Conditionally serialize a object in a collection using Json.net - c#

There is tons of info about skipping Properties based on conditionals, but I would like to skip the entire object based on conditions within the object's class. I would like a solution that is contained within the object's class if at all possible. Keep in mind this is a collection of myObj that I am serializing.
public class myObj
{
bool conditional;
ShouldSerialize()
{
return conditional;
}
}
Or
public class myObj
{
[JsonCondition]
public bool conditional{get;}
}
Or even
[JsonCondition(typeof(MyConditionChecker))]
public class myObj
{
public bool conditional{get;}
}
class MyConditionChecker: JsonCondition
{
public override bool CanConvert(object sourceObj)
{
return (sourceObj as myObj).conditional;
}
}

What I got from your comments you would be best served creating your own wrapper around Json that applies the filtering.
public interface IConditionalSerializer
{
bool ShouldBeSerialized();
}
public static class FilteredSerializer
{
public static string SerializeConditional<T>(IEnumerable<T> input)
where T : IConiditionalSerializer
{
return JsonConvert.SerializeObject(input.Where(e => e.ShouldBeSerialized()));
}
}
public class Demo : IConditionalSerializer
{
public bool ShouldBeSerialized() => false;
}
You might also replace the interface with a reflection approach, but keep in mind the performance loss.
public interface IConiditionChecker
{
bool ShouldBeSerialized(object instance);
}
public class ConditionAttribute : Attribute
{
public Type ConditionChecker { get; set; }
}
public static class FilteredSerializer
{
public static string SerializeConditional(IEnumerable<object> input)
{
var matches = (from entry in input
let att = entry.GetType().GetCustomAttribute<ConditionAttribute>()
let hasChecker = att != null && att.ConditionChecker != null
let checker = hasChecker ? (IConiditionChecker)Activator.CreateInstance(att.ConditionChecker) : null
where checker.ShouldBeSerialized(entry)
select entry);
return JsonConvert.SerializeObject(matches);
}
}
[Condition(ConditionChecker = typeof(SomeChecker))]
public class Demo
{
}
Edit: Based on your comment you could do this. Only must decide wether to use opt-in or opt-out in the where-statement. It must ether be casted != null && casted.ShouldBeSerialized or what it currently says.
public interface IShouldBeSerialized
{
bool ShouldBeSerialized();
}
public static class FilteredSerializer
{
public static string SerializeConditional(IEnumerable<object> input)
{
var matches = (from entry in input
let casted = entry as IShouldBeSerialized
where casted == null || casted.ShouldBeSerialized()
select entry);
return JsonConvert.SerializeObject(matches);
}
}
public class Demo : IShouldBeSerialized
{
public bool ShouldBeSerialized()
{
return false;
}
}

If you're able to use the JSON.NET serializer, in terms of not serializing specific items within a collection, you could make the main collection non serializable, then add another filtered collection that does serialize.
public class Manager
{
[JsonIgnore]
public Employee[] Employees { get; set; }
[JsonProperty("Employees")]
public Employee[] SerializableEmployees
{
get { return Employees.Where(e => e.Name != "Bob").ToArray(); }
set { Employees = value; }
}
}
Alternatively, you could mark your class with the [JsonConverter] attribute and use a custom converter to check your condition. A similar approach that ignores a class entirely is detailed here.

Related

Custom attributes not behaving like data annotations

I am trying to create a custom attribute in console application but it is not working. My custom attribute never gets called. I found a good example here Custom Attribute not being hit
but not happy with its implementation.
I am wondering how data annotations works in MVC. we don't have to call it separately.
Is MVC calling those data annotations attribute behind the scene?
I wish to create custom attribute that I can use it on any class property same like data annotations attribute. But calling it separately like in above link is not what i am looking.
Here is what I have tried:
using System;
namespace AttributePractice
{
[AttributeUsage(AttributeTargets.Property)]
public class CustomMessageAttribute : Attribute
{
public static readonly CustomMessageAttribute Default = new CustomMessageAttribute();
protected string Message { get; set; }
public CustomMessageAttribute() : this(string.Empty)
{
Console.WriteLine("Default message is empty");
}
public CustomMessageAttribute(string message)
{
Message = message;
}
public string MyMessage =>
Message;
public override bool Equals(object obj)
{
if (obj == this)
return true;
if (obj is CustomMessageAttribute customMessageAttribute)
return customMessageAttribute.Message == MyMessage;
return false;
}
public override int GetHashCode()
{
return MyMessage.GetHashCode();
}
public override bool IsDefaultAttribute()
{
return Equals(Default);
}
}
public class Person
{
//This never works
// I am looking to use this attribute anywhere without calling it
// separately , same like data annotations
[CustomMessage("Hello world")]
public string Name { get; set; }
public int Age { get; set; }
public void DisplayPerson()
{
Console.WriteLine(Name);
Console.WriteLine(Age);
}
}
internal static class Program
{
private static void Main(string[] args)
{
var personObj = new Person
{
Name = "Tom",
Age = 28
};
personObj.DisplayPerson();
}
}
}
Can anybody tell me how to make my custom attribute works like data annotation way?
yes, if you need 10 custom attributes, you should create 10 separate.

