
case OperandType.InlineBrTarget:
case OperandType.InlineField:
case OperandType.InlineI:
case OperandType.InlineSig:
case OperandType.InlineString:
case OperandType.InlineTok:
case OperandType.InlineType:
case OperandType.ShortInlineR:
position += 4;
break;
case OperandType.InlineR:
case OperandType.InlineI8:
position += 8;
break;
case OperandType.InlineSwitch:
int count = BitConverter.ToInt32(ildata, position);
position += count * 4 + 4;
break;
case OperandType.InlineMethod:
int methodId = BitConverter.ToInt32(ildata, position);
position += 4;
try
{
if (mi is ConstructorInfo)
{
result.Add((MethodBase)module.ResolveMember(methodId, mi.DeclaringType.GetGenericArguments(), Type.EmptyTypes));
}
else
{
result.Add((MethodBase)module.ResolveMember(methodId, mi.DeclaringType.GetGenericArguments(), mi.GetGenericArguments()));
}
}
catch { }
break;
default:
throw new Exception("Unknown instruction operand; cannot continue. Operand type: " + code.OperandType);
}
}
return result.ToArray();
}
}
class StackOverflowDetector
{
// This method will be found:
static int Recur()
{
CheckStackDepth();
int variable = 1;
return variable + Recur();
}
static void Main(string[] args)
{
RecursionDetector();
Console.WriteLine();
Console.ReadLine();
}
static void RecursionDetector()
{
// First decompile all methods in the assembly:
Dictionary<MethodBase, MethodBase[]> calling = new Dictionary<MethodBase, MethodBase[]>();
var assembly = typeof(StackOverflowDetector).Assembly;
foreach (var type in assembly.GetTypes())
{
foreach (var member in type.GetMembers(BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Static | BindingFlags.Instance).OfType<MethodBase>())
{
var body = member.GetMethodBody();
if (body!=null)
{
var bytes = body.GetILAsByteArray();
if (bytes != null)
{
// Store all the calls of this method:
var calls = Decompiler.Decompile(member, bytes);
calling[member] = calls;
}
}
}
}
// Check every method:
foreach (var method in calling.Keys)
{
// If method A -> ... -> method A, we have a possible infinite recursion
CheckRecursion(method, calling, new HashSet<MethodBase>());
}
}
Now, the fact that a method cycle contains recursion, is by no means a guarantee that a stack overflow will happen - it's just the most likely precondition for your stack overflow exception. In short, this means that this code will determine the pieces of code where a stack overflow can occur, which should narrow down most code considerably.
Yet other approaches
There are some other approaches you can try that I haven't described here.
Handling the stack overflow by hosting the CLR process and handling it. Note that you still cannot 'catch' it.
Changing all IL code, building another DLL, adding checks on recursion. Yes, that's quite possible (I've implemented it in the past :-); it's just difficult and involves a lot of code to get it right.
Use the .NET profiling API to capture all method calls and use that to figure out stack overflows. For example, you can implement checks that if you encounter the same method X times in your call tree, you give a signal. There's a project clrprofiler that will give you a head start.
I would suggest creating a wrapper around XmlWriter object, so it would count amount of calls to WriteStartElement/WriteEndElement, and if you limit amount of tags to some number (f.e. 100), you would be able to throw a different exception, for example - InvalidOperation.
