I have a problem. I need to perform this function with lockbits. Please I need help.
public void xPix(Bitmap bmp, int n, Color cx, Color nx)
{
try
{
for (int y = 0; y < bmp.Height; y++)
{
for (int x = 0; x < bmp.Width; x += (n * 2))
{
cx = bmp.GetPixel(x, y);
if (x + n <= bmp.Width - 1) nx = bmp.GetPixel(x + n, y);
bmp.SetPixel(x, y, nx);
if (x + n <= bmp.Width - 1) bmp.SetPixel(x + n, y, cx);
}
}
}
catch { }
}
There were lots of things that didn't make sense to me about your code. I fixed the pieces that were preventing an image from appearing and here is the result. I will explain my changes after the code.
public void xPix(Bitmap bmp, int n, Color cx, Color nx)
{
var img = bmp.LockBits(new Rectangle(Point.Empty, bmp.Size), System.Drawing.Imaging.ImageLockMode.ReadWrite, System.Drawing.Imaging.PixelFormat.Format32bppArgb);
byte[] bmpBytes = new byte[Math.Abs(img.Stride) * img.Height];
System.Runtime.InteropServices.Marshal.Copy(img.Scan0, bmpBytes, 0, bmpBytes.Length);
for (int y = 0; y < img.Height; y++)
{
for (int x = 0; x < img.Width; x+=n*2)
{
cx = Color.FromArgb(BitConverter.ToInt32(bmpBytes, y * Math.Abs(img.Stride) + x * 4));
if (x + n <= img.Width - 1) nx = Color.FromArgb(BitConverter.ToInt32(bmpBytes, y * Math.Abs(img.Stride) + x * 4));
BitConverter.GetBytes(nx.ToArgb()).CopyTo(bmpBytes, y * Math.Abs(img.Stride) + x * 4);
if (x + n <= img.Width - 1) BitConverter.GetBytes(cx.ToArgb()).CopyTo(bmpBytes, y * Math.Abs(img.Stride) + (x + n) * 4);
}
}
System.Runtime.InteropServices.Marshal.Copy(bmpBytes, 0, img.Scan0, bmpBytes.Length);
bmp.UnlockBits(img);
}
protected override void OnClick(EventArgs e)
{
base.OnClick(e);
Bitmap bmp = new Bitmap(#"C:\Users\bluem\Downloads\Default.png");
for (int i = 0; i < bmp.Width; i++)
{
xPix(bmp, new Random().Next(20) + 1, System.Drawing.Color.White, System.Drawing.Color.Green);
}
Canvas.Image = bmp;
}
There's no such class as LockBitmap so I replaced it with the result of a call to Bitmap.LockBits directly.
The result of LockBits does not include functions for GetPixel and SetPixel, so I did what one normally does with the result of LockBits (see https://learn.microsoft.com/en-us/dotnet/api/system.drawing.bitmap.lockbits?view=netframework-4.7.2) and copied the data into a byte array instead.
When accessing the byte data directly, some math must be done to convert the x and y coordinates into a 1-dimensional coordinate within the array of bytes, which I did.
When accessing the byte data directly under the System.Drawing.Imaging.PixelFormat.Format32bppArgb pixel format, multiple bytes must be accessed to convert between byte data and a pixel color, which I did with BitConverter.GetBytes, BitConverter.ToInt32, Color.FromArgb and Color.ToArgb.
I don't think it's a good idea to be changing the Image in the middle of painting it. You should either be drawing the image directly during the Paint event, or changing the image outside the Paint event and allowing the system to draw it. So I used the OnClick of my form to trigger the function instead.
The first random number I got was 0, so I had to add 1 to avoid an endless loop.
The cx and nx parameters never seem to be used as inputs, so I put arbitrary color values in for them. Your x and y variables were not defined/declared anywhere.
If you want faster on-image-action, you can use Marshall.Copy method with Parallel.For
Why dont use GetPixel method? Because every time you call it, your ALL image is loaded to memory. GetPixel get one pixel, and UNLOAD all image. And in every iteration, ALL image is loaded to memory (for example, if u r working on 500x500 pix image, GetPixel will load 500x500 times whole pixels to memory). When you work on images with C# (CV stuff), work on raw bytes from memory.
