Related
So i've used this code to get S.M.A.R.T. hard drive diagnostics info from Windows WMI:
http://vasters.com/archive/Reading-ATAPI-SMART-Data-From-Drives-Using-NET-Temperature-Anyone.html
It works on most computers and doesn't on others. After a little bit research and sample testing i found out that it doesn't work on computers whose Hard drives are connected with PCI Express instead of SATA.
var searcher = new ManagementObjectSearcher("root\\WMI", "SELECT * FROM MSStorageDriver_ATAPISmartData");
foreach (ManagementObject queryObj in searcher.Get())
{
//do stuff
}
This is where i get exception:
System.Management.ManagementException: 'Not supported'
Is there any other way to do this, or add something in this code to make it work?
I searched this code everywhere and couldn't find working for me, but finaly found on another forum so it's really simple in usage.
Just from my example another way to get WMI info. More Attributes of WMI Win32_DiskDrive you can find in Microsoft DOCs
https://github.com/Mityugin/greentest
string NamespacePath = "\\\\.\\ROOT\\cimv2";
string ClassName = "Win32_DiskDrive";
oClass = new ManagementClass(NamespacePath + ":" + ClassName);
foreach (ManagementObject oObject in oClass.GetInstances())
{
var sign = Convert.ToString(oObject["Signature"]);
var model = Convert.ToString(oObject["Model"]);
var status = Convert.ToString(oObject["Status"]);
if (Equals(sign,""))
{
TextBox1.AppendText("DISK model: " + model);
TextBox1.AppendText(Environment.NewLine);
TextBox1.AppendText("Status: " + status);
TextBox1.AppendText(Environment.NewLine);
if (!status.Equals("OK") || !model.Contains("SSD"))
{
//Here is info if Disk is not OK or model not SSD
}
}
}
This github solution is fine for detecting an SSD but will not tell you it is PCIE or NVMe. I have an SSD that is an older Samsung 960 series and it is an SSD connected via SATA.
The code you need to read an NVMe drive Temperature is on this website at How do I enumerate NVMe (M2) drives an get their temperature in c#?
I know we can get the BIOS information using system.management assembly but the assembly is not accessible for windows 8 app. I specifically need to know the serial number of the laptop on which the app is running. Is there any way that I can access that ?
I don't think there is a way if you are developing a Windows Modern UI App.
Modern UI Apps get run in a sandbox environment which have very limited access to anything. Check MSDN documentations on that.
If you are developing a desktop Windows app on the other hand, then try the following code:
(You need to import System.Management.dll into your project.)
using System;
using System.IO;
using System.Management;
namespace GetHardwareIds
{
internal class Program
{
private static void Main(string[] args)
{
using (StreamWriter writer = new StreamWriter(#"C:\HardwareInfo.txt"))
{
using
(
ManagementObjectSearcher searcher =
// Where __Superclass Is Null: selects only top-level classes.
// remove it if you need a list of all classes
// new ManagementObjectSearcher("Select * From meta_class Where __Superclass Is Null")
// this query only select the processor info. for more options uncomment top line
new ManagementObjectSearcher("Select * From meta_class Where __Class = 'Win32_Processor'")
)
{
foreach (ManagementObject managementObject in searcher.Get())
{
Console.WriteLine(managementObject.Path.ClassName);
writer.WriteLine(managementObject.Path.ClassName);
GetManagementClassProperties(managementObject.Path.ClassName, writer);
managementObject.Dispose();
}
}
}
}
public static void GetManagementClassProperties(string path, StreamWriter writer)
{
using (ManagementClass managementClass = new ManagementClass(path))
{
foreach (ManagementObject instance in managementClass.GetInstances())
{
foreach (PropertyData property in instance.Properties)
{
Console.WriteLine(" {0} = {1}", property.Name, property.Value);
writer.WriteLine(" {0} = {1}", property.Name, property.Value);
}
instance.Dispose();
}
}
}
}
}
Check this code. I am not a 100% clear on what you are trying to achieve but this code should return the device ID specified by Win8 (this code includes a concatenation of all ids.)