Too many calculated properties in my class

I have class which have too many related calculated properties.
I have currently kept all properties are read only.
some properties need long calculation and it is called again when its related properties are needed.
How can create this complex object .Also i want these properties should not be set from external code. I need show hide as i am binding properties for UI. Also i think order is also important.
My Class is something like
public string A
{
get
{
return complexMethod();
;
}
}
public string B
{
get
{
if (A == "value")
return "A";
else return "B";
;
}
}
public bool ShowHideA
{
get
{
return string.IsNullOrEmpty(A);
;
}
}
public bool ShowHideB
{
get
{
return string.IsNullOrEmpty(B);
;
}
}
public string complexMethod()
{
string value = "";
// calculation goes here
return value;
}
}
Thanks
You need to use Lazy type provided by .net:
Lazy<YourType> lazy = new Lazy<YourType>();
Make your properties internal to not be set from external code.
Well tall order isn't it?
One of the coolest things about extension methods is you can use types. This is perfect for writing external programs to calculate property values. Start like this...
public static class XMLibrary
{
public static MC CalculateValues(this MC myclass)
{
//for each property calculate the values here
if (myclass.Name == string.Empty) myclass.Name = "You must supply a name";
if (myclass.Next == 0) myclass.Next = 1;
//when done return the type
return myclass;
}
}
public class MC
{
public string Name { get; set; }
public int Next { get; set; }
}
public class SomeMainClass
{
public SomeMainClass()
{
var mc = new MC { Name = "test", Next = 0 };
var results = mc.CalculateValues();
}
}
There are many other ways to do class validation on a model, for example dataannotations comes to mind, or IValidatableObject works too. Keeping the validation separate from the class is a good idea.
//Complex properites are simple
public class MyComplextClass{
public List<MyThings> MyThings {get;set;}
public List<FileInfo> MyFiles {get;set;}
public List<DateTime> MyDates {get;set;}
}

.Net 4.0 Optimized code for refactoring existing "if" conditions and "is" operator