I will show how to use with Lockbits in Binarization because its easy to explain.
int pixelBPP = Image.GetPixelFormatSize(resultBmp.PixelFormat) / 8;
unsafe
{
BitmapData bmpData = resultBmp.LockBits(new Rectangle(0, 0, resultBmp.Width, resultBmp.Height), ImageLockMode.ReadWrite, resultBmp.PixelFormat);
byte* ptr = (byte*)bmpData.Scan0; //addres of first line
int height = resultBmp.Height;
int width = resultBmp.Width * pixelBPP;
Parallel.For(0, height, y =>
{
byte* offset = ptr + (y * bmpData.Stride); //set row
for(int x = 0; x < width; x = x + pixelBPP)
{
byte value = (offset[x] + offset[x + 1] + offset[x + 2]) / 3 > threshold ? Byte.MaxValue : Byte.MinValue;
offset[x] = value;
offset[x + 1] = value;
offset[x + 2] = value;
if (pixelBPP == 4)
{
offset[x + 3] = 255;
}
}
});
resultBmp.UnlockBits(bmpData);
}
Now, example with Marshall.copy:
BitmapData bmpData = resultBmp.LockBits(new Rectangle(0, 0, resultBmp.Width, resultBmp.Height),
ImageLockMode.ReadWrite,
resultBmp.PixelFormat
);
int bytes = bmpData.Stride * resultBmp.Height;
byte[] pixels = new byte[bytes];
Marshal.Copy(bmpData.Scan0, pixels, 0, bytes); //loading bytes to memory
int height = resultBmp.Height;
int width = resultBmp.Width;
Parallel.For(0, height - 1, y => //seting 2s and 3s
{
int offset = y * stride; //row
for (int x = 0; x < width - 1; x++)
{
int positionOfPixel = x + offset + pixelFormat; //remember about pixel format!
//do what you want with pixel
}
}
});
Marshal.Copy(pixels, 0, bmpData.Scan0, bytes); //copying bytes to bitmap
resultBmp.UnlockBits(bmpData);
Remember, when you warking with RAW bytes very important is to remember about PixelFormat. If you work on RGBA image, you need to set up every channel. (for example offset + x + pixelFormat). I showed it in Binarization example, how to deak with RGBA image with raw data. If lockbits are not fast enough, use Marshall.Copy
I'm trying to scan 2 images (32bppArgb format), identify when there is a difference and store the difference block's bounds in a list of rectangles.
Suppose these are the images:
second:
I want to get the different rectangle bounds (the opened directory window in our case).
This is what I've done:
private unsafe List<Rectangle> CodeImage(Bitmap bmp, Bitmap bmp2)
{
List<Rectangle> rec = new List<Rectangle>();
bmData = bmp.LockBits(new System.Drawing.Rectangle(0, 0, 1920, 1080), System.Drawing.Imaging.ImageLockMode.ReadOnly, bmp.PixelFormat);
bmData2 = bmp2.LockBits(new System.Drawing.Rectangle(0, 0, 1920, 1080), System.Drawing.Imaging.ImageLockMode.ReadOnly, bmp2.PixelFormat);
IntPtr scan0 = bmData.Scan0;
IntPtr scan02 = bmData2.Scan0;
int stride = bmData.Stride;
int stride2 = bmData2.Stride;
int nWidth = bmp.Width;
int nHeight = bmp.Height;
int minX = int.MaxValue;;
int minY = int.MaxValue;
int maxX = 0;
bool found = false;
for (int y = 0; y < nHeight; y++)
{
byte* p = (byte*)scan0.ToPointer();
p += y * stride;
byte* p2 = (byte*)scan02.ToPointer();
p2 += y * stride2;
for (int x = 0; x < nWidth; x++)
{
if (p[0] != p2[0] || p[1] != p2[1] || p[2] != p2[2] || p[3] != p2[3]) //found differences-began to store positions.
{
found = true;
if (x < minX)
minX = x;
if (x > maxX)
maxX = x;
if (y < minY)
minY = y;
}
else
{
if (found)
{
int height = getBlockHeight(stride, scan0, maxX, minY, scan02, stride2);
found = false;
Rectangle temp = new Rectangle(minX, minY, maxX - minX, height);
rec.Add(temp);
//x += minX;
y += height;
minX = int.MaxValue;
minY = int.MaxValue;
maxX = 0;
}
}
p += 4;
p2 += 4;
}
}
return rec;
}
public unsafe int getBlockHeight(int stride, IntPtr scan, int x, int y1, IntPtr scan02, int stride2) //a function to get an existing block height.
{
int height = 0;;
for (int y = y1; y < 1080; y++) //only for example- in our case its 1080 height.
{
byte* p = (byte*)scan.ToPointer();
p += (y * stride) + (x * 4); //set the pointer to a specific potential point.
byte* p2 = (byte*)scan02.ToPointer();
p2 += (y * stride2) + (x * 4); //set the pointer to a specific potential point.
if (p[0] != p2[0] || p[1] != p2[1] || p[2] != p2[2] || p[3] != p2[3]) //still change on the height in the increasing **y** of the block.
height++;
}
return height;
}
This is actually how I call the method:
Bitmap a = Image.FromFile(#"C:\Users\itapi\Desktop\1.png") as Bitmap;//generates a 32bppRgba bitmap;
Bitmap b = Image.FromFile(#"C:\Users\itapi\Desktop\2.png") as Bitmap;//
List<Rectangle> l1 = CodeImage(a, b);
int i = 0;
foreach (Rectangle rec in l1)
{
i++;
Bitmap tmp = b.Clone(rec, a.PixelFormat);
tmp.Save(i.ToString() + ".png");
}
But I'm not getting the exact rectangle.. I'm getting only half of that and sometimes even worse. I think something in the code's logic is wrong.