That should solve the problem in the majority of the cases
public class LimitedDepthXmlWriter : XmlWriter
{
private readonly XmlWriter _innerWriter;
private readonly int _maxDepth;
private int _depth;
public LimitedDepthXmlWriter(XmlWriter innerWriter): this(innerWriter, 100)
{
}
public LimitedDepthXmlWriter(XmlWriter innerWriter, int maxDepth)
{
_maxDepth = maxDepth;
_innerWriter = innerWriter;
}
public override void Close()
{
_innerWriter.Close();
}
public override void Flush()
{
_innerWriter.Flush();
}
public override string LookupPrefix(string ns)
{
return _innerWriter.LookupPrefix(ns);
}
public override void WriteBase64(byte[] buffer, int index, int count)
{
_innerWriter.WriteBase64(buffer, index, count);
}
public override void WriteCData(string text)
{
_innerWriter.WriteCData(text);
}
public override void WriteCharEntity(char ch)
{
_innerWriter.WriteCharEntity(ch);
}
public override void WriteChars(char[] buffer, int index, int count)
{
_innerWriter.WriteChars(buffer, index, count);
}
public override void WriteComment(string text)
{
_innerWriter.WriteComment(text);
}
public override void WriteDocType(string name, string pubid, string sysid, string subset)
{
_innerWriter.WriteDocType(name, pubid, sysid, subset);
}
public override void WriteEndAttribute()
{
_innerWriter.WriteEndAttribute();
}
public override void WriteEndDocument()
{
_innerWriter.WriteEndDocument();
}
public override void WriteEndElement()
{
_depth--;
_innerWriter.WriteEndElement();
}
public override void WriteEntityRef(string name)
{
_innerWriter.WriteEntityRef(name);
}
public override void WriteFullEndElement()
{
_innerWriter.WriteFullEndElement();
}
public override void WriteProcessingInstruction(string name, string text)
{
_innerWriter.WriteProcessingInstruction(name, text);
}
public override void WriteRaw(string data)
{
_innerWriter.WriteRaw(data);
}
public override void WriteRaw(char[] buffer, int index, int count)
{
_innerWriter.WriteRaw(buffer, index, count);
}
public override void WriteStartAttribute(string prefix, string localName, string ns)
{
_innerWriter.WriteStartAttribute(prefix, localName, ns);
}
public override void WriteStartDocument(bool standalone)
{
_innerWriter.WriteStartDocument(standalone);
}
public override void WriteStartDocument()
{
_innerWriter.WriteStartDocument();
}
public override void WriteStartElement(string prefix, string localName, string ns)
{
if (_depth++ > _maxDepth) ThrowException();
_innerWriter.WriteStartElement(prefix, localName, ns);
}
public override WriteState WriteState
{
get { return _innerWriter.WriteState; }
}
public override void WriteString(string text)
{
_innerWriter.WriteString(text);
}
public override void WriteSurrogateCharEntity(char lowChar, char highChar)
{
_innerWriter.WriteSurrogateCharEntity(lowChar, highChar);
}
public override void WriteWhitespace(string ws)
{
_innerWriter.WriteWhitespace(ws);
}
private void ThrowException()
{
throw new InvalidOperationException(string.Format("Result xml has more than {0} nested tags. It is possible that xslt transformation contains an endless recursive call.", _maxDepth));
}
}
This answer is for #WilliamJockusch.
I'm wondering if there is a general way to track down
StackOverflowExceptions. In other words, suppose I have infinite
recursion somewhere in my code, but I have no idea where. I want to
track it down by some means that is easier than stepping through code
all over the place until I see it happening. I don't care how hackish
it is. For example, It would be great to have a module I could
activate, perhaps even from another thread, that polled the stack
depth and complained if it got to a level I considered "too high." For
example, I might set "too high" to 600 frames, figuring that if the
stack were too deep, that has to be a problem. Is something like that
possible. Another example would be to log every 1000th method call
within my code to the debug output. The chances this would get some
evidence of the overlow would be pretty good, and it likely would not
blow up the output too badly. The key is that it cannot involve
writing a check wherever the overflow is happening. Because the entire
problem is that I don't know where that is. Preferrably the solution
should not depend on what my development environment looks like; i.e,
it should not assumet that I am using C# via a specific toolset (e.g.
VS).
It sounds like you're keen to hear some debugging techniques to catch this StackOverflow so I thought I would share a couple for you to try.
1. Memory Dumps.
Pro's: Memory Dumps are a sure fire way to work out the cause of a Stack Overflow. A C# MVP & I worked together troubleshooting a SO and he went on to blog about it here.
This method is the fastest way to track down the problem.
This method wont require you to reproduce problems by following steps seen in logs.
Con's: Memory Dumps are very large and you have to attach AdPlus/procdump the process.
2. Aspect Orientated Programming.
Pro's: This is probably the easiest way for you to implement code that checks the size of the call stack from any method without writing code in every method of your application. There are a bunch of AOP Frameworks that allow you to Intercept before and after calls.
Will tell you the methods that are causing the Stack Overflow.
Allows you to check the StackTrace().FrameCount at the entry and exit of all methods in your application.
Con's: It will have a performance impact - the hooks are embedded into the IL for every method and you cant really "de-activate" it out.
It somewhat depends on your development environment tool set.
3. Logging User Activity.
A week ago I was trying to hunt down several hard to reproduce problems. I posted this QA User Activity Logging, Telemetry (and Variables in Global Exception Handlers) . The conclusion I came to was a really simple user-actions-logger to see how to reproduce problems in a debugger when any unhandled exception occurs.