// get hardware token
HardwareToken token = HardwareIdentification.GetPackageSpecificToken(null);
// get hardware ID bytes
byte[] idBytes = hwToken.Id.ToArray();
// populate device ID as a string value
string deviceID = string.Join(",", idBytes);
Here is the link to MSDN articles about it:
http://msdn.microsoft.com/en-us/library/windows/apps/jj553431.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.system.profile.hardwareidentification.getpackagespecifictoken.aspxThere is an entry for BIOS in the return structure based on these articles.
Hopefully, this does what you need. Let me know if it worked :)
Unfortunately the information you want to obtain is not available to WinRT applications.
How can I get a list of all the connected USB devices on a windows computer?
Add a reference to System.Management for your project, then try something like this:
using System;
using System.Collections.Generic;
using System.Management; // need to add System.Management to your project references.
class Program
{
static void Main(string[] args)
{
var usbDevices = GetUSBDevices();
foreach (var usbDevice in usbDevices)
{
Console.WriteLine(
$"Device ID: {usbDevice.DeviceID}, PNP Device ID: {usbDevice.PnpDeviceID}, Description: {usbDevice.Description}");
}
Console.Read();
}
static List<USBDeviceInfo> GetUSBDevices()
{
List<USBDeviceInfo> devices = new List<USBDeviceInfo>();
using var searcher = new ManagementObjectSearcher(
#"Select * From Win32_USBHub");
using ManagementObjectCollection collection = searcher.Get();
foreach (var device in collection)
{
devices.Add(new USBDeviceInfo(
(string)device.GetPropertyValue("DeviceID"),
(string)device.GetPropertyValue("PNPDeviceID"),
(string)device.GetPropertyValue("Description")
));
}
return devices;
}
}
class USBDeviceInfo
{
public USBDeviceInfo(string deviceID, string pnpDeviceID, string description)
{
this.DeviceID = deviceID;
this.PnpDeviceID = pnpDeviceID;
this.Description = description;
}
public string DeviceID { get; private set; }
public string PnpDeviceID { get; private set; }
public string Description { get; private set; }
}
I know I'm replying to an old question, but I just went through this same exercise and found out a bit more information, that I think will contribute a lot to the discussion and help out anyone else who finds this question and sees where the existing answers fall short.
The accepted answer is close, and can be corrected using Nedko's comment to it. A more detailed understanding of the WMI Classes involved helps complete the picture.
Win32_USBHub returns only USB Hubs. That seems obvious in hindsight but the discussion above misses it. It does not include all possible USB devices, only those which can (in theory, at least) act as a hub for additional devices. It misses some devices that are not hubs (particularly parts of composite devices).
Win32_PnPEntity does include all the USB devices, and hundreds more non-USB devices. Russel Gantman's advice to use a WHERE clause search Win32_PnPEntity for a DeviceID beginning with "USB%" to filter the list is helpful but slightly incomplete; it misses bluetooth devices, some printers/print servers, and HID-compliant mice and keyboards. I have seen "USB\%", "USBSTOR\%", "USBPRINT\%", "BTH\%", "SWD\%", and "HID\%". Win32_PnPEntity is, however, a good "master" reference to look up information once you are in possession of the PNPDeviceID from other sources.
What I found was the best way to enumerate USB devices was to query Win32_USBControllerDevice. While it doesn't give detailed information for the devices, it does completely enumerate your USB devices and gives you an Antecedent/Dependent pair of PNPDeviceIDs for every USB Device (including Hubs, non-Hub devices, and HID-compliant devices) on your system. Each Dependent returned from the query will be a USB Device. The Antecedent will be the Controller it is assigned to, one of the USB Controllers returned by querying Win32_USBController.
As a bonus, it appears that under the hood, WMI walks the Device Tree when responding to the Win32_USBControllerDevice query, so the order in which these results are returned can help identify parent/child relationships. (This is not documented and is thus only a guess; use the SetupDi API's CM_Get_Parent (or Child + Sibling) for definitive results.) As an option to the SetupDi API, it appears that for all the devices listed under Win32_USBHub they can be looked up in the registry (at HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\ + PNPDeviceID) and will have a parameter ParentIdPrefix which will be the prefix of the last field in the PNPDeviceID of its children, so this could also be used in a wildcard match to filter the Win32_PnPEntity query.