Code for #nico
private unsafe List<Rectangle> CodeImage(Bitmap bmp, Bitmap bmp2)
{
List<Rectangle> rec = new List<Rectangle>();
var bmData1 = bmp.LockBits(new System.Drawing.Rectangle(0, 0, bmp.Width, bmp.Height), System.Drawing.Imaging.ImageLockMode.ReadOnly, bmp.PixelFormat);
var bmData2 = bmp2.LockBits(new System.Drawing.Rectangle(0, 0, bmp.Width, bmp.Height), System.Drawing.Imaging.ImageLockMode.ReadOnly, bmp2.PixelFormat);
int bytesPerPixel = 3;
IntPtr scan01 = bmData1.Scan0;
IntPtr scan02 = bmData2.Scan0;
int stride1 = bmData1.Stride;
int stride2 = bmData2.Stride;
int nWidth = bmp.Width;
int nHeight = bmp.Height;
bool[] visited = new bool[nWidth * nHeight];
byte* base1 = (byte*)scan01.ToPointer();
byte* base2 = (byte*)scan02.ToPointer();
for (int y = 0; y < nHeight; y += 5)
{
byte* p1 = base1;
byte* p2 = base2;
for (int x = 0; x < nWidth; x += 5)
{
if (!ArePixelsEqual(p1, p2, bytesPerPixel) && !(visited[x + nWidth * y]))
{
// fill the different area
int minX = x;
int maxX = x;
int minY = y;
int maxY = y;
var pt = new Point(x, y);
Stack<Point> toBeProcessed = new Stack<Point> ();
visited[x + nWidth * y] = true;
toBeProcessed.Push(pt);
while (toBeProcessed.Count > 0)
{
var process = toBeProcessed.Pop();
var ptr1 = (byte*)scan01.ToPointer() + process.Y * stride1 + process.X * bytesPerPixel;
var ptr2 = (byte*) scan02.ToPointer() + process.Y * stride2 + process.X * bytesPerPixel;
//Check pixel equality
if (ArePixelsEqual(ptr1, ptr2, bytesPerPixel))
continue;
//This pixel is different
//Update the rectangle
if (process.X < minX) minX = process.X;
if (process.X > maxX) maxX = process.X;
if (process.Y < minY) minY = process.Y;
if (process.Y > maxY) maxY = process.Y;
Point n;
int idx;
//Put neighbors in stack
if (process.X - 1 >= 0)
{
n = new Point(process.X - 1, process.Y);
idx = n.X + nWidth * n.Y;
if (!visited[idx])
{
visited[idx] = true;
toBeProcessed.Push(n);
}
}
if (process.X + 1 < nWidth)
{
n = new Point(process.X + 1, process.Y);
idx = n.X + nWidth * n.Y;
if (!visited[idx])
{
visited[idx] = true;
toBeProcessed.Push(n);
}
}
if (process.Y - 1 >= 0)
{
n = new Point(process.X, process.Y - 1);
idx = n.X + nWidth * n.Y;
if (!visited[idx])
{
visited[idx] = true;
toBeProcessed.Push(n);
}
}
if (process.Y + 1 < nHeight)
{
n = new Point(process.X, process.Y + 1);
idx = n.X + nWidth * n.Y;
if (!visited[idx])
{
visited[idx] = true;
toBeProcessed.Push(n);
}
}
}
if (((maxX - minX + 1) > 5) & ((maxY - minY + 1) > 5))
rec.Add(new Rectangle(minX, minY, maxX - minX + 1, maxY - minY + 1));
}
p1 += 5 * bytesPerPixel;
p2 += 5 * bytesPerPixel;
}
base1 += 5 * stride1;
base2 += 5 * stride2;
}
bmp.UnlockBits(bmData1);
bmp2.UnlockBits(bmData2);
return rec;
}
I see a couple of problems with your code. If I understand it correctly, you
find a pixel that's different between the two images.
then you continue to scan from there to the right, until you find a position where both images are identical again.
then you scan from the last "different" pixel to the bottom, until you find a position where both images are identical again.
then you store that rectangle and start at the next line below it
Am I right so far?
Two obvious things can go wrong here:
If two rectangles have overlapping y-ranges, you're in trouble: You'll find the first rectangle fine, then skip to the bottom Y-coordinate, ignoring all the pixels left or right of the rectangle you just found.
Even if there is only one rectangle, you assume that every pixel on the rectangle's border is different, and all the other pixels are identical. If that assumption isn't valid, you'll stop searching too early, and only find parts of rectangles.