Pro's: You can turn it on or off at will (ie subscribing to events).
Tracking the user actions doesn't require intercepting every method.
You can count the number of events methods are subscribed too far more simply than with AOP.
The log files are relatively small and focus on what actions you need to perform to reproduce the problem.
It can help you to understand how users are using your application.
Con's: Isn't suited to a Windows Service and I'm sure there are better tools like this for web apps.
Doesn't necessarily tell you the methods that cause the Stack Overflow.
Requires you to step through logs manually reproducing problems rather than a Memory Dump where you can get it and debug it straight away.
Maybe you might try all techniques I mention above and some that #atlaste posted and tell us which one's you found were the easiest/quickest/dirtiest/most acceptable to run in a PROD environment/etc.
Anyway good luck tracking down this SO.
If you application depends on 3d-party code (in Xsl-scripts) then you have to decide first do you want to defend from bugs in them or not.
If you really want to defend then I think you should execute your logic which prone to external errors in separate AppDomains.
Catching StackOverflowException is not good.
Check also this question.
I had a stackoverflow today and i read some of your posts and decided to help out the Garbage Collecter.
I used to have a near infinite loop like this:
class Foo
{
public Foo()
{
Go();
}
public void Go()
{
for (float i = float.MinValue; i < float.MaxValue; i+= 0.000000000000001f)
{
byte[] b = new byte[1]; // Causes stackoverflow
}
}
}
Instead let the resource run out of scope like this:
class Foo
{
public Foo()
{
GoHelper();
}
public void GoHelper()
{
for (float i = float.MinValue; i < float.MaxValue; i+= 0.000000000000001f)
{
Go();
}
}
public void Go()
{
byte[] b = new byte[1]; // Will get cleaned by GC
} // right now
}
It worked for me, hope it helps someone.
With .NET 4.0 You can add the HandleProcessCorruptedStateExceptions attribute from System.Runtime.ExceptionServices to the method containing the try/catch block. This really worked! Maybe not recommended but works.
using System;
using System.Reflection;
using System.Runtime.InteropServices;
using System.Runtime.ExceptionServices;
namespace ExceptionCatching
{
public class Test
{
public void StackOverflow()
{
StackOverflow();
}
public void CustomException()
{
throw new Exception();
}
public unsafe void AccessViolation()
{
byte b = *(byte*)(8762765876);
}
}
class Program
{
[HandleProcessCorruptedStateExceptions]
static void Main(string[] args)
{
Test test = new Test();
try {
//test.StackOverflow();
test.AccessViolation();
//test.CustomException();
}
catch
{
Console.WriteLine("Caught.");
}
Console.WriteLine("End of program");
}
}
}
#WilliamJockusch, if I understood correctly your concern, it's not possible (from a mathematical point of view) to always identify an infinite recursion as it would mean to solve the Halting problem. To solve it you'd need a Super-recursive algorithm (like Trial-and-error predicates for example) or a machine that can hypercompute (an example is explained in the following section - available as preview - of this book).
From a practical point of view, you'd have to know:
How much stack memory you have left at the given time
How much stack memory your recursive method will need at the given time for the specific output.
Keep in mind that, with the current machines, this data is extremely mutable due to multitasking and I haven't heard of a software that does the task.
Let me know if something is unclear.
By the looks of it, apart from starting another process, there doesn't seem to be any way of handling a StackOverflowException. Before anyone else asks, I tried using AppDomain, but that didn't work:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Reflection;
using System.Text;
using System.Threading;
namespace StackOverflowExceptionAppDomainTest
{
class Program
{
static void recrusiveAlgorithm()
{
recrusiveAlgorithm();
}
static void Main(string[] args)
{
if(args.Length>0&&args[0]=="--child")
{
recrusiveAlgorithm();
}
else
{
var domain = AppDomain.CreateDomain("Child domain to test StackOverflowException in.");
domain.ExecuteAssembly(Assembly.GetEntryAssembly().CodeBase, new[] { "--child" });
domain.UnhandledException += (object sender, UnhandledExceptionEventArgs e) =>
{
Console.WriteLine("Detected unhandled exception: " + e.ExceptionObject.ToString());
};
while (true)
{
Console.WriteLine("*");
Thread.Sleep(1000);
}
}
}
}
}
If you do end up using the separate-process solution, however, I would recommend using Process.Exited and Process.StandardOutput and handle the errors yourself, to give your users a better experience.
You can read up this property every few calls, Environment.StackTrace , and if the stacktrace exceded a specific threshold that you preset, you can return the function.
