This question already has answers here:
How to limit the amount of concurrent async I/O operations?
(11 answers)
Closed 7 days ago.
I would like to know if we should throttle async tasks if the number of tasks to complete is big. Say you have 1000 URLs, do you fire all the requests at once and wait for all:
var tasks = urlList.Select(url => downloadAsync(url));
await Task.WhenAll(tasks);
Or do you batch the requests and process one batch after another:
foreach (var urlBatch in urlList.BatchEnumerable(BatchSize)){
var tasks = urlBatch.Select(url => downloadAsync(url));
await Task.WhenAll(tasks);
}
I thought that batching is not necessary, because the first approach (firing all requests at once) will create tasks that are scheduled by the ThreadPool, so we should let the ThreadPool decide when to execute each task. However, I was told that in practice that only works if the tasks are compute tasks. When the the tasks involve network requests, the first approach could cause the host machine to hang ??? Why is that ?
You want to limit yourself to something in most cases. You always have some state kept somewhere when you have multiple operations running concurrently. If they are CPU bound then tasks are stored in the ThreadPool queue waiting for a thread and if it's async then you have the state machine sitting on the heap.
Even async operations usually use up some limited resource, be it bandwith, ports, remote DB server's CPU, etc.
You don't have to limit yourself to a single batch at a time though (as you need to wait for the last operation to complete instead of starting others). You can throttle using a SlimSemahpore or even better, a TPL Dataflow block:
var block = new ActionBlock<string>(
url => downloadAsync(url),
new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism = 10 });
urlList.ForEach(url => block.Post(url));
block.Complete();
await block.Completion;
Related
I completely don't understand the applied meaning of async\await.
I just started learning async\await and I know that there are already a huge number of topics. If I understand correctly, then async\await is not needed anywhere else except for operations with a long wait in a thread, if this is not related to a long calculation. For example, database response, network request, file handling. Many people write that async\await is also needed so as not to block the main thread. And here it is completely unclear to me why it should be blocked. Don't block without async\await, just create a task. So I'm trying to create a code that will wait a long time for a response from the network.
I created an example. I see with my own eyes through the windows task manager that the while (i < int.MaxValue) operation is processed first, taking up the entire processor resource, although I first launched the DownloadFile. And only then, when the processor is released, I see that the download files is in progress. On my machine, the example runs ~54 seconds.
Question: how could I first run the DownloadFile asynchronously so that the threads do not idle uselessly, but can do while (i < int.MaxValue)?
using System.Net;
string PathProject = Directory.GetParent(Directory.GetCurrentDirectory()).Parent.Parent.Parent.FullName;
//Create folder 1 in the project folder
DirectoryInfo Path = new DirectoryInfo($"{PathProject}\\1");
int Iterations = Environment.ProcessorCount * 3;
string file = "https://s182vla.storage.yandex.net/rdisk/82b08d86b9920a5e889c6947e4221eb1350374db8d799ee9161395f7195b0b0e/62f75403/geIEA69cusBRNOpxmtup5BdJ7AbRoezTJE9GH4TIzcUe-Cp7uoav-lLks4AknK2SfU_yxi16QmxiuZOGFm-hLQ==?uid=0&filename=004%20-%2002%20Lesnik.mp3&disposition=attachment&hash=e0E3gNC19eqNvFi1rXJjnP1y8SAS38sn5%2ByGEWhnzE5cwAGsEnlbazlMDWSjXpyvq/J6bpmRyOJonT3VoXnDag%3D%3D&limit=0&content_type=audio%2Fmpeg&owner_uid=160716081&fsize=3862987&hid=98984d857027117759bc5ce6092eaa6a&media_type=audio&tknv=v2&rtoken=k9xogU6296eg&force_default=no&ycrid=na-2bc914314062204f1cbf810798018afd-downloader16e&ts=5e61a6daac6c0&s=eef8b08190dc7b22befd6bad89e1393b394869a1668d9b8af3730cce4774e8ad&pb=U2FsdGVkX1__q3AvjJzgzWG4wVR80Oh8XMl-0Dlfyu9FhqAYQVVkoBV0dtBmajpmOkCXKUXPbREOS-MZCxMNu2rkAkKq_n-AXcZ85svtSFs";
List<Task> tasks = new List<Task>();
void MyMethod1(int i)
{