In my application, I did the following:
(Optional) Queried Win32_PnPEntity and stored the results in a key-value map (with PNPDeviceID as the key) for later retrieval. This is optional if you want to do individual queries later.
Queried Win32_USBControllerDevice for a definitive list of USB devices on my system (all the Dependents) and extracted the PNPDeviceIDs of these. I went further, based on order following the device tree, to assign devices to the root hub (the first device returned, rather than the controller) and built a tree based on the parentIdPrefix. The order the query returns, which matches device tree enumeration via SetupDi, is each root hub (for whom the Antecedent identifies the controller), followed by an iteration of devices under it, e.g., on my system:
Root hub of first controller
Root hub of second controller
First hub under root hub of second controller (has parentIdPrefix)
First composite device under first hub under root hub of second controller (PNPDeviceID matches above hub's ParentIdPrefix; has its own ParentIdPrefix)
HID Device part of the composite device (PNPDeviceID matches above composite device's ParentIDPrefix)
Second device under first hub under root hub of second controller
HID Device part of the composite device
Second hub under root hub of second controller
First device under second hub under root hub of second controller
Third hub under root hub of second controller
etc.
Queried Win32_USBController. This gave me the detailed information of the PNPDeviceIDs of my controllers which are at the top of the device tree (which were the Antecedents of the previous query). Using the tree derived in the previous step, recursively iterated over its children (the root hubs) and their children (the other hubs) and their children (non-hub devices and composite devices) and their children, etc.
Retrieved details for each device in my tree by referencing the map stored in the first step. (Optionally, one could skip the first step, and query Win32_PnPEntity individually using the PNPDeviceId to get the information at this step; probably a cpu vs. memory tradeoff determining which order is better.)
In summary, Win32USBControllerDevice Dependents are a complete list of USB Devices on a system (other than the Controllers themselves, which are the Antecedents in that same query), and by cross-referencing these PNPDeviceId pairs with information from the registry and from the other queries mentioned, a detailed picture can be constructed.
To see the devices I was interested in, I had replace Win32_USBHub by Win32_PnPEntity in Adel Hazzah's code, based on this post. This works for me:
namespace ConsoleApplication1
{
using System;
using System.Collections.Generic;
using System.Management; // need to add System.Management to your project references.
class Program
{
static void Main(string[] args)
{
var usbDevices = GetUSBDevices();
foreach (var usbDevice in usbDevices)
{
Console.WriteLine("Device ID: {0}, PNP Device ID: {1}, Description: {2}",
usbDevice.DeviceID, usbDevice.PnpDeviceID, usbDevice.Description);
}
Console.Read();
}
static List<USBDeviceInfo> GetUSBDevices()
{
List<USBDeviceInfo> devices = new List<USBDeviceInfo>();
ManagementObjectCollection collection;
using (var searcher = new ManagementObjectSearcher(#"Select * From Win32_PnPEntity"))
collection = searcher.Get();
foreach (var device in collection)
{
devices.Add(new USBDeviceInfo(
(string)device.GetPropertyValue("DeviceID"),
(string)device.GetPropertyValue("PNPDeviceID"),
(string)device.GetPropertyValue("Description")
));
}
collection.Dispose();
return devices;
}
}
class USBDeviceInfo
{
public USBDeviceInfo(string deviceID, string pnpDeviceID, string description)
{
this.DeviceID = deviceID;
this.PnpDeviceID = pnpDeviceID;
this.Description = description;
}
public string DeviceID { get; private set; }
public string PnpDeviceID { get; private set; }
public string Description { get; private set; }
}
}
Adel Hazzah's answer gives working code, Daniel Widdis's and Nedko's comments mention that you need to query Win32_USBControllerDevice and use its Dependent property, and Daniel's answer gives a lot of detail without code.