You should also try to replace some recursive functions with loops.

Is this a dangerous locking pattern?

I have an enumerator written in C#, which looks something like this:
try
{
ReadWriteLock.EnterReadLock();
yield return foo;
yield return bar;
yield return bash;
}
finally
{
if (ReadWriteLock.IsReadLockHeld)
ReadWriteLock.ExitReadLock();
}
I believe this may be a dangerous locking pattern, as the ReadWriteLock will only be released if the enumeration is complete, otherwise the lock is left hanging and is never released, am I correct? If so, what's the best way to combat this?
No, the finally block will always be executed, pretty much unless somebody pulls the plug from the computer (well and a few other exceptions).
public static IEnumerable<int> GetNumbers() {
try
{
Console.WriteLine("Start");
yield return 1;
yield return 2;
yield return 3;
}
finally
{
Console.WriteLine("Finish");
}
}
...
foreach(int i in GetNumbers()) {
Console.WriteLine(i);
if(i == 2) break;
}
The output of the above will be
Start12Finish
Note that in C# you write yield return, not just yield. But I guess that was just a typo.
I think David's answered the question you intended to ask (about the enumeration aspect), but two additional points to consider:
What would happen if ReadWriteLock.EnterReadLock threw an exception?
What would happen if ReadWriteLock.ExitReadLock threw an exception?
In #1, you'll call ReadWriteLock.ExitReadLock inappropriately. In #2, you may hide an existing exception that's been thrown (since finally clauses happen either because the mainline processing reached the end of the try block or because an exception was thrown; in the latter case, you probably don't want to obscure the exception). Perhaps both of those things are unlikely in this specific case, but you asked about the pattern, and as a pattern it has those issues.
Finally will be executed in any way, but for locking in may not be safe. Compare following methods:
class Program
{
static IEnumerable<int> meth1()
{
try
{
Console.WriteLine("Enter");
yield return 1;
yield return 2;
yield return 3;
}
finally
{
Console.WriteLine("Exit");
}
}
static IEnumerable<int> meth2()
{
try
{
Console.WriteLine("Enter");
return new int[] { 1, 2, 3 };
}
finally
{
Console.WriteLine("Exit");
}
}
static public void Main()
{
foreach (int i in meth1())
{
Console.WriteLine("In");
}
Console.WriteLine();
foreach (int i in meth2())
{
Console.WriteLine("In");
}
}
}
Output is:
Enter
In
In
In
Exit
Enter
Exit
In
In
In
If your processing takes much time (per iteration) it is more reasonable to fill collection first, then process, but not yield.

How to avoid a stack overflow?

I compile my code using CSharpCodeProvider, and dynamically create instance of some class in result assembly. Than I call some method. If the method has recursion I get StackOverflowException and my app terminates.
How do I avoid this?
using System;
using System.Runtime.Remoting;
namespace TestStackOverflow
{
class Program
{
class StackOver : MarshalByRefObject
{
public void Run()
{
Run();
}
}
static void Main(string[] args)
{
AppDomain domain = AppDomain.CreateDomain("new");
ObjectHandle handle = domain.CreateInstance(typeof (StackOver).Assembly.FullName, typeof (StackOver).FullName);
if (handle != null)
{
StackOver stack = (StackOver) handle.Unwrap();
stack.Run();
}
}
}
}
Related:
What is a stack overflow?
StackOverflow indicates that your recursion is going too deep and the stack is running out of memory. For example:
public class StackOver
{
public void Run()
{
Run();
}
}
This will result in a stack overflow because StackOver::Run() will be called over and over until there is no memory left.
I suspect in your case, you may be missing a termination condition or you are running too many recursion iterations.
If you are trying to keep the application running, try:
namespace TestStackOverflow
{
class Program
{
class StackOver : MarshalByRefObject
{
public bool Run()
{
return true; // Keep the application running. (Return false to quit)
}
}
static void Main(string[] args)
{
// Other code...
while (stack.Run());
}
}
}
Run is calling Run. That is the infinite recursion.
class StackOver : MarshalByRefObject
{
public void Run()
{
Run(); // Recursive call with no termination
}
}
If recursion causes a stack overflow, then the problem is not related to compiling the class -- a recursive function needs a terminating condition, because C# doesn't (usually) optimize tail calls.