WebClient client = new WebClient();
client.DownloadFile(file, $"{Path}\\{i}.mp3");
}
void MyMethod2()
{
int i = 0;
while (i < int.MaxValue)
{
i++;
}
}
DateTime dateTimeStart = DateTime.Now;
for (int i = 0; i < Iterations; i++)
{
int j = i;
tasks.Add(Task.Run(() => MyMethod1(j)));
}
for (int i = 0; i < Iterations; i++)
{
tasks.Add(Task.Run(() => { MyMethod2(); MyMethod2(); }));
}
Task.WaitAll(tasks.ToArray());
Console.WriteLine(DateTime.Now - dateTimeStart);
while (true)
{
Thread.Sleep(100);
if (Path.GetFiles().Length == Iterations)
{
Thread.Sleep(1000);
foreach (FileInfo f in Path.GetFiles())
{
f.Delete();
}
return;
}
}
If there are 2 web servers that talk to a database and they run on 2 machines with the same spec the web server with async code will be able to handle more concurrent requests.
The following is from 2014's Async Programming : Introduction to Async/Await on ASP.NET
Why Not Increase the Thread Pool Size?
At this point, a question is always asked: Why not just increase the size of the thread pool? The answer is twofold: Asynchronous code scales both further and faster than blocking thread pool threads.
Asynchronous code can scale further than blocking threads because it uses much less memory; every thread pool thread on a modern OS has a 1MB stack, plus an unpageable kernel stack. That doesn’t sound like a lot until you start getting a whole lot of threads on your server. In contrast, the memory overhead for an asynchronous operation is much smaller. So, a request with an asynchronous operation has much less memory pressure than a request with a blocked thread. Asynchronous code allows you to use more of your memory for other things (caching, for example).
Asynchronous code can scale faster than blocking threads because the thread pool has a limited injection rate. As of this writing, the rate is one thread every two seconds. This injection rate limit is a good thing; it avoids constant thread construction and destruction. However, consider what happens when a sudden flood of requests comes in. Synchronous code can easily get bogged down as the requests use up all available threads and the remaining requests have to wait for the thread pool to inject new threads. On the other hand, asynchronous code doesn’t need a limit like this; it’s “always on,” so to speak. Asynchronous code is more responsive to sudden swings in request volume.
(These days threads are added added every 0.5 second)
WebRequest.Create("https://192.168.1.1").GetResponse()
At some point the above code will probably hit the OS method recv(). The OS will suspend your thread until data becomes available. The state of your function, in CPU registers and the thread stack, will be preserved by the OS while the thread is suspended. In the meantime, this thread can't be used for anything else.
If you start that method via Task.Run(), then your method will consume a thread from a thread pool that has been prepared for you by the runtime. Since these threads aren't used for anything else, your program can continue handling other requests on other threads. However, creating a large number of OS threads has significant overheads.
Every OS thread must have some memory reserved for its stack, and the OS must use some memory to store the full state of the CPU for any suspended thread. Switching threads can have a significant performance cost. For maximum performance, you want to keep a small number of threads busy. Rather than having a large number of suspended threads which the OS must keep swapping in and out of each CPU core.
When you use async & await, the C# compiler will transform your method into a coroutine. Ensuring that any state your program needs to remember is no longer stored in CPU registers or on the OS thread stack. Instead all of that state will be stored in heap memory while your task is suspended. When your task is suspended and resumed, only the data which you actually need will be loaded & stored, rather than the entire CPU state.
If you change your code to use .GetResponseAsync(), the runtime will call an OS method that supports overlapped I/O. While your task is suspended, no OS thread will be busy. When data is available, the runtime will continue to execute your task on a thread from the thread pool.