Here's a synthesis of the above discussion to provide working code that lists the directly accessible PNP device properties of all connected USB devices:
using System;
using System.Collections.Generic;
using System.Management; // reference required
namespace cSharpUtilities
{
class UsbBrowser
{
public static void PrintUsbDevices()
{
IList<ManagementBaseObject> usbDevices = GetUsbDevices();
foreach (ManagementBaseObject usbDevice in usbDevices)
{
Console.WriteLine("----- DEVICE -----");
foreach (var property in usbDevice.Properties)
{
Console.WriteLine(string.Format("{0}: {1}", property.Name, property.Value));
}
Console.WriteLine("------------------");
}
}
public static IList<ManagementBaseObject> GetUsbDevices()
{
IList<string> usbDeviceAddresses = LookUpUsbDeviceAddresses();
List<ManagementBaseObject> usbDevices = new List<ManagementBaseObject>();
foreach (string usbDeviceAddress in usbDeviceAddresses)
{
// query MI for the PNP device info
// address must be escaped to be used in the query; luckily, the form we extracted previously is already escaped
ManagementObjectCollection curMoc = QueryMi("Select * from Win32_PnPEntity where PNPDeviceID = " + usbDeviceAddress);
foreach (ManagementBaseObject device in curMoc)
{
usbDevices.Add(device);
}
}
return usbDevices;
}
public static IList<string> LookUpUsbDeviceAddresses()
{
// this query gets the addressing information for connected USB devices
ManagementObjectCollection usbDeviceAddressInfo = QueryMi(#"Select * from Win32_USBControllerDevice");
List<string> usbDeviceAddresses = new List<string>();
foreach(var device in usbDeviceAddressInfo)
{
string curPnpAddress = (string)device.GetPropertyValue("Dependent");
// split out the address portion of the data; note that this includes escaped backslashes and quotes
curPnpAddress = curPnpAddress.Split(new String[] { "DeviceID=" }, 2, StringSplitOptions.None)[1];
usbDeviceAddresses.Add(curPnpAddress);
}
return usbDeviceAddresses;
}
// run a query against Windows Management Infrastructure (MI) and return the resulting collection
public static ManagementObjectCollection QueryMi(string query)
{
ManagementObjectSearcher managementObjectSearcher = new ManagementObjectSearcher(query);
ManagementObjectCollection result = managementObjectSearcher.Get();
managementObjectSearcher.Dispose();
return result;
}
}
}
You'll need to add exception handling if you want it. Consult Daniel's answer if you want to figure out the device tree and such.
If you change the ManagementObjectSearcher to the following:
ManagementObjectSearcher searcher =
new ManagementObjectSearcher("root\\CIMV2",
#"SELECT * FROM Win32_PnPEntity where DeviceID Like ""USB%""");
So the "GetUSBDevices() looks like this"
static List<USBDeviceInfo> GetUSBDevices()
{
List<USBDeviceInfo> devices = new List<USBDeviceInfo>();
ManagementObjectCollection collection;
using (var searcher = new ManagementObjectSearcher(#"SELECT * FROM Win32_PnPEntity where DeviceID Like ""USB%"""))
collection = searcher.Get();
foreach (var device in collection)
{
devices.Add(new USBDeviceInfo(
(string)device.GetPropertyValue("DeviceID"),
(string)device.GetPropertyValue("PNPDeviceID"),
(string)device.GetPropertyValue("Description")
));
}
collection.Dispose();
return devices;
}
}
Your results will be limited to USB devices (as opposed to all types on your system)
This is a much simpler example for people only looking for removable usb drives.
using System.IO;
foreach (DriveInfo drive in DriveInfo.GetDrives())
{
if (drive.DriveType == DriveType.Removable)
{
Console.WriteLine(string.Format("({0}) {1}", drive.Name.Replace("\\",""), drive.VolumeLabel));
}
}
You may find this thread useful. And here's a google code project exemplifying this (it P/Invokes into setupapi.dll).
