Internal Class Constructer... does this work? - c#

Ok sorry guys, I know you guys are gonna tell me I need to search and search, but I have already and I am pretty sure I am correct in assuming this will work the way I want it to, but I figured I would ask here and try to get some professional help on my learning experience since unity answers isn't so great.
Anyways I am trying to start constructing another MMORPG and I am also learning c sharp at the same time. I have a class for Vocation (the job of the player, like mage, knight, ect) that I want to be created during the same time my player class is created, and so I need to use an id to decide which vocation and what property values they inherit.
This is what I have, will this work as I am trying to make it? Or am I doing something horribly wrong...?
EDIT
using UnityEngine;
using System.Collections;
//DONE: abstract: a personage can't be "Vocation", but Mage, Warrior, Archer...
public abstract class Vocation
{
//DONE: just a readonly property
public int Vid {get; }
//DONE: just a readonly property
public string Name { get { return _Name; } }
protected string _Name = "None";
//DONE: let's ensure the property to be overriden
public abstract HitPointsPerLevel { get; }
public abstract ManaPointsPerLevel { get; }
//DONE: you don't want this constructor to be public, but protected only
//DONE: Assign all the data in one place
protected Vocation(int vid)
{
Vid = vid;
}
}
//DONE: do not declare derived class as inner one
internal class Mage : Vocation
{
sealed public override float HitPointsPerLevel { get { return 12f; } }
sealed public override string _Name = "Mage";
//DONE: typo constructor should have been "Mage"
public Mage() : base(1)
{
}
}
HOW DOES IT LOOK NOW GUYS?

I suggest re-designing the implementation
using UnityEngine;
using System.Collections;
//DONE: abstract: a personage can't be "Vocation", but Mage, Warrior, Archer...
public abstract class Vocation
{
//DONE: just a readonly property
public int Vid {get; }
//DONE: just a readonly property
public string Name {get; }
//DONE: let's ensure the property to be overriden
public abstract HitPointsPerLevel { get; }
//DONE: you don't want this constructor to be public, but protected only
//DONE: Assign all the data in one place
protected Vocation(int vid, string name)
{
if (string.IsNullOrEmpty(name))
throw new ArgumentNullException("name");
Vid = vid;
Name = name;
}
}
//DONE: do not declare derived class as inner one
internal class Mage : Vocation
{
sealed public override float HitPointsPerLevel { get { return 12f; } }
//DONE: typo constructor should have been "Mage"
public Mage() : base(1, "Mage")
{
}
}

The code would work, except for the constructor name (Warrior instead of Mage).
I do wonder though why Mage has to be an internal nested class of Vocation. What is the use of that?
I can understand why you would make it internal: you don't want to let external assemblies create an instance, you can do that though a factory. However, there is no reason to make the class nested. A base class can stand on its own. Just pull the nested class out, use protected members on the base class to be able to communicate between the base class and the deriving class.
A small side note: you can use this here instead of base:
public Mage(int vid) : base(vid)
{
this.Vid = 1;
this.Name = "Mage";
}

Few things to comment on in addition to the other answers, but they're all in the context of code review. Maybe this is better in codereview.stackexchange.com.
First of all (this is down to style) - I try to avoid variables named like Vid - there's nothing wrong with vocationId - better to be descriptive enough.
Secondly, and more relevant to the question, I'm not sure your Mage/person, semantically speaking, is a vocation - so it shouldn't inherit from it. Maybe it's a person who has a vocation but it's not a vocation itself - it probably won't extend the vocation functionality. Which is the sole intent of inheritance.
Are you trying to shoe-horn in the notion of inheritance for practice-sake?
Also, as an aside, in C# 6 you have expression-bodied properties, so you can condense your code a little:
public string Name => "None";
Although these look like constants to me. This basically needs a big re-design, start with the OOP fundamentals of encapsulation and keep it simple.