I have following C# code. It works fine; but the GetDestination() method is cluttered with multiple if conditions by using is operator.
In .Net 4.0 (or greater) what is the best way to avoid these “if” conditions?
EDIT: Role is part of the business model, and the destination is purely an artifact of one particular application using that business model.
CODE
public class Role { }
public class Manager : Role { }
public class Accountant : Role { }
public class Attender : Role { }
public class Cleaner : Role { }
public class Security : Role { }
class Program
{
static string GetDestination(Role x)
{
string destination = #"\Home";
if (x is Manager)
{
destination = #"\ManagerHomeA";
}
if (x is Accountant)
{
destination = #"\AccountantHomeC";
}
if (x is Cleaner)
{
destination = #"\Cleaner";
}
return destination;
}
static void Main(string[] args)
{
string destination = GetDestination(new Accountant());
Console.WriteLine(destination);
Console.ReadLine();
}
}
REFERENCES
Dictionary<T,Delegate> with Delegates of different types: Cleaner, non string method names?
Jon Skeet: Making reflection fly and exploring delegates
if-else vs. switch vs. Dictionary of delegates
Dictionary with delegate or switch?
Expression and delegate in c#
Having virtual property which would be overriden in derived classes should do the trick:
class Role
{
public virtual string Destination { get { return "Home"; } }
}
class Manager : Role
{
public override string Destination { get { return "ManagerHome;"; } }
}
class Accountant : Role
{
public override string Destination { get { return "AccountantHome;"; } }
}
class Attender : Role
{
public override string Destination { get { return "AttenderHome;"; } }
}
class Cleaner : Role
{
public override string Destination { get { return "CleanerHome;"; } }
}
class Security : Role { }
I didn't make the property abstract, to provide default Home value when it's not overriden in derived class.
Usage:
string destination = (new Accountant()).Destination;
Console.WriteLine(destination);
Console.ReadLine();
Here's one option:
private static readonly Dictionary<Type, string> DestinationsByType =
new Dictionary<Type, string>
{
{ typeof(Manager), #"\ManagerHome" },
{ typeof(Accountant), #"\AccountantHome" },
// etc
};
private static string GetDestination(Role x)
{
string destination;
return DestinationsByType.TryGetValue(x.GetType(), out destination)
? destination : #"\Home";
}
Note:
This doesn't cope with null parameters. It's not clear whether or not you actually need it to. You can easily add null handling though.
This doesn't copy with inheritance (e.g. class Foo : Manager); you could do that by going up the inheritance hierarchy if necessary
Here's a version which does deal with both of those points, at the cost of complexity:
private static string GetDestination(Role x)
{
Type type = x == null ? null : x.GetType();
while (type != null)
{
string destination;
if (DestinationsByType.TryGetValue(x.GetType(), out destination))
{
return destination;
}
type = type.BaseType;
}
return #"\Home";
}
EDIT: It would be cleaner if Role itself had a Destination property. This could either be virtual, or provided by the Rolebase class.
However, it could be that the destination is really not something the Role should concern itself with - it could be that Role is part of the business model, and the destination is purely an artifact of one particular application using that business model. In that sort of situation, you shouldn't put it into Role, as that breaks separation of concerns.
Basically, we can't tell which solution is going to be most suitable without knowing more context - as is so often the way in matters of design.
Approach 1 (Selected): Using dynamic keyword to implement multimethods / double dispatch
Approach 2: Use a dictionary to avoid if blocks as mentioned in Jon Skeet’s answer below.
Approach 3: Use a HashList with delegates if there is condition other than equality (For example, if input < 25). Refer how to refactor a set of <= , >= if...else statements into a dictionary or something like that
Apporach 4: Virtual Functions as mentioned in MarcinJuraszek’s answer below.
MultiMethods / Double Dispatch approach using dynamic keyword
Rationale: Here the algorithm changes based on the type. That is, if the input is Accountant, the function to be executed is different than for Manager.
public static class DestinationHelper
{
public static string GetDestinationSepcificImplm(Manager x)
{
return #"\ManagerHome";
}
public static string GetDestinationSepcificImplm(Accountant x)
{
return #"\AccountantHome";
}
public static string GetDestinationSepcificImplm(Cleaner x)
{
return #"\CleanerHome";
}
}
class Program
{
static string GetDestination(Role x)
{
#region Other Common Works
//Do logging
//Other Business Activities
#endregion
string destination = String.Empty;
dynamic inputRole = x;
destination = DestinationHelper.GetDestinationSepcificImplm(inputRole);
return destination;
}
static void Main(string[] args)
{
string destination = GetDestination(new Security());
Console.WriteLine(destination);
Console.WriteLine("....");
Console.ReadLine();
}
}
This is a strongly typed, imperative language so if statements and type checking are going to happen.
Having said that, have you considered a virtual method on Role that can be overridden to provide a destination string?
A further alternative, a lookup table!
Dictionary<Type, string> paths = new Dictionary<TYpe, string>()
{
{ typeof(Manager), #"\ManagerHomeA" }
{ typeof(Accountant), #"\AccountantHomeC" }
{ typeof(Cleaner), "Cleaner" }
}
string path = #"\Home";
if(paths.ContainsKey(x.GetType())
path = paths[x];
One way to do it would be to use a map instead of an if:
//(psuedocode)
private Dictionary<Type, string> RoleMap;
void SomeInitializationCodeThatRunsOnce()
{
RoleMap.Add(typeof(Manager), #"\ManagerHome");
RollMap.Add(typeof(Accountant), #"\AccountantHome");
// ect...
}
string GetDestination(Role x)
{
string destination;
if(!RoleMap.TryGet(x.GetType(), out destination))
destination = #"\Home";
return destination;
}
Further reading: http://www.hanselman.com/blog/BackToBasicsMovingBeyondForIfAndSwitch.aspx
Role should have a virtual function that would return destination:
public virtual string GetDestination()
{
return "Home";
}
And all the classes should override this function and return the correct string. Then in the code you would have:
var role = new Accountant();
string destination = role.GetDestination();
I hope that helps. There may be typos, I am writing from head.
you can either use an interface definition or an abstract method / property
with interface:
public interface IDestinationProvider
{
sting Destination { get; }
}
string GetDestination(Role role)
{
var provider = role as IDestinationProvider;
if (provider != null)
return provider.Destination;
return "Default";
}
with an abstract base class
abstract class Role
{
public abstract string GetDestination();
}
class Manager : Role
{
public virtual string GetDestination() { return "ManagerHomeA"; }
}
string GetDestination(Role role)
{
return #"\" + role.GetDestination();
}
or with attributes:
[AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]
public class DestinationAttribute : Attribute
{
public DestinationAttribute() { this.Path = #"\Home"; }
public string Path { get; set; }
}
[Destination(Path = #"\ManagerHome")]
public class Manager : Role { }
string GetDestination(Role role)
{
var destination = role.GetType().GetCustomAttributes(typeof(DestinationAttribute), true).FirstOrDefault();
if (destination != null)
return destination.Path;
return #"\Home";
}