lstResult.Clear();
foreach (ManagementObject drive in new ManagementObjectSearcher("select * from Win32_DiskDrive where InterfaceType='USB'").Get())
{
foreach (ManagementObject partition in new ManagementObjectSearcher("ASSOCIATORS OF {Win32_DiskDrive.DeviceID='" + drive["DeviceID"] + "'} WHERE AssocClass = Win32_DiskDriveToDiskPartition").Get())
{
foreach (ManagementObject disk in new ManagementObjectSearcher("ASSOCIATORS OF {Win32_DiskPartition.DeviceID='" + partition["DeviceID"] + "'} WHERE AssocClass = Win32_LogicalDiskToPartition").Get())
{
foreach (var item in disk.Properties)
{
object value = disk.GetPropertyValue(item.Name);
}
string valor = disk["Name"].ToString();
lstResult.Add(valor);
}
}
}
}
In part of a program I am writing, I'm trying to pull device information about specified local hard drives. I've been able to create a few value returning methods using the DriveInfo class like this:
//Gets drive format
public string GetDriveFormat(string driveName)
{
foreach (DriveInfo drive in DriveInfo.GetDrives())
{
if (drive.IsReady && drive.Name == driveName)
{
return drive.DriveFormat;
}
}
return "";
}
//Example of use
MessageBox.Show(GetDriveFormat("C:\\"));
The problem I'm running into now is that there doesn't seem to be a Model property to the DriveInfo class. I've looked all over but am unable to find a way to construct a value returning method that will return the model of a drive like what is viewable in device manager.
Any help would be greatly appreciated,
Thanks!
Unfortunately, you cannot get the Drive's Manufacturer and Model using the DriveInfo class.
You'll have to resort back to WMI:
WqlObjectQuery q = new WqlObjectQuery("SELECT * FROM Win32_DiskDrive");
using (ManagementObjectSearcher res = new ManagementObjectSearcher(q)) {
foreach (ManagementObject o in res.Get()) {
Console.WriteLine("Caption = " + o["Caption"]);
Console.WriteLine("DeviceID = " + o["DeviceID"]);
Console.WriteLine("Decsription = " + o["Description"]);
Console.WriteLine("Manufacturer = " + o["Manufacturer"]);
Console.WriteLine("MediaType = " + o["MediaType"]);
Console.WriteLine("Model = " + o["Model"]);
Console.WriteLine("Name = " + o["Name"]);
// only in Vista, 2008 & etc: //Console.WriteLine("SerialNumber = " + o["SerialNumber"]);
} }
Not sure if you need to consider mounted drives as well:
foreach(ManagementObject volume in new ManagementObjectSearcher("Select * from Win32_Volume" ).Get())
{
...
}
You'll need to use a lower-level API to get this information, and even then it still might not be accurate.* The internal details of the hard drives is exposed in the Win32 APIs, which you can still access in C# through WMI.
*: Note that this is still limited to the hardware information as Windows is able to see it. In some conditions, it won't or can't be accurate (e.g. with a RAID array, where Windows sees N drives as a single drive).
I'm not entirely sure if you can get that info without using lower level api's. This post should help you achieve your goal.
http://www.codeproject.com/Articles/17973/How-To-Get-Hardware-Information-CPU-ID-MainBoard-I
Quick summary of the link:
Add a reference to the System.Management library
Then you can use:
var disks = new ManagementObjectSearcher("SELECT * FROM Win32_DiskDrive");
foreach (ManagementObject disk in disks.Get())
{
Console.WriteLine(disk["Model"].ToString());
Console.WriteLine("\tSerial: " + disk["SerialNumber"]);
}
here is something that can also work for you feel free to tweak it as you please
String drive = "c";
ManagementObject disk = new ManagementObject("Win32_LogicalDisk.DeviceID=\"" + drive + ":\"");
disk.Get();
Console.WriteLine(disk["VolumeName"]);
foreach (var props in disk.Properties)
{
Console.WriteLine(props.Name + " " + props.Value);
}
Console.ReadLine();
How can I get a list of all the connected USB devices on a windows computer?