Related

C#: Define methods implementation in base class and properties in derived classes

I am making a game in which I have many kinds of soldiers, each kind with their own attributes (speed, attackPower...). Obviously, all of them can Walk, Attack... so I thought that creating an abstract class Soldier with those methods, and subclasses with each unit attributes would be the appropiate. The problem is that I can't use the attributes of derived classes in the base one.
The easy way would probably be implementing the methods in the derived classes, but that would mean lots of duplicated code, and I want to avoid it. In fact, this would make the base class unneccesary.
I have tried several things. As I understand, the closest solution I tried was using abstract/virtual properties, but again I would be duplicating the "get" code for each unit type. Maybe this can't be avoided, but I'd like to, if possible.
There surely exist a simple solution I haven't thought about. ¿Any ideas?
I think about somethink like this:
public abstract class Soldier {
public int AttackPower {
get { return this.power; }
}
public Attack {
Console.WriteLine("Attacked with "+AttackPower+" attack power");
}
}
public class Lancer:Soldier {
int power=5;
}
public class Archer:Soldier {
int power=10;
}
Of course, this is not a correct solution, because the Soldier class doesn't know about the "power" variable, but if I declare the "power" variable in the Soldier class, I get an error because the field name is duplicated.
Any help will be appreciated.
You need an abstract property:
public int AttackPower {
get { return this.power; }
}
protected abstract int Power { get; }
public class Lancer:Soldier {
protected override int Power { get { return 5; } }
}
You could also do a "GetPower" method if you really don't like properties. As you've discovered, if a base class method needs access to the data, you have to declare that data in the base class.
Its not code duplication, its type safety!
Why not just put a Power property in the base class?
public abstract class Soldier {
public int Power {get; set;}
public int AttackPower {
get { return this.Power; }
}
public Attack {
Console.WriteLine("Attacked with "+AttackPower+" attack power");
}
}
public class Lancer:Soldier {
public Lancer()
{
Power = 5
}
}
public class Archer:Soldier {
public Archer()
{
Power=10;
}
}
Some design comments:
Do you need different classes for Archer and Lancer, or can they just be Soldiers that are configured differently?
It would be better to pull property values like this from a data source rather than hard-coding them in the source code. You can embed an XML file or something so it's not easily editable.

Using Generics to Access Classes in an XNA Game

If I have a class that is based off another class, how do I access the properties of the first class if it can have any name? I was thinking of using generics to access the properties, but the generics are "generic" for a reason...
For example:
public class AGameInXNA : Microsoft.Xna.Framework.Game
{
int ExampleGameProperty;
}
// ... another class ... //
public class ReferenceToAGameInXNA
{
Game gameInstance;
public void SetGameInstance(Game game)
{
gameInstance = game;
}
public void SetExampleGameProperty()
{
gameInstance.ExampleGameProperty = 21; // I don't know the name of
// AGameInXNA, so I want to
// access it using a generic
// class.
}
}
I know that that does not work, so how would I use generics in this case to access the AGameInXNA's properties in another class if I don't know AGameInXNA's name?
EDIT: I am trying to make it so that I can reuse this code later on. I want to be able to have a class that is unknown, such as public class unknownclassname that extends another class, such as Microsoft.Xna.Framework.Game, and be able to access the class unknownclassname without directly calling/implementing it in the library code.
I would recommend looking into XNA Services.
So for example, you would create a service which could be as simple as an
interface IExamplePropertyService
{
int ExampleProperty { get; set; }
}
public class AGameInXNA : Microsoft.Xna.Framework.Game, IExamplePropertyService
{
int ExampleGameProperty { get; set; }
void Initialize()
{
// Do other initialization
Services.Add( typeof(IExamplePropertyService), this );
}
}
public class ReferenceToAGameInXNA
{
IExamplePropertyService propertyService;
public void GetGameInstance(Game game)
{
propertyService = (IExamplePropertyService)game.GetService( typeof(IExamplePropertyService) );
}
public void SetExampleGameProperty()
{
propertyService.ExampleGameProperty = 21;
}
}
Implement it, and register it with the Game component, then in your ReferenceToAGameInXNA, you would query for this service and store it (rather than the Game) for use later.
As a bonus benefit, The IExamplePropertyService no longer even needs to be implemented by the Game class, it could be implemented by any GameComponent.
This makes for an easy way to seperate classes from having to know about the inner workings of other classes in the Game. So long as the services exist somewhere, your ReferenceToAGameInXNA can be used.
I don't think generics are what you are actually looking for here. In your second class, just change the type of all of the gameInstance to the type of the class you created for your game, in this case AGameInXNA. There should only be a need for one subclass of the Game type in each XNA game. That will allow you to access any public members of AGameInXNA from the Reference class.
If this isn't what you are after, please give a more detailed explanation of what you are trying to accomplish and I'll try to help you.
I don't know XNA, but if you want to have several classes that inherit from Game and have the same property on all of them, you could create an abstract class that inherits from Game and let the other classes inherit from that instead.
(Also, your GetGameInstance() is badly named, because it sets the field, it doesn't get it. And it's probably better as property anyway.)
public abstract class GameBase : Microsoft.Xna.Framework.Game
{
public int ExampleGameProperty { get; set; }
}
public class AGameInXNA : GameBase
{
// code specific to AGameInXNA
}
public class ReferenceToAGameInXNA
{
public GameBase GameInstance { get; set; }
public void SetExampleGameProperty()
{
GameInstance.ExampleGameProperty = 21;
}
}
If the other classed that have ExampleGameProperty shouldn't inherit from Game, you could create an interface instead. AGameInXNA would then inherit from Game directly and it would also implement the interface. And you would work with that interface in ReferenceToAGameInXNA.
using "Game gameInstance;" you can not acess ExmpleProp. You should use "AGameInXNA gameInstance;" too access ExampleProp.

