Asyc method using await Task.Run() never "completes" - c#

I have a method that is defined as
public async Task SomeAsyncMethod()
{
DoSomeStuff();
await Task.Run(() => {
DoSomeSyncStuff();
DoSomeOtherSyncStuff();
});
var someDebugVariable = "someDebugValue";
}
The method itself does exactly what it is supposed to do and everything runs fine. Yet ... it looks like the "outer" async Task never completes.
Example: When I call it like this
public void CallerMethod()
{
Task t = SomeAsyncMethod();
t.Wait();
}
the t.Wait() never completes. Furthermore: if I place a breakpoint at the assignment of someDebugVariable it never gets hit.
I might add that DoSomeSyncStuff and DoSomeOtherSyncStuff really do what they are supposed to and debugging through them tells me that they both complete.
To prove my point I modified my method like this, and the results are still the same.
public async Task SomeAsyncMethod()
{
DoSomeStuff();
await Task.Run(() => {
/*
DoSomeSyncStuff();
DoSomeOtherSyncStuff();
*/
var a = 2; var b = 3; var c = a + b;
});
var someDebugVariable = "someDebugValue";
}
EDIT
I have tried removing everything but the await Task.Run and it does not change anything. It still does not complete.
The application is a WPF application. The caller thread is the UI thread.
What am I missing here?

The t.Wait() call is causing a deadlock, and also makes the async call entirely pointless. I believe if you change the code to
await Task.Run(() => {
// ...
}).ConfigureAwait(false);
You can fix the deadlock and let the code proceed, but you should really get rid of the t.Wait() call. Anything that needs to be done with the results of the sync function calls should be done after the awaited task, not after the call of the async function.
More in depth:
task.Wait() will block all execution on the main thread while the task is running. When the await task completes, it tries to marshall back to the main thread, but the main thread is blocked! Since A is waiting for B, and B is waiting for A, you get a deadlock.
See: http://blog.stephencleary.com/2012/07/dont-block-on-async-code.html

Related

Async method blocking on unawaited task

In my current project, I have a piece of code that, after simplifying it down to where I'm having issues, looks something like this:
private async Task RunAsync(CancellationToken cancel)
{
bool finished = false;
while (!cancel.IsCancellationRequested && !finished)
finished = await FakeTask();
}
private Task<bool> FakeTask()
{
return Task.FromResult(false);
}
If I use this code without awaiting, I end up blocking anyway:
// example 1
var task = RunAsync(cancel); // Code blocks here...
... // Other code that could run while RunAsync is doing its thing, but is forced to wait
await task;
// example 2
var task = RunAsync(cancelSource.Token); // Code blocks here...
cancelSource.Cancel(); // Never called
In the actual project, I'm not actually using FakeTask, and there usually will be some Task.Delay I'm awaiting in there, so the code most of the time doesn't actually block, or only for a limited amount of iterations.
In unit testing, however, I'm using a mock object that does pretty much do what FakeTask does, so when I want to see if RunAsync responds to its CancellationToken getting cancelled the way I expect it to, I'm stuck.
I have found I can fix this issue by adding for example await Task.Delay(1) at the top of RunAsync, to force it to truly run asynchronous, but this feels a bit hacky. Are there better alternatives?
You have an incorrect mental picture of what await does. The meaning of await is:
Check to see if the awaitable object is complete. If it is, fetch its result and continue executing the coroutine.
If it is not complete, sign up the remainder of the current method as the continuation of the awaitable and suspend the coroutine by returning control to the caller. (Note that this makes it a semicoroutine.)
In your program, the "fake" awaitable is always complete, so there is never a suspension of the coroutine.
Are there better alternatives?
If your control flow logic requires you to suspend the coroutine then use Task.Yield.
Task.FromResult actually runs synchronously, as would await Task.Delay(0). If you want to actually simulate asynchronous code, call Task.Yield(). That creates an awaitable task that asynchronously yields back to the current context when awaited.
As #SLaks said, your code will run synchronously. One thing is running async code, and another thing is running parallel code.
If you need to run your code in parallel you can use Task.Run.
class Program
{
static async Task Main(string[] args)
{
var tcs = new CancellationTokenSource();
var task = Task.Run(() => RunAsync("1", tcs.Token));
var task2 = Task.Run(() => RunAsync("2", tcs.Token));
await Task.Delay(1000);
tcs.Cancel();
Console.ReadLine();
}
private static async Task RunAsync(string source, CancellationToken cancel)
{
bool finished = false;
while (!cancel.IsCancellationRequested && !finished)
finished = await FakeTask(source);
}
private static Task<bool> FakeTask(string source)
{
Console.WriteLine(source);
return Task.FromResult(false);
}
}
C#'s async methods execute synchronously up to the point where they have to wait for a result.
In your example there is no such point where the method has to wait for a result, so the loop keeps running forever and thereby blocking the caller.
Inserting an await Task.Yield() to simulate some real async work should help.