If your images come from a scanner or digital camera, or if they contain lossy compression (jpeg) artifacts, the second assumption will almost certainly be wrong. To illustrate this, here's what I get when I mark every identical pixel the two jpg images you linked black, and every different pixel white:
What you see is not a rectangle. Instead, a lot of pixels around the rectangles you're looking for are different:
That's because of jpeg compression artifacts. But even if you used lossless source images, pixels at the borders might not form perfect rectangles, because of antialiasing or because the background just happens to have a similar color in that region.
You could try to improve your algorithm, but if you look at that border, you will find all kinds of ugly counterexamples to any geometric assumptions you'll make.
It would probably be better to implement this "the right way". Meaning:
Either implement a flood fill algorithm that erases different pixels (e.g. by setting them to identical or by storing a flag in a separate mask), then recursively checks if the 4 neighbor pixels.
Or implement a connected component labeling algorithm, that marks each different pixel with a temporary integer label, using clever data structures to keep track which temporary labels are connected. If you're only interested in a bounding box, you don't even have to merge the temporary labels, just merge the bounding boxes of adjacent labeled areas.
Connected component labeling is in general a bit faster, but is a bit trickier to get right than flood fill.
One last advice: I would rethink your "no 3rd party libraries" policy if I were you. Even if your final product will contain no 3rd party libraries, development might by a lot faster if you used well-documented, well-tested, useful building blocks from a library, then replaced them one by one with your own code. (And who knows, you might even find an open source library with a suitable license that's so much faster than your own code that you'll stick with it in the end...)
ADD: In case you want to rethink your "no libraries" position: Here's a quick and simple implementation using AForge (which has a more permissive library than emgucv):
private static void ProcessImages()
{
(* load images *)
var img1 = AForge.Imaging.Image.FromFile(#"compare1.jpg");
var img2 = AForge.Imaging.Image.FromFile(#"compare2.jpg");
(* calculate absolute difference *)
var difference = new AForge.Imaging.Filters.ThresholdedDifference(15)
{OverlayImage = img1}
.Apply(img2);
(* create and initialize the blob counter *)
var bc = new AForge.Imaging.BlobCounter();
bc.FilterBlobs = true;
bc.MinWidth = 5;
bc.MinHeight = 5;
(* find blobs *)
bc.ProcessImage(difference);
(* draw result *)
BitmapData data = img2.LockBits(
new Rectangle(0, 0, img2.Width, img2.Height),
ImageLockMode.ReadWrite, img2.PixelFormat);
foreach (var rc in bc.GetObjectsRectangles())
AForge.Imaging.Drawing.FillRectangle(data, rc, Color.FromArgb(128,Color.Red));
img2.UnlockBits(data);
img2.Save(#"compareResult.jpg");
}
The actual difference + blob detection part (without loading and result display) takes about 43ms, for the second run (this first time takes longer of course, due to JITting, cache, etc.)
Result (the rectangle is larger due to jpeg artifacts):
Here is a flood-fill based version of your code. It checks every pixel for difference. If it finds a different pixel, it runs an exploration to find the entire different area.
The code is only meant as an illustration. There are certainly some points that could be improved.
unsafe bool ArePixelsEqual(byte* p1, byte* p2, int bytesPerPixel)
{
for (int i = 0; i < bytesPerPixel; ++i)
if (p1[i] != p2[i])
return false;
return true;
}
private static unsafe List<Rectangle> CodeImage(Bitmap bmp, Bitmap bmp2)
{
if (bmp.PixelFormat != bmp2.PixelFormat || bmp.Width != bmp2.Width || bmp.Height != bmp2.Height)
throw new ArgumentException();
List<Rectangle> rec = new List<Rectangle>();
var bmData1 = bmp.LockBits(new System.Drawing.Rectangle(0, 0, bmp.Width, bmp.Height), System.Drawing.Imaging.ImageLockMode.ReadOnly, bmp.PixelFormat);
var bmData2 = bmp2.LockBits(new System.Drawing.Rectangle(0, 0, bmp.Width, bmp.Height), System.Drawing.Imaging.ImageLockMode.ReadOnly, bmp2.PixelFormat);