The only way to avoid stack overflows with recursive functions is to have a clear exit condition that will eventually be met regardless of the input. Either you define a maximum depth and stop making recursive calls once you reach it, or you make sure that the data that you examine is finite (and within reasonable limits), or a combination of both.
Every time you call a method foo from method bar, bar is added to the call stack. The call stack is used to keep track of where the code was before the method was called so it can return there when foo is done.
The following recursive function
int Factorial(int n) {
if (n == 0) { return 1; }
return n * Factorial(n - 1);
}
after several recursions of the call Factorial(5) the call stack would look like this:
Factorial(5) -> Factorial(4) -> Factorial(3) -> Factorial(2) -> Factorial(1)
At this point n is 1, and so the function stops calling the recursive case and instead returns 1. The program then starts winding back up the call stack and the whole thing returns 120.
Without the call stack the program wouldn't know where to go back to when it had finished executing a method.
Now suppose that base case wasn't there, and it was just looked like this:
int Factorial(int n) {
return n * Factorial(n - 1);
}
After several recursions of the call Factorial(5) the call stack would look like this:
Factorial(5) -> Factorial(4) -> Factorial(3) -> Factorial(2) -> Factorial(1) -> Factorial(0) -> Factorial(-1) -> Factorial(-2) -> Factorial(-3) -> Factorial(-4) -> Factorial(-5) -> Factorial(-6) -> Factorial(-7) -> Factorial(-8) -> Factorial(-9) -> Factorial(-10) -> Factorial(-11) -> Factorial(-12) -> Factorial(-13) -> Factorial(-14) -> Factorial(-15) etc…
Because there is no point at which the code stops calling itself it will carry on forever, and the call stack will grow and grow and grow taking up more and more memory until it exceeds the memory it has been allocated and the StackOverflow exception is thrown.
There are 2 ways to stop this from happening, the best depends on the situation.
1 Provide a base case. Make sure there is some condition that is eventually reached which stops the function from calling itself. In the Factorial case it's that n == 1, but it could be that a certain amount of time has passed, that it has recursed a certain number of times, that some result of some computation is within some bounds, whatever. As long as it stops recusing before the stack is too big.
2 Remove the recursion and re-write it without. Any recursive algorithm can be re-written as a non-recursive algorithm. It may not be as clean and elegant, but it can be done. In the factorial argument it may be something like:
int Factorial(int n) {
int result = 1;
for (int i = 0; i < n; i += 1) {
result *= n;
}
return result;
}
If the aim is to continually run the same function again and again, then you can re-write the recursive
void Foo() {
// Some code
Foo();
}
as
void Foo() {
while (true) { // Some code }
}
I dont have a good background of CSharpCodeProvider but I know that recursively implemented algorithm could be implemented with a loop
Ok. It doesn't matter use CSharpCodeProvider or not. I'm loading assembly using Reflection in another domain. I think domains was created for security reason. How can I safe the app from terminating???
using System;
using System.Runtime.Remoting;
namespace TestStackOverflow
{
class Program
{
class StackOver : MarshalByRefObject
{
public void Run()
{
Run();
}
}
static void Main(string[] args)
{
AppDomain domain = AppDomain.CreateDomain("new");
ObjectHandle handle = domain.CreateInstance(typeof (StackOver).Assembly.FullName, typeof (StackOver).FullName);
if (handle != null)
{
StackOver stack = (StackOver) handle.Unwrap();
stack.Run();
}
}
}
}

Use of return keyword in code block

What is the difference between saying:
if (abc == "a")
{
// do something here...
return;
}
and the same as above, but without the return keyword?
I am a C# coder and I know that the return keyword followed by a type or variable returns that item, but in the above context, return seems to be just to exit the code block but does it make any functional or performance change on the code?
Thanks
"return" exits from the function, not just the enclosing code block. So if your code block was in the context of a function, like so (I don't know C# so I'm using Java syntax):
int thisIsAFunction(int a) {
if (abc == "a")
{
// do something here...
return 1;
}
// do something else here...
}
if abc == "a" then the "do something else here" will not run. But if you removed the return statement inside the if block, then it would run.
return statement exits the function immediately, so it might have performance benefits as the following code in the function would not be executed at all.
MSDN
The return statement terminates execution of the method in which it appears and returns control to the calling method. It can also return an optional value. If the method is a void type, the return statement can be omitted.