Is this going to impact the program you are writing today? Will you be able to tell the difference? Not until the CPU starts to become the bottleneck. When you are attempting to scale your program to thousands of concurrent requests.
If you are writing new code, look for the Async version of any I/O method. Sprinkle async & await around. It doesn't cost you anything.
If I understand correctly, then async\await is not needed anywhere else except for operations with a long wait in a thread, if this is not related to a long calculation.
It's kind of recursive, but async is best used whenever there's something asynchronous. In other words, anything where the CPU would be wasted if it had to just spin (or block) while waiting for the operation to complete. Operations that are naturally asynchronous are generally I/O-based (as you mention, DB and other network calls, as well as file I/O), but they can be more arbitrary events, too (e.g., timers). Anything where there isn't actual code to run to get the response.
Many people write that async\await is also needed so as not to block the main thread.
At a higher level, there are two primary benefits to async/await, depending on what kind of code you're talking about:
On the server side (e.g., web apps), async/await provides scalability by using fewer threads per request.
On the client side (e.g., UI apps), async/await provides responsiveness by keeping the UI thread free to respond to user input.
Developers tend to emphasize one or the other depending on the kind of work they normally do. So if you see an async article talking about "not blocking the main thread", they're talking about UI apps specifically.
And here it is completely unclear to me why it should be blocked. Don't block without async\await, just create a task.
That works just fine for many situations. But it doesn't work well in others.
E.g., it would be a bad idea to just Task.Run onto a background thread in a web app. The primary benefit of async in a web app is to provide scalability by using fewer threads per request, so using Task.Run does not provide any benefits at all (in fact, scalability is reduced). So, the idea of "use Task.Run instead of async/await" cannot be adopted as a universal principle.
The other problem is in resource-constrained environments, such as mobile devices. You can only have so many threads there before you start running into other problems.
But if you're talking Desktop apps (e.g., WPF and friends), then sure, you can use async/await to free up the UI thread, or you can use Task.Run to free up the UI thread. They both achieve the same goal.
Question: how could I first run the DownloadFile asynchronously so that the threads do not idle uselessly, but can do while (i < int.MaxValue)?
There's nothing in your code that is asynchronous at all. So really, you're dealing with multithreading/parallelism. In general, I recommend using higher-level constructs such as Parallel for parallelism rather than Task.Run.
But regardless of the API used, the underlying problem is that you're kicking off Environment.ProcessorCount * 6 threads. You'll want to ensure that your thread pool is ready for that many threads by calling ThreadPool.SetMinThreads with the workerThreads set to a high enough number.
It's not web requests but here's a toy example:
Test:
n: 1 await: 00:00:00.1373839 sleep: 00:00:00.1195186
n: 10 await: 00:00:00.1290465 sleep: 00:00:00.1086578
n: 100 await: 00:00:00.1101379 sleep: 00:00:00.6517959
n: 300 await: 00:00:00.1207069 sleep: 00:00:02.0564836
n: 500 await: 00:00:00.1211736 sleep: 00:00:02.2742309
n: 1000 await: 00:00:00.1571661 sleep: 00:00:05.3987737
Code:
using System.Diagnostics;
foreach( var n in new []{1, 10, 100, 300, 500, 1000})
{
var sw = Stopwatch.StartNew();
var tasks = Enumerable.Range(0,n)
.Select( i => Task.Run( async () =>
{
await Task.Delay(TimeSpan.FromMilliseconds(100));
}));
await Task.WhenAll(tasks);
var tAwait = sw.Elapsed;
sw = Stopwatch.StartNew();
var tasks2 = Enumerable.Range(0,n)
.Select( i => Task.Run( () =>
{
Thread.Sleep(TimeSpan.FromMilliseconds(100));
}));
await Task.WhenAll(tasks2);
var tSleep = sw.Elapsed;
Console.WriteLine($"n: {n,4} await: {tAwait} sleep: {tSleep}");
}