int bytesPerPixel = Image.GetPixelFormatSize(bmp.PixelFormat) / 8;
IntPtr scan01 = bmData1.Scan0;
IntPtr scan02 = bmData2.Scan0;
int stride1 = bmData1.Stride;
int stride2 = bmData2.Stride;
int nWidth = bmp.Width;
int nHeight = bmp.Height;
bool[] visited = new bool[nWidth * nHeight];
byte* base1 = (byte*)scan01.ToPointer();
byte* base2 = (byte*)scan02.ToPointer();
for (int y = 0; y < nHeight; y++)
{
byte* p1 = base1;
byte* p2 = base2;
for (int x = 0; x < nWidth; ++x)
{
if (!ArePixelsEqual(p1, p2, bytesPerPixel) && !(visited[x + nWidth * y]))
{
// fill the different area
int minX = x;
int maxX = x;
int minY = y;
int maxY = y;
var pt = new Point(x, y);
Stack<Point> toBeProcessed = new Stack<Point>();
visited[x + nWidth * y] = true;
toBeProcessed.Push(pt);
while (toBeProcessed.Count > 0)
{
var process = toBeProcessed.Pop();
var ptr1 = (byte*)scan01.ToPointer() + process.Y * stride1 + process.X * bytesPerPixel;
var ptr2 = (byte*)scan02.ToPointer() + process.Y * stride2 + process.X * bytesPerPixel;
//Check pixel equality
if (ArePixelsEqual(ptr1, ptr2, bytesPerPixel))
continue;
//This pixel is different
//Update the rectangle
if (process.X < minX) minX = process.X;
if (process.X > maxX) maxX = process.X;
if (process.Y < minY) minY = process.Y;
if (process.Y > maxY) maxY = process.Y;
Point n; int idx;
//Put neighbors in stack
if (process.X - 1 >= 0)
{
n = new Point(process.X - 1, process.Y); idx = n.X + nWidth * n.Y;
if (!visited[idx]) { visited[idx] = true; toBeProcessed.Push(n); }
}
if (process.X + 1 < nWidth)
{
n = new Point(process.X + 1, process.Y); idx = n.X + nWidth * n.Y;
if (!visited[idx]) { visited[idx] = true; toBeProcessed.Push(n); }
}
if (process.Y - 1 >= 0)
{
n = new Point(process.X, process.Y - 1); idx = n.X + nWidth * n.Y;
if (!visited[idx]) { visited[idx] = true; toBeProcessed.Push(n); }
}
if (process.Y + 1 < nHeight)
{
n = new Point(process.X, process.Y + 1); idx = n.X + nWidth * n.Y;
if (!visited[idx]) { visited[idx] = true; toBeProcessed.Push(n); }
}
}
rec.Add(new Rectangle(minX, minY, maxX - minX + 1, maxY - minY + 1));
}
p1 += bytesPerPixel;
p2 += bytesPerPixel;
}
base1 += stride1;
base2 += stride2;
}
bmp.UnlockBits(bmData1);
bmp2.UnlockBits(bmData2);
return rec;
}
You can achieve this easily using a flood fill segmentation algorithm.
First an utility class to make fast bitmap access easier. This will help to encapsulate the complex pointer-logic and make the code more readable:
class BitmapWithAccess
{
public Bitmap Bitmap { get; private set; }
public System.Drawing.Imaging.BitmapData BitmapData { get; private set; }
public BitmapWithAccess(Bitmap bitmap, System.Drawing.Imaging.ImageLockMode lockMode)
{
Bitmap = bitmap;
BitmapData = bitmap.LockBits(new Rectangle(Point.Empty, bitmap.Size), lockMode, System.Drawing.Imaging.PixelFormat.Format32bppArgb);
}
public Color GetPixel(int x, int y)
{
unsafe
{
byte* dataPointer = MovePointer((byte*)BitmapData.Scan0, x, y);
return Color.FromArgb(dataPointer[3], dataPointer[2], dataPointer[1], dataPointer[0]);
}
}
public void SetPixel(int x, int y, Color color)
{
unsafe
{
byte* dataPointer = MovePointer((byte*)BitmapData.Scan0, x, y);
dataPointer[3] = color.A;
dataPointer[2] = color.R;
dataPointer[1] = color.G;
dataPointer[0] = color.B;
}
}
public void Release()
{
Bitmap.UnlockBits(BitmapData);
BitmapData = null;
}
private unsafe byte* MovePointer(byte* pointer, int x, int y)
{
return pointer + x * 4 + y * BitmapData.Stride;
}
}
Then a class representing a rectangle containing different pixels, to mark them in the resulting image. In general this class can also contain a list of Point instances (or a byte[,] map) to make indicating individual pixels in the resulting image possible:
class Segment
{
public int Left { get; set; }
public int Top { get; set; }
public int Right { get; set; }
public int Bottom { get; set; }
public Bitmap Bitmap { get; set; }
public Segment()
{
Left = int.MaxValue;
Right = int.MinValue;
Top = int.MaxValue;
Bottom = int.MinValue;
}
};
Then the steps of a simple algorithm are as follows:
find different pixels
use a flood-fill algorithm to find segments on the difference image
draw bounding rectangles for the segments found
The first step is the easiest one:
static Bitmap FindDifferentPixels(Bitmap i1, Bitmap i2)
{