Nesting base classes in c#

I have 3 classes, two inherit from 1:
public class Employee {
private virtual double getBonus() { ... }
private virtual double getSalary() { ... }
}
public class Nepotism : Employee {
private double getBonus() { ... }
}
public class Volunteer : Employee {
private double getSalary() { ... }
}
So the question is sometimes there will be a Volunteer who gets the Nepotism bonus - is there some way to write the constructors to allow overriding/nesting the base class like this:
Employee Bill = new Volunteer(new Nepotism());
I'm thinking something like:
public class Volunteer : Employee {
private Employee _nest;
public Volunteer(Employee nest)
: base() {
_nest = nest;
// now what?
}
}
Basically I want some objects to have the overrides from both classes.
I would like to avoid writing the override methods to check for nested classes.
getSalary() {
return (nest != null) ? nest.salary : salary; // I want to avoid this if I can
}
How can I do this? Am I on the right track? Am I off the rails?
Instead of subclassing, you might want to consider using the Decorator Pattern.
It provides an alternative to subclassing, and it useful when you may need to add "multiple" pieces of additional functionality to a single instance of a class, which is exactly the scenario.
I think you are trying to use inheritance in an ill-advised way. This approach creates a mess of dependences and oddball business rules, which results in a rigid architecture that is hard to use and maintain.
If calculating an employees salary is dependent upon the Employee as well as "bonus traits", then it would be better to separate all three things from each other:
interface IBonusTrait
{
decimal ApplyBonus(Employee employee, decimal currentTotal);
}
class Employee
{
// ...
public decimal BaseSalary { get; set; }
public IList<IBonusTrait> BonusTraits { get; set; }
}
class SalaryCalculator
{
public decimal CalculateSalary(Employee employee)
{
decimal totalSalary = employee.BaseSalary;
foreach (IBonusTrait bonusTrait in employee.BonusTraits)
{
totalSalary = bonusTrait.ApplyBonus(employee, totalSalary);
}
return totalSalary;
}
}
If an object can be both classes at once, then you may need to rethink how you're doing your inheritance.
It seems to me that if a Volunteer can sometimes get a Nepotism bonus, then really, your Volunteer class should have a getBonus() method, and this method really belongs in the base class. It would return zero for most volunteers, but occasionally it wouldn't - there's nothing wrong with that.
Reed Copsey already said, that Decorator Pattern is something to consider.
There is also this youtube video which is very similar to your case (John Skeet is presenting it).

When I try to SET an attribute from another class to another it doesn't allow me to

Here's the class:
namespace TomeOfNewerth_WPF_
{
class Hero
{
public string faction;
public string name;
public HeroType herotype;
public enum HeroType
{
Agility,
Strength,
Intelligence
}
}
}
Now in another class, just for testing I'm tring to instance the Hero class, and set the herotype property, like so:
namespace TomeOfNewerth_WPF_
{
class Spell
{
Hero x = new Hero();
public void lol()
{
x.herotype = x.; //How can I set it?
}
}
}
The only reason I created the herotype property from an Enum was to make the application more robust and not rely on literal strings.
Thanks for the help.
x.herotype = HeroType.Agility; is normally the code to set it. You will need to move HeroType outside of the class for this to work.
For what it's worth, this might be better off in a constructor, and you should look into exposing class information through Properties instead of public member variables.

How to hide an inherited property in a class without modifying the inherited class (base class)?