I have an ASP.NET 5 Web API application which contains a method that takes objects from a List<T> and makes HTTP requests to a server, 5 at a time, until all requests have completed. This is accomplished using a SemaphoreSlim, a List<Task>(), and awaiting on Task.WhenAll(), similar to the example snippet below:
public async Task<ResponseObj[]> DoStuff(List<Input> inputData)
{
const int maxDegreeOfParallelism = 5;
var tasks = new List<Task<ResponseObj>>();
using var throttler = new SemaphoreSlim(maxDegreeOfParallelism);
foreach (var input in inputData)
{
tasks.Add(ExecHttpRequestAsync(input, throttler));
}
List<ResponseObj> resposnes = await Task.WhenAll(tasks).ConfigureAwait(false);
return responses;
}
private async Task<ResponseObj> ExecHttpRequestAsync(Input input, SemaphoreSlim throttler)
{
await throttler.WaitAsync().ConfigureAwait(false);
try
{
using var request = new HttpRequestMessage(HttpMethod.Post, "https://foo.bar/api");
request.Content = new StringContent(JsonConvert.SerializeObject(input, Encoding.UTF8, "application/json");
var response = await HttpClientWrapper.SendAsync(request).ConfigureAwait(false);
var responseBody = await response.Content.ReadAsStringAsync().ConfigureAwait(false);
var responseObject = JsonConvert.DeserializeObject<ResponseObj>(responseBody);
return responseObject;
}
finally
{
throttler.Release();
}
}
This works well, however I am looking to limit the total number of Tasks that are being executed in parallel globally throughout the application, so as to allow scaling up of this application. For example, if 50 requests to my API came in at the same time, this would start at most 250 tasks running parallel. If I wanted to limit the total number of Tasks that are being executed at any given time to say 100, is it possible to accomplish this? Perhaps via a Queue<T>? Would the framework automatically prevent too many tasks from being executed? Or am I approaching this problem in the wrong way, and would I instead need to Queue the incoming requests to my application?
I'm going to assume the code is fixed, i.e., Task.Run is removed and the WaitAsync / Release are adjusted to throttle the HTTP calls instead of List<T>.Add.
I am looking to limit the total number of Tasks that are being executed in parallel globally throughout the application, so as to allow scaling up of this application.
This does not make sense to me. Limiting your tasks limits your scaling up.
For example, if 50 requests to my API came in at the same time, this would start at most 250 tasks running parallel.
Concurrently, sure, but not in parallel. It's important to note that these aren't 250 threads, and that they're not 250 CPU-bound operations waiting for free thread pool threads to run on, either. These are Promise Tasks, not Delegate Tasks, so they don't "run" on a thread at all. It's just 250 objects in memory.
If I wanted to limit the total number of Tasks that are being executed at any given time to say 100, is it possible to accomplish this?
Since (these kinds of) tasks are just in-memory objects, there should be no need to limit them, any more than you would need to limit the number of strings or List<T>s. Apply throttling where you do need it; e.g., number of HTTP calls done simultaneously per request. Or per host.
Would the framework automatically prevent too many tasks from being executed?
The framework has nothing like this built-in.
Perhaps via a Queue? Or am I approaching this problem in the wrong way, and would I instead need to Queue the incoming requests to my application?
There's already a queue of requests. It's handled by IIS (or whatever your host is). If your server gets too busy (or gets busy very suddenly), the requests will queue up without you having to do anything.
If I wanted to limit the total number of Tasks that are being executed at any given time to say 100, is it possible to accomplish this?
What you are looking for is to limit the MaximumConcurrencyLevel of what's called the Task Scheduler. You can create your own task scheduler that regulates the MaximumCongruencyLevel of the tasks it manages. I would recommend implementing a queue-like object that tracks incoming requests and currently working requests and waits for the current requests to finish before consuming more. The below information may still be relevant.
The task scheduler is in charge of how Tasks are prioritized, and in charge of tracking the tasks and ensuring that their work is completed, at least eventually.