var result = new Bitmap(i1.Width, i2.Height, System.Drawing.Imaging.PixelFormat.Format32bppArgb);
var ia1 = new BitmapWithAccess(i1, System.Drawing.Imaging.ImageLockMode.ReadOnly);
var ia2 = new BitmapWithAccess(i2, System.Drawing.Imaging.ImageLockMode.ReadOnly);
var ra = new BitmapWithAccess(result, System.Drawing.Imaging.ImageLockMode.ReadWrite);
for (int x = 0; x < i1.Width; ++x)
for (int y = 0; y < i1.Height; ++y)
{
var different = ia1.GetPixel(x, y) != ia2.GetPixel(x, y);
ra.SetPixel(x, y, different ? Color.White : Color.FromArgb(0, 0, 0, 0));
}
ia1.Release();
ia2.Release();
ra.Release();
return result;
}
And the second and the third steps are covered with the following three functions:
static List<Segment> Segmentize(Bitmap blackAndWhite)
{
var bawa = new BitmapWithAccess(blackAndWhite, System.Drawing.Imaging.ImageLockMode.ReadOnly);
var result = new List<Segment>();
HashSet<Point> queue = new HashSet<Point>();
bool[,] visitedPoints = new bool[blackAndWhite.Width, blackAndWhite.Height];
for (int x = 0;x < blackAndWhite.Width;++x)
for (int y = 0;y < blackAndWhite.Height;++y)
{
if (bawa.GetPixel(x, y).A != 0
&& !visitedPoints[x, y])
{
result.Add(BuildSegment(new Point(x, y), bawa, visitedPoints));
}
}
bawa.Release();
return result;
}
static Segment BuildSegment(Point startingPoint, BitmapWithAccess bawa, bool[,] visitedPoints)
{
var result = new Segment();
List<Point> toProcess = new List<Point>();
toProcess.Add(startingPoint);
while (toProcess.Count > 0)
{
Point p = toProcess.First();
toProcess.RemoveAt(0);
ProcessPoint(result, p, bawa, toProcess, visitedPoints);
}
return result;
}
static void ProcessPoint(Segment segment, Point point, BitmapWithAccess bawa, List<Point> toProcess, bool[,] visitedPoints)
{
for (int i = -1; i <= 1; ++i)
{
for (int j = -1; j <= 1; ++j)
{
int x = point.X + i;
int y = point.Y + j;
if (x < 0 || y < 0 || x >= bawa.Bitmap.Width || y >= bawa.Bitmap.Height)
continue;
if (bawa.GetPixel(x, y).A != 0 && !visitedPoints[x, y])
{
segment.Left = Math.Min(segment.Left, x);
segment.Right = Math.Max(segment.Right, x);
segment.Top = Math.Min(segment.Top, y);
segment.Bottom = Math.Max(segment.Bottom, y);
toProcess.Add(new Point(x, y));
visitedPoints[x, y] = true;
}
}
}
}
And the following program given your two images as arguments:
static void Main(string[] args)
{
Image ai1 = Image.FromFile(args[0]);
Image ai2 = Image.FromFile(args[1]);
Bitmap i1 = new Bitmap(ai1.Width, ai1.Height, System.Drawing.Imaging.PixelFormat.Format32bppArgb);
Bitmap i2 = new Bitmap(ai2.Width, ai2.Height, System.Drawing.Imaging.PixelFormat.Format32bppArgb);
using (var g1 = Graphics.FromImage(i1))
using (var g2 = Graphics.FromImage(i2))
{
g1.DrawImage(ai1, Point.Empty);
g2.DrawImage(ai2, Point.Empty);
}
var difference = FindDifferentPixels(i1, i2);
var segments = Segmentize(difference);
using (var g1 = Graphics.FromImage(i1))
{
foreach (var segment in segments)
{
g1.DrawRectangle(Pens.Red, new Rectangle(segment.Left, segment.Top, segment.Right - segment.Left, segment.Bottom - segment.Top));
}
}
i1.Save("result.png");
Console.WriteLine("Done.");
Console.ReadKey();
}
produces the following result:
As you can see there are more differences between the given images. You can filter the resulting segments with regard to their size for example to drop the small artefacts. Also there is of course much work to do in terms of error checking, design and performance.
One idea is to proceed as follows:
1) Rescale images to a smaller size (downsample)
2) Run the above algorithm on smaller images
3) Run the above algorithm on original images, but restricting yourself only to rectangles found in step 2)
This can be of course extended to a multi-level hierarchical approach (using more different image sizes, increasing accuracy with each step).
Ah an algorithm challenge. Like! :-)
There are other answers here using f.ex. floodfill that will work just fine. I just noticed that you wanted something fast, so let me propose a different idea. Unlike the other people, I haven't tested it; it shouldn't be too hard and should be quite fast, but I simply don't have the time at the moment to test it myself. If you do, please share the results. Also, note that it's not a standard algorithm, so there are probably some bugs here and there in my explanation (and no patents).