Encapsulating Action<T> and Func<T>?

I'm trying to make a design for some sort of IExecutable interface. I will not get into details, but the point is that I have several Actions that need to be executed from a base class. They may take different parameters (no big deal), and they may/may not return a value.
So far, this is my design:
public abstract class ActionBase
{
// ... snip ...
}
public abstract class ActionWithResultBase<T>: ActionBase
{
public abstract T Execute();
}
public abstract class ActionWithoutResultBase: ActionBase
{
public abstract void Execute();
}
So far, each of my concrete actions need to be a child from either ActionWithResultBase or ActionWithoutResult base, but I really don't like that. If I could move the definition of Execute to ActionBase, considering that the concrete class may or may not return a value, I will have achieved my goal.
Someone told me this could be done with using Func and Action, for which I totally agree, but I can't find a way to have that into one single class so that the caller would know if the action is going to return a value or not.
Brief: I want to do something like:
// Action1.Execute() returns something.
var a = new Action1();
var result = a.Execute();
// Action2.Execute() returns nothing.
var b = new Action2();
b.Execute();
If you want a lightweight solution, then the easiest option would be to write two concrete classes. One will contain a property of type Action and the other a property of type Func<T>:
public class ActionWithResult<T> : ActionBase {
public Func<T> Action { get; set; }
}
public class ActionWithoutResult : ActionBase {
public Action Action { get; set; }
}
Then you can construct the two types like this:
var a1 = new ActionWithResult<int> {
CanExecute = true,
Action = () => {
Console.WriteLine("hello!");
return 10;
}
}
If you don't want to make Action property read/write, then you could pass the action delegate as an argument to the constructor and make the property readonly.
The fact that C# needs two different delegates to represent functions and actions is quite annoying. One workaround that people use is to define a type Unit that represents "no return value" and use it instead of void. Then your type would be just Func<T> and you could use Func<Unit> instead of Action. The Unit type could look like this:
public class Unit {
public static Unit Value { get { return null; } }
}
To create a Func<Unit> value, you'll write:
Func<Unit> f = () => { /* ... */ return Unit.Value; }
The following interfaces should do the trick -- it's essentially copying the Nullable pattern
public interface IActionBase
{
bool HasResult { get; }
void Execute() { }
object Result { get; }
}
public interface IActionBase<T> : IActionBase
{
new T Result { get; }
}
public sealed class ActionWithReturnValue<T> : IActionBase<T>
{
public ActionWithReturnValue(Func<T> action) { _action = action; }
private Func<T> _action;
public bool HasResult { get; private set; }
object IActionBase.Result { get { return this.Result; } }
public T Result { get; private set; }
public void Execute()
{
HasResult = false;
Result = default(T);
try
{
Result = _action();
HasResult = true;
}
catch
{
HasResult = false;
Result = default(T);
}
}
}
public sealed class ActionWithoutReturnValue : IActionBase
{
public bool HasResult { get { return false; } }
object IActionBase.Result { get { return null; } }
public void Execute() { //... }
}
You know that you can ignore the return value of a method right? You don't have to use it.
what about something simple:
public class ActionExecuter
{
private MulticastDelegate del;
public ActionExecuter(MulticastDelegate del)
{
this.del = del;
}
public object Execute(params object[] p)
{
return del.DynamicInvoke(p);
}
}