Add a reference to System.Management for your project, then try something like this:
using System;
using System.Collections.Generic;
using System.Management; // need to add System.Management to your project references.
class Program
{
static void Main(string[] args)
{
var usbDevices = GetUSBDevices();
foreach (var usbDevice in usbDevices)
{
Console.WriteLine(
$"Device ID: {usbDevice.DeviceID}, PNP Device ID: {usbDevice.PnpDeviceID}, Description: {usbDevice.Description}");
}
Console.Read();
}
static List<USBDeviceInfo> GetUSBDevices()
{
List<USBDeviceInfo> devices = new List<USBDeviceInfo>();
using var searcher = new ManagementObjectSearcher(
#"Select * From Win32_USBHub");
using ManagementObjectCollection collection = searcher.Get();
foreach (var device in collection)
{
devices.Add(new USBDeviceInfo(
(string)device.GetPropertyValue("DeviceID"),
(string)device.GetPropertyValue("PNPDeviceID"),
(string)device.GetPropertyValue("Description")
));
}
return devices;
}
}
class USBDeviceInfo
{
public USBDeviceInfo(string deviceID, string pnpDeviceID, string description)
{
this.DeviceID = deviceID;
this.PnpDeviceID = pnpDeviceID;
this.Description = description;
}
public string DeviceID { get; private set; }
public string PnpDeviceID { get; private set; }
public string Description { get; private set; }
}
I know I'm replying to an old question, but I just went through this same exercise and found out a bit more information, that I think will contribute a lot to the discussion and help out anyone else who finds this question and sees where the existing answers fall short.
The accepted answer is close, and can be corrected using Nedko's comment to it. A more detailed understanding of the WMI Classes involved helps complete the picture.
Win32_USBHub returns only USB Hubs. That seems obvious in hindsight but the discussion above misses it. It does not include all possible USB devices, only those which can (in theory, at least) act as a hub for additional devices. It misses some devices that are not hubs (particularly parts of composite devices).
Win32_PnPEntity does include all the USB devices, and hundreds more non-USB devices. Russel Gantman's advice to use a WHERE clause search Win32_PnPEntity for a DeviceID beginning with "USB%" to filter the list is helpful but slightly incomplete; it misses bluetooth devices, some printers/print servers, and HID-compliant mice and keyboards. I have seen "USB\%", "USBSTOR\%", "USBPRINT\%", "BTH\%", "SWD\%", and "HID\%". Win32_PnPEntity is, however, a good "master" reference to look up information once you are in possession of the PNPDeviceID from other sources.
What I found was the best way to enumerate USB devices was to query Win32_USBControllerDevice. While it doesn't give detailed information for the devices, it does completely enumerate your USB devices and gives you an Antecedent/Dependent pair of PNPDeviceIDs for every USB Device (including Hubs, non-Hub devices, and HID-compliant devices) on your system. Each Dependent returned from the query will be a USB Device. The Antecedent will be the Controller it is assigned to, one of the USB Controllers returned by querying Win32_USBController.
As a bonus, it appears that under the hood, WMI walks the Device Tree when responding to the Win32_USBControllerDevice query, so the order in which these results are returned can help identify parent/child relationships. (This is not documented and is thus only a guess; use the SetupDi API's CM_Get_Parent (or Child + Sibling) for definitive results.) As an option to the SetupDi API, it appears that for all the devices listed under Win32_USBHub they can be looked up in the registry (at HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\ + PNPDeviceID) and will have a parameter ParentIdPrefix which will be the prefix of the last field in the PNPDeviceID of its children, so this could also be used in a wildcard match to filter the Win32_PnPEntity query.
In my application, I did the following:
(Optional) Queried Win32_PnPEntity and stored the results in a key-value map (with PNPDeviceID as the key) for later retrieval. This is optional if you want to do individual queries later.