My idea is derived from the idea of mean adaptive thresholding but with a lot of important differences. I cannot find the link from wikipedia anymore or my code, so I'll do this from the top of my mind. Basically you create a new (64-bit) buffer for both images and fill it with:
f(x,y) = colorvalue + f(x-1, y) + f(x, y-1) - f(x-1, y-1)
f(x,0) = colorvalue + f(x-1, 0)
f(0,y) = colorvalue + f(0, y-1)
The main trick is that you can calculate the sum value of a portion of the image fast, namely by:
g(x1,y1,x2,y2) = f(x2,y2)-f(x1-1,y2)-f(x2,y1-1)+f(x1-1,y1-1)
In other words, this will give the same result as:
result = 0;
for (x=x1; x<=x2; ++x)
for (y=y1; y<=y2; ++y)
result += f(x,y)
In our case this means that with only 4 integer operations this will get you some unique number of the block in question. I'd say that's pretty awesome.
Now, in our case, we don't really care about the average value; we just care about some sort-of unique number. If the image changes, it should change - simple as that. As for colorvalue, usually some gray scale number is used for thresholding - instead, we'll be using the complete 24-bit RGB value. Because there are only so few compares, we can simply scan until we find a block that doesn't match.
The basic algorithm that I propose works as follows:
for (y=0; y<height;++y)
for (x=0; x<width; ++x)
if (src[x,y] != dst[x,y])
if (!IntersectsWith(x, y, foundBlocks))
FindBlock(foundBlocks);
Now, IntersectsWith can be something like a quad tree of if there are only a few blocks, you can simply iterate through the blocks and check if they are within the bounds of the block. You can also update the x variable accordingly (I would). You can even balance things by re-building the buffer for f(x,y) if you have too many blocks (more precise: merge found blocks back from dst into src, then rebuild the buffer).
FindBlocks is where it gets interesting. Using the formula for g that's now pretty easy:
int x1 = x-1; int y1 = y-1; int x2 = x; int y2 = y;
while (changes)
{
while (g(srcimage,x1-1,y1,x1,y2) == g(dstimage,x1-1,y1,x1,y2)) { --x1; }
while (g(srcimage,x1,y1-1,x1,y2) == g(dstimage,x1,y1-1,x1,y2)) { --y1; }
while (g(srcimage,x1,y1,x1+1,y2) == g(dstimage,x1,y1,x1+1,y2)) { ++x1; }
while (g(srcimage,x1,y1,x1,y2+1) == g(dstimage,x1,y1,x1,y2+1)) { ++y1; }
}
That's it. Note that the complexity of the FindBlocks algorithm is O(x + y), which is pretty awesome for finding a 2D block IMO. :-)
As I said, let me know how it turns out.
I'm doing some image processing and ran in to an exception.
Let me explain the logic process;
Resize the image to to a smaller size
Turn it grayscale
Threshold the image
Save it for use later on.
When you threshold the image, the constructor can take an int that sets the intensity of the filter. The best way I've found to get this "magic number" is to use a method called GetOtsuThreshold. It uses unsafe code but works well. However, something strange happens when you call that method. After you call the otsu method, it causes the Aforge...Threshold.ApplyInPlace() method to throw a Parameter is not valid exception. If you don't call it (When the code is commented out) the whole thing runs just fine though.
Wot's the deal?
EDIT: Found the problem; You must put a new a new image into the otsu method because it disposes of the image!!