If i have the following code example:
public class ClassBase
{
public int ID { get; set; }
public string Name { get; set; }
}
public class ClassA : ClassBase
{
public int JustNumber { get; set; }
public ClassA()
{
this.ID = 0;
this.Name = string.Empty;
this.JustNumber = string.Empty;
}
}
What should I do to hide the property Name (Don't shown as a member of ClassA members) without modifying ClassBase ?
I smell a code smell here. It is my opinion that you should only inherit a base class if you're implementing all of the functionality of that base class. What you're doing doesn't really represent object oriented principles properly. Thus, if you want to inherit from your base, you should be implementing Name, otherwise you've got your inheritance the wrong way around. Your class A should be your base class and your current base class should inherit from A if that's what you want, not the other way around.
However, not to stray too far from the direct question. If you did want to flout "the rules" and want to continue on the path you've chosen - here's how you can go about it:
The convention is to implement the property but throw a NotImplementedException when that property is called - although, I don't like that either. But that's my personal opinion and it doesn't change the fact that this convention still stands.
If you're attempting to obsolete the property (and it's declared in the base class as virtual), then you could either use the Obsolete attribute on it:
[Obsolete("This property has been deprecated and should no longer be used.", true)]
public override string Name
{
get
{
return base.Name;
}
set
{
base.Name = value;
}
}
(Edit: As Brian pointed out in the comments, the second parameter of the attribute will cause a compiler error if someone references the Name property, thus they won't be able to use it even though you've implemented it in derived class.)
Or as I mentioned use NotImplementedException:
public override string Name
{
get
{
throw new NotImplementedException();
}
set
{
throw new NotImplementedException();
}
}
However, if the property isn't declared as virtual, then you can use the new keyword to replace it:
public new string Name
{
get
{
throw new NotImplementedException();
}
set
{
throw new NotImplementedException();
}
}
You can still use the Obsolete attribute in the same manner as if the method was overridden, or you can throw the NotImplementedException, whichever you choose. I would probably use:
[Obsolete("Don't use this", true)]
public override string Name { get; set; }
or:
[Obsolete("Don't use this", true)]
public new string Name { get; set; }
Depending on whether or not it was declared as virtual in the base class.
While technically the property won't be hidden, one way to strongly discourage its use is to put attributes on it like these:
[Browsable(false)]
[Bindable(false)]
[DesignerSerializationVisibility(DesignerSerializationVisibility.Hidden)]
[EditorBrowsable(EditorBrowsableState.Never)]
This is what System.Windows.Forms does for controls that have properties that don't fit. The Text property, for instance, is on Control, but it doesn't make sense on every class that inherits from Control. So in MonthCalendar, for instance, the Text property appears like this (per the online reference source):
[Browsable(false),
EditorBrowsable(EditorBrowsableState.Never),
Bindable(false),
DesignerSerializationVisibility(DesignerSerializationVisibility.Hidden)]
public override string Text {
get { return base.Text; }
set { base.Text = value; }
}
Browsable - whether the member shows up in the Properties window
EditorBrowsable - whether the member shows up in the Intellisense dropdown
EditorBrowsable(false) won't prevent you from typing the property, and if you use the property, your project will still compile. But since the property doesn't appear in Intellisense, it won't be as obvious that you can use it.
Just hide it
public class ClassBase
{
public int ID { get; set; }
public string Name { get; set; }
}
public class ClassA : ClassBase
{
public int JustNumber { get; set; }
private new string Name { get { return base.Name; } set { base.Name = value; } }
public ClassA()
{
this.ID = 0;
this.Name = string.Empty;
this.JustNumber = 0;
}
}
Note: Name will still be a public member of ClassBase, given the constraint of not changing the base class there is no way to stop that.
Why force inheritance when it's not necessary?
I think the proper way of doing it is by doing has-a instead of a is-a.
public class ClassBase
{
public int ID { get; set; }
public string Name { get; set; }
}
public class ClassA
{
private ClassBase _base;
public int ID { get { return this._base.ID; } }
public string JustNumber { get; set; }
public ClassA()
{
this._base = new ClassBase();
this._base.ID = 0;
this._base.Name = string.Empty;
this.JustNumber = string.Empty;
}
}