Why await an async function directly not work without assigning it to a Task variable

Typically, I do the following
public static async Task dosth()
{
List<Task> job = new List<Task>();
for (int i = 0; i < 3; i++)
{
job.Add(sleep());
}
Task.WhenAll(job.ToArray());
}
static async Task sleep()
{
await Task.Delay(1000);
Console.WriteLine("Finish new");
}
It works smoothly, no problem. But when I do a review on my own code (trying using other syntax to do the same job), I suddenly figure out the following two are different.
public static async Task dosthA()
{
//This will be working synchronously, take 3 seconds.
await sleep();
await sleep();
await sleep();
//This will be working asynchronously, take 1 second only.
Task A = sleep();
Task B = sleep();
Task C = sleep();
await A;
await B;
await C;
}
Why assigning the async function to a new variable make difference? I originally think they are the same.
Update
Why it is confusing me is, actually in Microsoft doc on Async-await,
They stated the following in their code.
// Calls to TaskOfTResult_MethodAsync
Task<int> returnedTaskTResult = TaskOfTResult_MethodAsync();
int intResult = await returnedTaskTResult;
// or, in a single statement
int intResult = await TaskOfTResult_MethodAsync();
They are actually different, why they use //or , in a single statement, just because it makes no different in their own example?
This is because when you are returning a running Task when you call Sleep() even when you're assigning to a variable.
The confusion is that the Task does not begin if you assign it to a variable (A, B, or C) until you call await A; but that's not true. As soon as you assign sleep(); to A, sleep() was called; therefore the Task in the sleep() method is running. Assigning it to a variable or not the Task begins when you call the method; because in the method you start the Task.
Knowing this; when you call:
await A;
await B;
await C;
A, B, and C, have already starting simultaneously... After awaiting A it is most likely B, and C have also completed or are milliseconds from completing.
There are situations where you can reference a Task that hasn't started yet but you would have to purposely return a non-running Task to do that.
To answer the edit to your question also.
Tasks have a method called GetAwaiter() which returns a TaskAwaiter. In C# when you write var task = sleep(); then you're assigning the actual Task to the task variable. All the same when you write await sleep(); the compiler does some cool stuff and it actually calls the Task.GetAwaiter() method; which is subscribed to. The Task will run and when it is complete the TaskAwaiter fires the continuation action. This can't be explained in a simple answer but to know the outer logic helps.
Among other things the TaskAwaiter implements ICriticalNotifyCompletion which in turn implements INotifyCompletion. Both have one method each, OnCompleted(Action) and UnsafeOnCompleted(Action) (you can guess which is which by naming convention).
Another thing to note is that Task.GetAwaiter() returns a TaskAwaiter but Task<TResult>.GetAwaiter() returns a TaskAwaiter<TResult>. There's not a strong difference in the two but there is a difference in the GetResult() method of the two tasks; which is what's called while marshalling back to the proper threading context. The TaskAwaiter.GetResult() returns void and the TaskAwaiter<TResult>.GetResult() returns TResult.
I feel like if I push further into this I'll have to write pages to explain it all in detail... Hopefully just explaining your question and pulling the curtain back a little bit will shed enough light to help you both understand and dig deeper if you're more curious.
Ok, so based on the comment below I want to describe my answer a little bit further.
I'll start this simple; let's just make a Task; one that isn't running, and look at it first.
public Task GetTask()
{
var task = new Task(() => { /*some work to be done*/ });
//Now we have a reference to a non-running task.
return task;
}
We can now call code like:
public async void DoWork()
{
await GetTask();
}
… but we'll be waiting forever; until the application ends, because the Task was never started. However; we could do something like this:
public async void DoWork()
{
var task = GetTask();
task.Start();
await task;
}
… and it will await the running Task and continue once the Task is complete.
Knowing this you can make as many calls to GetTask() as you like and you'll only be referencing Tasks that have not started.
In your code it's just the opposite, which is fine, as this is the most used way. I encourage you to make sure your method names notify the user of how you're returning the Task. If the Task is already running the most common convention is the end the method name with Async. Here's another example doing it with a running Task for clarity.
public Task DoTaskAsync()
{
var task = Task.Run(() => { /*some work to be done*/ });
//Now we have a reference to a task that's already running.
return task;
}
And now we will most likely call this method like:
public async void DoWork()
{
await DoTaskAsync();
}
However; note that if we simply want to reference the Task just like we did earlier, we can, the only difference is this Task is running where the one prior was not. So this code is valid.
public async void DoWork()
{
var task = DoTaskAsync();
await task;
}
The big take away is how C# handles the async / await keywords. async tells the compiler that the method is going to become a continuation of a Task. In short; the compiler knows to look for all await calls and put the rest of the method in a continuation.
The await keyword tells the compiler to call the Task.GetAwaiter() method on the Task ( and basically subscribe to the INotifyCompletion and ICriticalNotifyCompletion) to signal the continuation in the method.
And this I wanted to add just incase you weren't aware. If you do have more than one task that you want to await but would rather await one task as if they were all one then you can do that with Task.WhenAll() So instead of:
var taskA = DoTaskAsync();
var taskB = DoTaskAsync();
var taskC = DoTaskAsync();
await taskA;
await taskB;
await taskC;
You could write it a little cleaner like so:
var taskA = DoTaskAsync();
var taskB = DoTaskAsync();
var taskC = DoTaskAsync();
await Task.WhenAll(taskA, taskB, taskC);
And there are more ways of doing this sort of thing built in; just explore it.