The way it does this is actually very similar to what you mentioned, in general the way the Task Scheduler handles tasks is in a FIFO (First in first out) model very similar to how a ConcurrentQueue<T> works (at least starting in .NET 4).
Would the framework automatically prevent too many tasks from being executed?
By default the TaskScheduler that is created with most applications appears to default to a MaximumConcurrencyLevel of int.MaxValue. So theoretically yes.
The fact that there practically is no limit to the amount of tasks(at least with the default TaskScheduler) might not be that big of a deal for your case scenario.
Tasks are separated into two types, at least when it comes to how they are assigned to the available thread pools. They're separated into Local and Global queues.
Without going too far into detail, the way it works is if a task creates other tasks, those new tasks are part of the parent tasks queue (a local queue). Tasks spawned by a parent task are limited to the parent's thread pool.(Unless the task scheduler takes it upon itself to move queues around)
If a task isn't created by another task, it's a top-level task and is placed into the Global Queue. These would normally be assigned their own thread(if available) and if one isn't available it's treated in a FIFO model, as mentioned above, until it's work can be completed.
This is important because although you can limit the amount of concurrency that happens with the TaskScheduler, it may not necessarily be important - if for say you have a top-level task that's marked as long running and is in-charge of processing your incoming requests. This would be helpful since all the tasks spawned by this top-level task will be part of that task's local queue and therefor won't spam all your available threads in your thread pool.
When you have a bunch of items and you want to process them asynchronously and with limited concurrency, the SemaphoreSlim is a great tool for this job. There are two ways that it can be used. One way is to create all the tasks immediately and have each task acquire the semaphore before doing it's main work, and the other is to throttle the creation of the tasks while the source is enumerated. The first technique is eager, and so it consumes more RAM, but it's more maintainable because it is easier to understand and implement. The second technique is lazy, and it's more efficient if you have millions of items to process.
The technique that you have used in your sample code is the second (lazy) one.
Here is an example of using two SemaphoreSlims in order to impose two maximum concurrency policies, one per request and one globally. First the eager approach:
private const int maxConcurrencyGlobal = 100;
private static SemaphoreSlim globalThrottler
= new SemaphoreSlim(maxConcurrencyGlobal, maxConcurrencyGlobal);
public async Task<ResponseObj[]> DoStuffAsync(IEnumerable<Input> inputData)
{
const int maxConcurrencyPerRequest = 5;
var perRequestThrottler
= new SemaphoreSlim(maxConcurrencyPerRequest, maxConcurrencyPerRequest);
Task<ResponseObj>[] tasks = inputData.Select(async input =>
{
await perRequestThrottler.WaitAsync();
try
{
await globalThrottler.WaitAsync();
try
{
return await ExecHttpRequestAsync(input);
}
finally { globalThrottler.Release(); }
}
finally { perRequestThrottler.Release(); }
}).ToArray();
return await Task.WhenAll(tasks);
}
The Select LINQ operator provides an easy and intuitive way to project items to tasks.
And here is the lazy approach for doing exactly the same thing:
private const int maxConcurrencyGlobal = 100;
private static SemaphoreSlim globalThrottler
= new SemaphoreSlim(maxConcurrencyGlobal, maxConcurrencyGlobal);
public async Task<ResponseObj[]> DoStuffAsync(IEnumerable<Input> inputData)
{
const int maxConcurrencyPerRequest = 5;
var perRequestThrottler
= new SemaphoreSlim(maxConcurrencyPerRequest, maxConcurrencyPerRequest);
var tasks = new List<Task<ResponseObj>>();
foreach (var input in inputData)
{
await perRequestThrottler.WaitAsync();
await globalThrottler.WaitAsync();
Task<ResponseObj> task = Run(async () =>
{
try
{
return await ExecHttpRequestAsync(input);
}
finally
{
try { globalThrottler.Release(); }
finally { perRequestThrottler.Release(); }
}
});
tasks.Add(task);
}
return await Task.WhenAll(tasks);
static async Task<T> Run<T>(Func<Task<T>> action) => await action();
}
This implementation assumes that the await globalThrottler.WaitAsync() will never throw, which is a given according to the documentation. This will no longer be the case if you decide later to add support for cancellation, and you pass a CancellationToken to the method. In that case you would need one more try/finally wrapper around the task-creation logic. The first (eager) approach could be enhanced with cancellation support without such considerations. Its existing try/finally infrastructure is
already sufficient.