Example
//this would do nothing
public void method()
{
return;
}
//this would return true
//notice the return type of bool this means
//the method expects a true\false value
public bool method2()
{
return true;
}
public void test()
{
if(method2())
method()
}
Now if you ran test method2 would always return true and method1 would just end its processing
The return statement does exit the current method, not just the code block (for/while/if/etc). So it is useful for situations like the following:
public void MyMethod(object myObject)
{
if (myObject == null)
{
return; // exits method.
}
// do something with myObject
}
Additional info: I will point out, that many people prefer to have one exit point in a method, however, it can be useful to do something similar to the example here in some cases. I would always try to find ways to limit the number of return or exit points in your method.
In your case, no - but if you had other code after your 'if' statement that you only wanted to run if your statement was false (e.g. if abc != "a"), then the return allows you to bypass that and exit the function / method.
In a loop or case statement, you can use break to achieve this result. This doesn't work on if statements or code blocks in general though.
And yes, return exits the enclosing function.
Executing the return statement will make the execution jump out of the method. Without the return, it would simply go on with the next statement instead.
Yes, your method does not have return type in this case.
e.g.
public void Foo
{
if (abc == "a")
{
// do something here...
return;
}
// some other code
}
This is to say if abd = "a", then exit the method so that some other code won't be executed.
It can be a cleaner way of writing code. I typically do it in a guard clause at or near the beginning of a method. If you have an error condition, just "return" out of the method. It saves wrapping the rest of your work in an else block. Seems trivial, but it helps to reduce code complexity.

Writing code to fire the last method to throw an exception in a multi-threaded web app

I was writing some try-catch blocks for various methods today, and thought to myself it would be good to have utility method which would automatically call the method again for a number of times specified in a parameter, at a certain time.
However, I thought to myself, the method/property etc which will cause an exception will be at the top of the stacktrace (do property calls get put on the stacktrace?) in a single threaded application (so an application with no code relating to threading). So I can simply get the method name at the top and dynamically call it again.
So I would have code like:
string s = StackTrace.GetFrame(0).GetMethodName; (I can't remember the exact syntax).
With this method, I can execute it using an activator or one of several other ways.
But in a multi-threaded application, I could have several methods firing at once and I wouldn't know which one finishes first/last. So I can't expect a method for which I write a try-catch block to be at the top of the stack.
How would I go about achieving this?
Please don't do this. It's a really, really, really, really, really bad idea.
Maybe not as bad as deleting files randomly, if the hard drive runs out of room - but just about as bad.
While I question the need for an auto retrying mechanism (does randomly retrying really help you out in so many situations that you need a utility method?) - using StackTrace and Reflection is, at best, a terribly complicated solution.
Not that I suggest that anyone actually use this code, but I'd probably go with a delegate based approach to this particular problem:
public static class Extensions {
public static void Try(this Action a, int maxTries) {
new (Func<bool>(() => { a(); return true; })).Try(maxTries);
}
public static TResult Try<TResult>(this Func<TResult> f, int maxTries) {
Exception lastException = null;
for (int i = 0; i < maxTries; i++) {
try {
return f();
} catch (Exception ex) {
lastException = ex;
}
}
throw lastException;
}
}
Usage is a bit unorthodox, but fairly clear I think:
// Set a property
new Action(() => myObject.Property = 5).Try(5);
// With a return value
var count = new Func<int>(() => myList.Count).Try(3);
You can't inline a lambda to a method, but you could have a somewhat fluent interface:
Utilities.Try(
() => MyObject.Property = 5
).Repeat(5);
And multi line methods:
Utilities.Try(() => {
MyObject.Property1 = 5;
MyObject.Property2 = 6;
MyObject.Property3 = 7;
}).Repeat(5);
Mark's code is probably better, but here's mine...
If you really want to do something like this, I'd use code something like this. Yes, you still have to manually call it, but your idea of indiscriminately retrying ALL excepting methods is a really, really bad idea.
public class TryAgain
{
public delegate void CodeToTryAgain ();
public static void Repeat<E>(int count, CodeToTryAgain code) where E : Exception
{
while (count-- > 0)
{
try
{
code();
return;
}
catch (E ex)
{
Console.WriteLine("Caught an {0} : {1}", typeof(E).Name, ex.Message);
// ignoring it!
}
}
}
}
And then you'd call your failing method, ThrowTwice, or whatever you want to do, like this:
TryAgain.Repeat<MyException>(5, delegate()
{
ThrowTwice();
});
In this example, the Repeat method will ignore all exceptions of type MyException, trying to call ThrowTwice up to 5 times...
You can add your own sleeping and time-outs, and whatever.

Categories

Resources