Does a method has to be async when invoked inside an async method?

Lets say I have a method defined as follows:
public async Task CreateUser()
{
await GetUserDetails();
GetUserOrder();
}
private void GetUserDetails() {
private void GetUserOrder() {
Does the method GetUserDetails(); and GetUserOrder() have to be async as well to avoid UI blocking ?
I cannot await the GetUserDetails() method since it is not async. How can I achieve this in c# ? I want to ensure all these methods are invoked step by step.
The relevant question is in a comment:
How can I ensure all my methods are invoked completely sequentially?
The fact that you're asking the question indicates that you don't understand what "await" is. Await is the sequencing operation on a asynchronous workflows. An await means this workflow will not proceed until the awaited task is complete. It's an asynchronous wait, hence the name await.
Consider this question: in a synchronous workflow, what is the sequencing operation?
No, really, give it some thought.
.
.
.
It is ;. When you say
fResult = foo();
bResult = bar();
qResult = qux();
that means that foo has to finish completely before bar can begin. That is not true for asynchronous workflows. If we have
fTask = fooAsync();
bTask = barAsync();
qTask = quxAsync();
Then the asynchronous operations can complete in any order. If we say
await fooAsync();
await barAsync();
await quxAsync();
Then barAsync will not start until fooAsync's task completes. await sequences the asynchronous workflow. The difference is that the thread can continue to do other unrelated work while asynchronously waiting for foo to complete, which is not true in a synchronous workflow; in a synchronous workflow the thread is already busy computing the foo result, so it can't do other work.
yes if you want to wait than you have to write await for that methods also. because after first await your code agian will be synchronous ..and if UI thread than it will run on it.
1.you code will be , so by this code you code become asynchronous for GetUserORder also. you just have to wrap method in Task construct and return
public async Task CreateUser()
{
await GetUserDetails();
await Task.Factory.SartNew(()=> GetUserOrder());
}
2.or you can do this also
public async Task CreateUser()
{
await Task.Factory.SartNew(()=>{
GetUserDetails();
GetUserOrder(); });
}
3.or you can do like this also, in below code will not wait for getuserorder method and excute await one method
public async Task CreateUser()
{
Task.Factory.SartNew(()=> GetUserOrder()).ContinueWith((t)=> Console.WriteLine("Completed");
await GetUserDetails();
}
4.or last one variation, here you start GetUserOrder first and dont wait for it than you call GetUserDetails in async fashion , and if you want to work on GetUserOrder method want to wait just use Wait method.
public async Task CreateUser()
{
var task = Task.Factory.SartNew(()=> GetUserOrder());
await GetUserDetails();
if(!task.IsCompleted)
task.Wait();
}
in your case you can go for 3 and if you want to wait go for 4th one.
As you asked me in comment what is difference between Task.Run and statnew method -: for that you can check this SO question : Regarding usage of Task.Start() , Task.Run() and Task.Factory.StartNew()
You should put await only in front of async methods. To run a synchronous one that you don't want to wait, you can use a new thread from the tread pool:
new Thread(() => DoSomething()).Start();
or
Task.Factory.SartNew(()=> DoSomething());
Here is the help page: https://msdn.microsoft.com/en-us/library/dd321439(v=vs.110).aspx
Otherwise, your call to GetUserDetails will have to finish before you execute the next line.