I don’t think a lot of the people replying here understand inheritance at all. There is a need to inherit from a base class and hide its once public var’s and functions. Example, lets say you have a basic engine and you want to make a new engine that is supercharged. Well, 99% of the engine you will use but you will tweak a bit of its functionality to make it run much better and yet still there is some functionality that should only be shown to the modifications made, not the end user. Because we all know that every class MS puts out doesn’t really ever need any modifications.
Besides using the new to simply override the functionality it is one of the things that Microsoft in their infinite wis….. oh, I mean mistakes considered a tool not worthwhile anymore.
The best way to accomplish this now is multi-level inheritance.
public class classA
{
}
public class B : A
{}
public class C : B
{}
Class B does all your work and class C exposes what you need exposed.
You can't, that's the whole point of inheritance: the subclass must offer all methods and properties of the base class.
You could change the implementation to throw an exception when the property is called (if it were virtual)...
I completely agree that properties should not be removed from base classes, but sometimes a derived class might have a different more appropriate way to enter the values. In my case, for example, I am inheriting from ItemsControl. As we all know, ItemsControl has the ItemsSource property, but I want my control to merge data from 2 sources (for example, Person and Location). If I were to have the user enter the data using ItemsSource, I would need to separate and then recombine the values, so I created 2 properties to enter the data. But back to the original question, this leaves the ItemsSource, which I do not want the user to use because I am "replacing" it with my own properties. I like the Browsable and EditorBrowsable ideas, but it still does not prevent the user from using it. The basic point here is that inheritance should keep MOST of the properties, but when there is a large complex class (especially ones where you cannot modify the original code), rewriting everything would be very inefficient.
You can use Browsable(false)
[Browsable( false )]
public override string Name
{
get { return base.Name; }
set { base.Name= value; }
}
I think it is bad design if you have to do this, especially if you are able to design the code from the ground up.
Why?
Good design is to let the base-class share common properties that a certain concept has (virtual or real). Example: System.IO.Stream in C#.
Further down the lane bad design will increase the cost for maintenance and make implementation harder and harder. Avoid this as much as possible!
Basic rules which I use:
Minimize the number of properties and methods in the base-class. If you do not expect to use some properties or methods in a class that inherits the base class; do not put it in the baseclass then. If you are in the developmentstage of a project; always go back to the drawing-board now an then to check the design because things change! Redesign when needed. When your project is live the costs for changing things later in the design will go up!
If you are using a baseclass implemented by a 3:rd party, consider "go up" one level instead of "overriding" with "NotImplementedException" or such. If there is no other level, consider design the code from scratch.
Always consider to seal classes you do not want anyone to be able to inherit it. It forces coders to "go up one level" in the "inheritance- hierarchy" and thus "loose ends" like "NotImplementedException" can be avoided.
I know that the question is old, but what you can do is override the PostFilterProperties like this:
protected override void PostFilterProperties(System.Collections.IDictionary properties)
{
properties.Remove("AccessibleDescription");
properties.Remove("AccessibleName");
properties.Remove("AccessibleRole");
properties.Remove("BackgroundImage");
properties.Remove("BackgroundImageLayout");
properties.Remove("BorderStyle");
properties.Remove("Cursor");
properties.Remove("RightToLeft");
properties.Remove("UseWaitCursor");
properties.Remove("AllowDrop");
properties.Remove("AutoValidate");
properties.Remove("ContextMenuStrip");
properties.Remove("Enabled");
properties.Remove("ImeMode");
//properties.Remove("TabIndex"); // Don't remove this one or the designer will break
properties.Remove("TabStop");
//properties.Remove("Visible");
properties.Remove("ApplicationSettings");
properties.Remove("DataBindings");
properties.Remove("Tag");
properties.Remove("GenerateMember");
properties.Remove("Locked");
//properties.Remove("Modifiers");
properties.Remove("CausesValidation");
properties.Remove("Anchor");
properties.Remove("AutoSize");
properties.Remove("AutoSizeMode");
//properties.Remove("Location");
properties.Remove("Dock");
properties.Remove("Margin");
properties.Remove("MaximumSize");
properties.Remove("MinimumSize");
properties.Remove("Padding");
//properties.Remove("Size");
properties.Remove("DockPadding");
properties.Remove("AutoScrollMargin");
properties.Remove("AutoScrollMinSize");
properties.Remove("AutoScroll");
properties.Remove("ForeColor");
//properties.Remove("BackColor");
properties.Remove("Text");
//properties.Remove("Font");
}

Categories

Resources