Queried Win32_USBControllerDevice for a definitive list of USB devices on my system (all the Dependents) and extracted the PNPDeviceIDs of these. I went further, based on order following the device tree, to assign devices to the root hub (the first device returned, rather than the controller) and built a tree based on the parentIdPrefix. The order the query returns, which matches device tree enumeration via SetupDi, is each root hub (for whom the Antecedent identifies the controller), followed by an iteration of devices under it, e.g., on my system:
Root hub of first controller
Root hub of second controller
First hub under root hub of second controller (has parentIdPrefix)
First composite device under first hub under root hub of second controller (PNPDeviceID matches above hub's ParentIdPrefix; has its own ParentIdPrefix)
HID Device part of the composite device (PNPDeviceID matches above composite device's ParentIDPrefix)
Second device under first hub under root hub of second controller
HID Device part of the composite device
Second hub under root hub of second controller
First device under second hub under root hub of second controller
Third hub under root hub of second controller
etc.
Queried Win32_USBController. This gave me the detailed information of the PNPDeviceIDs of my controllers which are at the top of the device tree (which were the Antecedents of the previous query). Using the tree derived in the previous step, recursively iterated over its children (the root hubs) and their children (the other hubs) and their children (non-hub devices and composite devices) and their children, etc.
Retrieved details for each device in my tree by referencing the map stored in the first step. (Optionally, one could skip the first step, and query Win32_PnPEntity individually using the PNPDeviceId to get the information at this step; probably a cpu vs. memory tradeoff determining which order is better.)
In summary, Win32USBControllerDevice Dependents are a complete list of USB Devices on a system (other than the Controllers themselves, which are the Antecedents in that same query), and by cross-referencing these PNPDeviceId pairs with information from the registry and from the other queries mentioned, a detailed picture can be constructed.
To see the devices I was interested in, I had replace Win32_USBHub by Win32_PnPEntity in Adel Hazzah's code, based on this post. This works for me:
namespace ConsoleApplication1
{
using System;
using System.Collections.Generic;
using System.Management; // need to add System.Management to your project references.
class Program
{
static void Main(string[] args)
{
var usbDevices = GetUSBDevices();
foreach (var usbDevice in usbDevices)
{
Console.WriteLine("Device ID: {0}, PNP Device ID: {1}, Description: {2}",
usbDevice.DeviceID, usbDevice.PnpDeviceID, usbDevice.Description);
}
Console.Read();
}
static List<USBDeviceInfo> GetUSBDevices()
{
List<USBDeviceInfo> devices = new List<USBDeviceInfo>();
ManagementObjectCollection collection;
using (var searcher = new ManagementObjectSearcher(#"Select * From Win32_PnPEntity"))
collection = searcher.Get();
foreach (var device in collection)
{
devices.Add(new USBDeviceInfo(
(string)device.GetPropertyValue("DeviceID"),
(string)device.GetPropertyValue("PNPDeviceID"),
(string)device.GetPropertyValue("Description")
));
}
collection.Dispose();
return devices;
}
}
class USBDeviceInfo
{
public USBDeviceInfo(string deviceID, string pnpDeviceID, string description)
{
this.DeviceID = deviceID;
this.PnpDeviceID = pnpDeviceID;
this.Description = description;
}
public string DeviceID { get; private set; }
public string PnpDeviceID { get; private set; }
public string Description { get; private set; }
}
}
Adel Hazzah's answer gives working code, Daniel Widdis's and Nedko's comments mention that you need to query Win32_USBControllerDevice and use its Dependent property, and Daniel's answer gives a lot of detail without code.