Multiple Task Continuation

I would like to understand this scenario a little clearer:
Consider the following code:
frmProgressAsync prog = new frmProgressAsync(true);
TaskWithProgress t = new TaskWithProgress("Smoothing CP", true);
t.Task = A.ShowMovingAverage(tension,t.Progress)
.ContinueWith(prev =>
{
t.ProgressInformation.Report("Smoothing FG");
B.ShowMovingAverage(tension, t.Progress);
});
await prog.RunAsync(t);
I have two tasks I wish to run A.ShowMovingAverage and B.ShowMovingAverage. Both return a Task.
In the prog.RunAsync() method, I have the following:
public virtual Task RunAsync(TaskWithProgress task)
{
Show();
TaskIsRunning();
task.ContinueWith(Close(), CancellationToken.None, TaskContinuationOptions.OnlyOnRanToCompletion, this._Scheduler);
return task.Task;
}
So effectively I have three tasks, to run in turn one after the previous is complete.
Now my issue is in some cases the first task completes virtually immediately. When the call to prog.RunAsync() is made, and the final continuation is appended to the task, it immediately runs, closing the form.
I can see if I break on the last ContinueWith() call, the task status is RanToCompletion, but I am kind of expecting the continuation to reset this back to in progress.
Could someone please explain this behavior a little more cleanly? And provide a potential solution so that all the tasks (continuations) complete before the final continuation?
Tasks only complete one time. When you attach a continuation, you are creating a new task that starts when the antecedent task completes. So, I believe the problem you're seeing is that RunAsync is attaching the Close continuation but not doing anything with the continuation task; consider task.Task = task.ContinueWith(Close(), ...).
However, I recommend that you use await instead of ContinueWith. I find that usually clarifies the code and makes it easier to understand.
frmProgressAsync prog = new frmProgressAsync(true);
TaskWithProgress t = new TaskWithProgress("Smoothing CP", true);
t.Task = ShowMovingAveragesAsync(A, B, tension, t.Progress);
await prog.RunAsync(t);
private async Task ShowMovingAveragesAsync(TA A, TA B, TT tession, IProgress<string> progress)
{
progress.Report("Smoothing FG");
await A.ShowMovingAverageAsync(tension, progress);
progress.Report("Smoothing FG");
await B.ShowMovingAverageAsync(tension, progress);
}
public virtual async Task RunAsync(TaskWithProgress task)
{
Show();
TaskIsRunning();
await task;
Close();
}

How do I create a Task that uses await inside the body that behaves the same as the synchronous version when Wait is called?