Inheriting an already instantiated base object

Is it possible to do something like the following:
public class ChildClass : BaseClass
{
public ChildClass(BaseClass o)
{
base = o;
}
}
Basically, I want a transparent way to wrap a base class inside of other functionality. One example I've thought of is a custom Settings Provider which transparently audits the settings passed through it.
public class SettingsAuditor : SettingsProvider
{
public SettingsAuditor(SettingsProvider o)
{
base = o;
}
public override void SetPropertyValues(SettingsContext context, SettingsPropertyValueCollection propvals)
{
// Log the property change to a file
base.SetPropertyValues(context, propvals);
}
}
Then I could do the following:
mySettingsProvider = new SettingsAuditor(mySettingsProvider);
And all changes would go through the overridden SetPropertyValues before passing to the original object.
I could use a private SettingsProvider member, but then I either cannot inherit from SettingsProvider, or have an entire SettingsProvider (base) not being used at all.
I'm using C# 4.0 and .Net 4.0.
You cannot do base = o;
What you're looking for is the Decorator Pattern), which is a way to compositionally add functionality at runtime (vs. inheritance).
Instead of trying to set the base, you just contain the inner member. As long as the wrapper implements the same interface or base class as the inner object, you can pass back the new wrapper. You can wrap as many decorators as you want.
Consider:
public interface ICar
{
void Drive();
}
public class Car : ICar
{
public void Drive()
{
Console.WriteLine("vroom");
}
}
public class BuckleUp : ICar
{
ICar car;
public BuckleUp(ICar car) { this.car = car; }
public void Drive()
{
Console.WriteLine("click!");
car.Drive();
}
}
public class CheckMirrors : ICar
{
ICar car;
public CheckMirrors(ICar car) { this.car = car; }
public void Drive()
{
Console.WriteLine("mirrors adjusted");
car.Drive();
}
}
Now consider you have a method that accepts an ICar and tells it to drive. You could give it a Car, and it would work, but you could also wrap that car in a BuckleUp and a CheckMirrors and you wouldn't have to change that method at all. You've modified functionality through composition using the Decorator Pattern.
No. This looks like it should be a Composition vs Inheritance issue. You need to evaluate whether you are a "is a" or a "has a."
A little help for your journey
This is not a complete implmentation and it could probably be done much cleaner with expression trees... but this was a quick swing at faking AOP using DynamicObject with .Net 4.0.
public class MyDynamicWrapper<T> : DynamicObject
{
public T Wrapped { get; private set; }
public Action<T> Pre { get; private set; }
public Action<T> Post { get; private set; }
public MyDynamicWrapper(T wrapped, Action<T> pre, Action<T> post)
{
this.Wrapped = wrapped;
this.Pre = pre;
this.Post = post;
}
public override bool TryGetMember(
GetMemberBinder binder,
out object result)
{
var type = typeof(T);
var method = type.GetMethod(binder.Name);
if (method != null)
{
Func<object> func = () =>
{
if (Pre != null)
Pre(Wrapped);
// support for input parameters could be added here
var ret = method.Invoke(Wrapped, null);
if (Post != null)
Post(Wrapped);
return ret;
};
result = func;
return true;
}
return base.TryGetMember(binder, out result);
}
}
public class MyDynamicWrapper
{
public static MyDynamicWrapper<T> Create<T>(
T toWrap,
Action<T> pre = null,
Action<T> post = null)
{
return new MyDynamicWrapper<T>(toWrap, pre, post);
}
}
public class MyObject
{
public void MyMethod()
{
Console.WriteLine("Do Something");
}
}
class Program
{
static void Main()
{
var myobject = new MyObject();
dynamic mydyn = MyDynamicWrapper.Create(
myobject,
p => Console.WriteLine("before"),
p => Console.WriteLine("after"));
// Note that you have no intellisence...
// but you could use the old implmentation before you
// changed to this wrapped version.
mydyn.MyMethod();
/* output below
before
Do Something
after
*/
}
}
No, but you could fake it:
public class SettingsAuditor
{
SettingsProvider #base;
public SettingsAuditor(SettingsProvider o)
{
#base = o;
}
public void SetPropertyValues(SettingsContext context, SettingsPropertyValueCollection propvals)
{
// Log the property change to a file
#base.SetPropertyValues(context, propvals);
}
}
Note here, #base isn't the actual base, just a varaible named base

Categories

Resources