It is also important that the internal helper Run method is implemented with async/await. Eliding the async/await would be an easy mistake to make, because in that case any exception thrown synchronously by the ExecHttpRequestAsync method would be rethrown immediately, and it would not be encapsulated in a Task<ResponseObj>. Then the task returned by the DoStuffAsync method would fail without releasing the acquired semaphores, and also without awaiting the completion of the already started operations. That's another argument for preferring the eager approach. The lazy approach has too many gotchas to watch for.
I am not pro in utilizing resources to the best hence am seeking the best way for a task that needs to be done in parallel and efficiently.
We have a scenario wherein we have to ping millions of system and receive a response. The response itself takes no time in computation but the task is network based.
My current implementation looks like this -
Parallel.ForEach(list, ip =>
{
try
{
// var record = client.QueryAsync(ip);
var record = client.Query(ip);
results.Add(record);
}
catch (Exception)
{
failed.Add(ip);
}
});
I tested this code for
100 items it takes about 4 secs
1k items it takes about 10 secs
10k items it takes about 80 secs
100k items it takes about 710 secs
I need to process close to 20M queries, what strategy should i use in order to speed this up further
Here is the problem
Parallel.ForEach uses the thread pool. Moreover, IO bound operations will block those threads waiting for a device to respond and tie up resources.
If you have CPU bound code, Parallelism is appropriate;
Though if you have IO bound code, Asynchrony is appropriate.
In this case, client.Query is clearly I/O, so the ideal consuming code would be asynchronous.
Since you said there was an async verison, you are best to use async/await pattern and/or some type of limit on concurrent tasks, another neat solution is to use ActionBlock Class in the TPL dataflow library.
Dataflow example
public static async Task DoWorkLoads(List<IPAddress> addresses)
{
var options = new ExecutionDataflowBlockOptions
{
MaxDegreeOfParallelism = 50
};
var block = new ActionBlock<IPAddress>(MyMethodAsync, options);
foreach (var ip in addresses)
block.Post(ip);
block.Complete();
await block.Completion;
}
...
public async Task MyMethodAsync(IpAddress ip)
{
try
{
var record = await client.Query(ip);
// note this is not thread safe best to lock it
results.Add(record);
}
catch (Exception)
{
// note this is not thread safe best to lock it
failed.Add(ip);
}
}
This approach gives you Asynchrony, it also gives you MaxDegreeOfParallelism, it doesn't waste resources, and lets IO be IO without chewing up unnecessary resources
*Disclaimer, DataFlow may not be where you want to be, however i just thought id give you some more information
Demo here
update
I just did some bench-marking with Parallel.Foreaceh and DataFlow
Run multiple times 10000 pings
Parallel.Foreach = 30 seconds
DataFlow = 10 seconds
I have a couple of hundred devices and I need to check their status every 5 seconds.
The API I'm using contains a blocking function that calls a dll and returns a status of a single device
string status = ReadStatus(int deviceID); // waits here until the status is returned
The above function usually returns the status in a couple of ms, but there will be situations where I might not get the status back for a second or more! Or even worse, one device might not respond at all.
I therefore need to introduce a form of asynchronicity to make sure that one device that doesn't respond doesn't impend all the others being monitored.