I have some code that creates a task that does some slow work like this:
public static Task wait1()
{
return new Task(() =>
{
Console.WriteLine("Waiting...");
Thread.Sleep(10000);
Console.WriteLine("Done!");
});
}
In the real implementation, the Thread.Sleep will actually be a web service call. I would like to change the body of the method can use await (so it does not consume a thread during the network access/sleep). My first attempt (based on shotgun-debugging the compile errors) was this:
public static Task wait2()
{
return new Task(async () =>
{
Console.WriteLine("Waiting...");
await Task.Delay(10000);
Console.WriteLine("Done!");
});
}
However; this task doesn't seem to behave the same as the first one, because when I call .Wait() on it; it returns immediately.
Below is a full sample (console app) showing the differences (the app will end immediately when the second task starts).
What do I need to do so that I can call Start and Wait on a Task which happens to have code using await inside it? The tasks are queued and executed later by an agent, so it's vital that the task is not auto-started.
class Program
{
static void Main(string[] args)
{
var w1 = wait1();
w1.Start();
w1.Wait(); // This waits 110 seconds
var w2 = wait2();
w2.Start();
w2.Wait(); // This returns immediately
}
public static Task wait1()
{
return new Task(() =>
{
Console.WriteLine("Waiting...");
Thread.Sleep(10000);
Console.WriteLine("Done!");
});
}
public static Task wait2()
{
return new Task(async () =>
{
Console.WriteLine("Waiting...");
await Task.Delay(10000);
Console.WriteLine("Done!");
});
}
}
It seems like this isn't possible! See alexm's answer here:
Tasks returned by async methods are always hot i.e. they are created in Running state.
:-(
I've worked around this by making my agent queue Func<Task>s instead, and the overload that receives a task simply queues () => task. Then; when de-queing a task, I check if it's not running, and if so, start it:
var currentTask = currentTaskFunction();
if (currentTask.Status == TaskStatus.Created)
currentTask.Start();
It seems a little clunky to have to do this (if this simple workaround works; why the original restriction on async methods always being created hot?), but it seems to work for me :-)
You could write this as:
public static async Task Wait2()
{
Console.WriteLine("Waiting...");
await Task.Delay(10000);
Console.WriteLine("Done!");
}
In general, it's rarely a good idea to ever use new Task or new Task<T>. If you must launch a task using the ThreadPool instead of using the async/await language support to compose one, you should use Task.Run to start the task. This will schedule the task to run (which is important, tasks should always be "hot" by conventions).
Note that doing this will make it so you don't have to call Task.Start, as well.
To help you understand this realize that async / await essentially does not create a new thread but rather it schedules that portion of code to be ran at an available point in time.
When you create the new Task(async () => ...) you have a task that run an async method. When that inner async method hits an await the 'new Task' is considered complete because the rest of it has been scheduled. To help you understand better place some code (a lot if wanted) in the 'new Task' before the await command. It will all execute before the application terminates and once await is reached that task will believe it has completed. It then returns and exits the application.
The best way to avoid this is to not place any task or async methods inside of your task.
Remove the async keyword and the await keyword from the method and it will work as expected.
This is the same as creating a callback if you're familiar with that.
void MethodAsync(Action callback)
{
//...some code
callback?.Invoke();
}
//using this looks like this.
MethodAsync(() => { /*code to run when complete */});
//This is the same as
Task MethodAsync()
{
//... some code here
}
//using it
await MethodAsync();
/*code to run when complete */
The thing to understand is that you're creating a new task within a task basically. So the inner 'callback' is being created at the await keyword.
You're code looks like this..
void MethodAsync(Action callback)
{
//some code to run
callback?.Invoke(); // <- this is the await keyword
//more code to run.. which happens after we run whoever is
//waiting on callback
}
There's code missing obviously. If this doesn't make sense please feel free to contact me and I'll assist. async / await (meant to make things simpler) is a beast to wrap your head around at first. Afterward you get it then it'll probably be your favorite thing in c# since linq. :P
Try this:
public async static Task wait2()
{
Console.WriteLine("Waiting...");
await Task.Delay(2000);
Console.WriteLine("Done!");
}
But we aware that the task is already started so you don't have to call start:
var w2 = wait2();
//w2.Start();
w2.Wait();
I think the problem with your wait2 function is that is creating 2 task, the one in new Task(...) and another in Task.Delay(). You are waiting for the first one, but you are not waiting for the inner one.

Categories

Resources