Here's a synthesis of the above discussion to provide working code that lists the directly accessible PNP device properties of all connected USB devices:
using System;
using System.Collections.Generic;
using System.Management; // reference required
namespace cSharpUtilities
{
class UsbBrowser
{
public static void PrintUsbDevices()
{
IList<ManagementBaseObject> usbDevices = GetUsbDevices();
foreach (ManagementBaseObject usbDevice in usbDevices)
{
Console.WriteLine("----- DEVICE -----");
foreach (var property in usbDevice.Properties)
{
Console.WriteLine(string.Format("{0}: {1}", property.Name, property.Value));
}
Console.WriteLine("------------------");
}
}
public static IList<ManagementBaseObject> GetUsbDevices()
{
IList<string> usbDeviceAddresses = LookUpUsbDeviceAddresses();
List<ManagementBaseObject> usbDevices = new List<ManagementBaseObject>();
foreach (string usbDeviceAddress in usbDeviceAddresses)
{
// query MI for the PNP device info
// address must be escaped to be used in the query; luckily, the form we extracted previously is already escaped
ManagementObjectCollection curMoc = QueryMi("Select * from Win32_PnPEntity where PNPDeviceID = " + usbDeviceAddress);
foreach (ManagementBaseObject device in curMoc)
{
usbDevices.Add(device);
}
}
return usbDevices;
}
public static IList<string> LookUpUsbDeviceAddresses()
{
// this query gets the addressing information for connected USB devices
ManagementObjectCollection usbDeviceAddressInfo = QueryMi(#"Select * from Win32_USBControllerDevice");
List<string> usbDeviceAddresses = new List<string>();
foreach(var device in usbDeviceAddressInfo)
{
string curPnpAddress = (string)device.GetPropertyValue("Dependent");
// split out the address portion of the data; note that this includes escaped backslashes and quotes
curPnpAddress = curPnpAddress.Split(new String[] { "DeviceID=" }, 2, StringSplitOptions.None)[1];
usbDeviceAddresses.Add(curPnpAddress);
}
return usbDeviceAddresses;
}
// run a query against Windows Management Infrastructure (MI) and return the resulting collection
public static ManagementObjectCollection QueryMi(string query)
{
ManagementObjectSearcher managementObjectSearcher = new ManagementObjectSearcher(query);
ManagementObjectCollection result = managementObjectSearcher.Get();
managementObjectSearcher.Dispose();
return result;
}
}
}
You'll need to add exception handling if you want it. Consult Daniel's answer if you want to figure out the device tree and such.
If you change the ManagementObjectSearcher to the following:
ManagementObjectSearcher searcher =
new ManagementObjectSearcher("root\\CIMV2",
#"SELECT * FROM Win32_PnPEntity where DeviceID Like ""USB%""");
So the "GetUSBDevices() looks like this"
static List<USBDeviceInfo> GetUSBDevices()
{
List<USBDeviceInfo> devices = new List<USBDeviceInfo>();
ManagementObjectCollection collection;
using (var searcher = new ManagementObjectSearcher(#"SELECT * FROM Win32_PnPEntity where DeviceID Like ""USB%"""))
collection = searcher.Get();
foreach (var device in collection)
{
devices.Add(new USBDeviceInfo(
(string)device.GetPropertyValue("DeviceID"),
(string)device.GetPropertyValue("PNPDeviceID"),
(string)device.GetPropertyValue("Description")
));
}
collection.Dispose();
return devices;
}
}
Your results will be limited to USB devices (as opposed to all types on your system)
This is a much simpler example for people only looking for removable usb drives.
using System.IO;
foreach (DriveInfo drive in DriveInfo.GetDrives())
{
if (drive.DriveType == DriveType.Removable)
{
Console.WriteLine(string.Format("({0}) {1}", drive.Name.Replace("\\",""), drive.VolumeLabel));
}
}
You may find this thread useful. And here's a google code project exemplifying this (it P/Invokes into setupapi.dll).
lstResult.Clear();
foreach (ManagementObject drive in new ManagementObjectSearcher("select * from Win32_DiskDrive where InterfaceType='USB'").Get())
{
foreach (ManagementObject partition in new ManagementObjectSearcher("ASSOCIATORS OF {Win32_DiskDrive.DeviceID='" + drive["DeviceID"] + "'} WHERE AssocClass = Win32_DiskDriveToDiskPartition").Get())
{
foreach (ManagementObject disk in new ManagementObjectSearcher("ASSOCIATORS OF {Win32_DiskPartition.DeviceID='" + partition["DeviceID"] + "'} WHERE AssocClass = Win32_LogicalDiskToPartition").Get())
{
foreach (var item in disk.Properties)
{
object value = disk.GetPropertyValue(item.Name);
}
string valor = disk["Name"].ToString();
lstResult.Add(valor);
}
}
}
}