My current approach is as following
// triggers every 5 sec
public MonitorDevices_ElapsedInterval(object sender, ElapsedEventArgs elapsedEventArgs)
{
foreach (var device in lstDevices) // several hundred devices in the list
{
var task = device.ReadStatusAsync(device.ID, cts.Token);
tasks.Add(task);
}
// await all tasks finished, or timeout after 4900ms
await Task.WhenAny(Task.WhenAll(tasks), Task.Delay(4900, cts.Token));
cts.Cancel();
var devicesThatResponded = tasks.Where(t => t.Status == TaskStatus.RanToCompletion)
.Select(t => t.GetAwaiter().GetResult())
.ToList();
}
And below in the Device class
public async Task ReadStatusAsync(int deviceID, CancellationToken tk)
{
await Task.Delay(50, tk);
// calls the dll to return the status. Blocks until the status is return
Status = ReadStatus(deviceID);
}
I'm having several problems with my code
the foreach loops fires a couple of hundred tasks simultaneously, with the callback from the Task.Delay being served by a thread from the thread pool, each task taking a couple of ms.
I see this as a big potential bottleneck. Are there any better approaches?
This might be similar to what Stephen Cleary commented here, but he didn't provide an alternative What it costs to use Task.Delay()?
In case ReadStatus fails to return, I'm trying to use a cancellation token to cancel the thread that sits there waiting for the response... This doesn't seem to work.
await Task.Delay(50, tk)
Thread.Sleep(100000) // simulate the device not responding
I still have about 20 Worker Threads alive (even though I was expecting cts.Cancel() to kill them.
the foreach loops fires a couple of hundred tasks simultaneously
Since ReadStatus is synchronous (I'm assuming you can't change this), and since each one needs to be independent because they can block the calling thread, then you have to have hundreds of tasks. That's already the most efficient way.
Are there any better approaches?
If each device should be read every 5 seconds, then each device having its own timer would probably be better. After a few cycles, they should "even out".
await Task.Delay(50, tk);
I do not recommend using Task.Delay to "trampoline" non-async code. If you wish to run code on the thread pool, just wrap it in a Task.Run:
foreach (var device in lstDevices) // several hundred devices in the list
{
var task = Task.Run(() => device.ReadStatus(device.ID, cts.Token));
tasks.Add(task);
}
I'm trying to use a cancellation token to cancel the thread that sit there waiting for the response... This doesn't seem to work.
Cancellation tokens do not kill threads. If ReadStatus observes its cancellation token, then it should cancel; if not, then there isn't much you can do about it.
Thread pool threads should not be terminated; this reduces thread churn when the timer next fires.
As you can see in this Microsoft example page of a cancellation token, the doWork method is checking for cancellation on each loop. So, the loop has to start again to cancel out. In your case, when you simulate a long task, it never checks for cancellation at all when it's running.
From How do I cancel non-cancelable async operations?, it's saying at the end : "So, can you cancel non-cancelable operations? No. Can you cancel waits on non-cancelable operations? Sure… just be very careful when you do.". So it answers that we can't cancel it out.
What I would suggest is to use threads with a ThreadPool, you take the starting time of each one and you have an higher priority thread that looks if others bypass their maximum allowed time. If so, Thread.Interrupt().
I have some work (a job) that is in a queue (so there a several of them) and I want each job to be processed by a thread.
I was looking at Rx but this is not what I wanted and then came across the parallel task library.
Since my work will be done in an web application I do not want client to be waiting for each job to be finished, so I have done the following:
public void FromWebClientRequest(int[] ids);
{
// I will get the objects for the ids from a repository using a container (UNITY)
ThreadPool.QueueUserWorkItem(delegate
{
DoSomeWorkInParallel(ids, container);
});
}
private static void DoSomeWorkInParallel(int[] ids, container)
{
Parallel.ForEach(ids, id=>
{
Some work will be done here...
var respository = container.Resolve...
});
// Here all the work will be done.
container.Resolve<ILogger>().Log("finished all work");
}
I would call the above code on a web request and then the client will not have to wait.
Is this the correct way to do this?
TIA
From the MSDN docs I see that Unitys IContainer Resolve method is not thread safe (or it is not written). This would mean that you need to do that out of the thread loop. Edit: changed to Task.
public void FromWebClientRequest(int[] ids);
{
IRepoType repoType = container.Resolve<IRepoType>();
ILogger logger = container.Resolve<ILogger>();
// remove LongRunning if your operations are not blocking (Ie. read file or download file long running queries etc)
// prefer fairness is here to try to complete first the requests that came first, so client are more likely to be able to be served "first come, first served" in case of high CPU use with lot of requests
Task.Factory.StartNew(() => DoSomeWorkInParallel(ids, repoType, logger), TaskCreationOptions.LongRunning | TaskCreationOptions.PreferFairness);
}
private static void DoSomeWorkInParallel(int[] ids, IRepoType repository, ILogger logger)
{
// if there are blocking operations inside this loop you ought to convert it to tasks with LongRunning
// why this? to force more threads as usually would be used to run the loop, and try to saturate cpu use, which would be doing nothing most of the time
// beware of doing this if you work on a non clustered database, since you can saturate it and have a bottleneck there, you should try and see how it handles your workload
Parallel.ForEach(ids, id=>{
// Some work will be done here...
// use repository
});
logger.Log("finished all work");
}
Plus as fiver stated, if you have .Net 4 then Tasks is the way to go.
Why go Task (question in comment):
If your method fromClientRequest would be fired insanely often, you would fill the thread pool, and overall system performance would probably not be as good as with .Net 4 with fine graining. This is where Task enters the game. Each task is not its own thread but the new .Net 4 thread pool creates enough threads to maximize performance on a system, and you do not need to bother on how many cpus and how much thread context switches would there be.
Some MSDN quotes for ThreadPool:
When all thread pool threads have been
assigned to tasks, the thread pool
does not immediately begin creating
new idle threads. To avoid
unnecessarily allocating stack space
for threads, it creates new idle
threads at intervals. The interval is
currently half a second, although it
could change in future versions of the
.NET Framework.
The thread pool has a default size of
250 worker threads per available
processor
Unnecessarily increasing the number of
idle threads can also cause
performance problems. Stack space must
be allocated for each thread. If too
many tasks start at the same time, all
of them might appear to be slow.
Finding the right balance is a
performance-tuning issue.
By using Tasks you discard those issues.
Another good thing is you can fine grain the type of operation to run. This is important if your tasks do run blocking operations. This is a case where more threads are to be allocated concurrently since they would mostly wait. ThreadPool cannot achieve this automagically:
Task.Factory.StartNew(() => DoSomeWork(), TaskCreationOptions.LongRunning);
And of course you are able to make it finish on demand without resorting to ManualResetEvent:
var task = Task.Factory.StartNew(() => DoSomeWork());
task.Wait();
Beside this you don't have to change the Parallel.ForEach if you don't expect exceptions or blocking, since it is part of the .Net 4 Task Parallel Library, and (often) works well and optimized on the .Net 4 pool as Tasks do.
However if you do go to Tasks instead of parallel for, remove the LongRunning from the caller Task, since Parallel.For is a blocking operations and Starting tasks (with the fiver loop) is not. But this way you loose the kinda first-come-first-served optimization, or you have to do it on a lot more Tasks (all spawned through ids) which probably would give less correct behaviour. Another option is to wait on all tasks at the end of DoSomeWorkInParallel.
Another way is to use Tasks:
public static void FromWebClientRequest(int[] ids)
{
foreach (var id in ids)
{
Task.Factory.StartNew(i =>
{
Wl(i);
}
, id);
}
}
I would call the above code on a web
request and then the client will not
have to wait.
This will work provided the client does not need an answer (like Ok/Fail).
Is this the correct
way to do this?
Almost. You use Parallel.ForEach (TPL) for the jobs but run it from a 'plain' Threadpool job. Better to use a Task for the outer job as well.
Also, handle all exceptions in that outer Task. And be careful about the thread-safety of the container etc.