using System;
using System.Drawing;
using System.Drawing.Imaging;
using AForge.Imaging.Filters;
namespace Puma.Ocr.Tests
{
class FormatImage
{
public static Bitmap _FullImageOfCoin;
public FormatImage(string path)
{
_FullImageOfCoin = ScaleImage(new Bitmap(path), 2000, 2000);
GrayscaleImage();
ThresholdImage();
}
private void GrayscaleImage()
{
Grayscale filter = new Grayscale(0.2125, 0.7154, 0.0721);
// apply the filter
_FullImageOfCoin = filter.Apply(_FullImageOfCoin);
}
private void ThresholdImage()
{
//Causes the exception
Threshold threshold = new Threshold(getOtsuThreshold(_FullImageOfCoin));
//Runs fine
//Threshold threshold = new Threshold();
threshold.ApplyInPlace(_FullImageOfCoin);
_FullImageOfCoin.Save(#"C:\users\school\desktop\thresholded.bmp");
}
public static Bitmap ScaleImage(Bitmap image, int maxWidth, int maxHeight)
{
var ratioX = (double)maxWidth / image.Width;
var ratioY = (double)maxHeight / image.Height;
var ratio = Math.Min(ratioX, ratioY);
var newWidth = (int)(image.Width * ratio);
var newHeight = (int)(image.Height * ratio);
var newImage = new Bitmap(newWidth, newHeight);
Graphics.FromImage(newImage).DrawImage(image, 0, 0, newWidth, newHeight);
return newImage;
}
public int getOtsuThreshold(Bitmap bmp)
{
byte t = 0;
float[] vet = new float[256];
int[] hist = new int[256];
vet.Initialize();
float p1, p2, p12;
int k;
BitmapData bmData = bmp.LockBits(new Rectangle(0, 0, bmp.Width, bmp.Height),
ImageLockMode.ReadOnly, PixelFormat.Format24bppRgb);
unsafe
{
byte* p = (byte*)(void*)bmData.Scan0.ToPointer();
getHistogram(p, bmp.Width, bmp.Height, bmData.Stride, hist);
for (k = 1; k != 255; k++)
{
p1 = Px(0, k, hist);
p2 = Px(k + 1, 255, hist);
p12 = p1 * p2;
if (p12 == 0)
p12 = 1;
float diff = (Mx(0, k, hist) * p2) - (Mx(k + 1, 255, hist) * p1);
vet[k] = (float)diff * diff / p12;
}
}
bmp.UnlockBits(bmData);
t = (byte)findMax(vet, 256);
bmp.Dispose();
return t;
}
private unsafe void getHistogram(byte* p, int w, int h, int ws, int[] hist)
{
hist.Initialize();
for (int i = 0; i < h; i++)
{
for (int j = 0; j < w * 3; j += 3)
{
int index = i * ws + j;
hist[p[index]]++;
}
}
}
private int findMax(float[] vec, int n)
{
float maxVec = 0;
int idx = 0;
int i;
for (i = 1; i <= n - 1; i++)
{
if (vec[i] > maxVec)
{
maxVec = vec[i];
idx = i;
}
}
return idx;
}
private float Px(int init, int end, int[] hist)
{
int sum = 0;
int i;
for (i = init; i <= end; i++)
sum += hist[i];
return (float)sum;
}
// function is used to compute the mean values in the equation (mu)
private float Mx(int init, int end, int[] hist)
{
int sum = 0;
int i;
for (i = init; i <= end; i++)
sum += i * hist[i];
return (float)sum;
}
}
}
A few ideas:
Use debugging and follow this method step by step to see if it is well working
Your getOtsuThreshold(Bitmap bmp) is returning an int, but the variable t returned is a byte: try to cast the value?
If the int returned by getOtsuThreshold is okay, check that the value is in the good range provided the API info (http://www.aforgenet.com/framework/docs/html/503a43b9-d98b-a19f-b74e-44767916ad65.htm):
Since the filter can be applied as to 8 bpp and to 16 bpp images, the
ThresholdValue value should be set appropriately to the pixel format.
In the case of 8 bpp images the threshold value is in the [0, 255]
range, but in the case of 16 bpp images the threshold value is in the
[0, 65535] range.
Alright, found the answer. By putting the _Fullimage of coin into the otsu method it stripped the variable of all it properties. I don't know how, but by putting a new Bitmap into the otsu method it fixed the problem.
I've been working on a bitmap decoder, but my algorithm for processing the pixel data doesn't seem to be quite right:
public IntPtr ReadPixels(Stream fs, int offset, int width, int height, int bpp)
{
IntPtr bBits;
int pixelCount = bpp * width * height;
int Row = 0;
decimal value = ((bpp*width)/32)/4;
int RowSize = (int)Math.Ceiling(value);
int ArraySize = RowSize * Math.Abs(height);
int Col = 0;
Byte[] BMPData = new Byte[ArraySize];
BinaryReader r = new BinaryReader(fs);
r.BaseStream.Seek(offset, SeekOrigin.Begin);
while (Row < height)
{
Byte ReadByte;
if (!(Col >= RowSize))
{
ReadByte = r.ReadByte();
BMPData[(Row * RowSize) + Col] = ReadByte;
Col += 1;
}
if (Col >= RowSize)
{
Col = 0;
Row += 1;
}
}
bBits = System.Runtime.InteropServices.Marshal.AllocHGlobal(BMPData.Length);
System.Runtime.InteropServices.Marshal.Copy(BMPData, 0, bBits, BMPData.Length);
return bBits;
}
I can process only monochrome bitmaps and on some, parts of the bitmap is processed fine. None are compressed and they are rendered upside down and flipped around. I really could do with some help on this one.
decimal value = ((bpp*width)/32)/4;
int RowSize = (int)Math.Ceiling(value);
That isn't correct. Your RowSize variable is actually called "stride". You compute it like this:
int bytes = (width * bitsPerPixel + 7) / 8;
int stride = 4 * ((bytes + 3) / 4);
You are ignoring the stride.
Image rows can be padded to the left with additional Bytes to make their size divide by a number such as (1 = no padding, 2, 4, 8 = default for many images, 16, ...).
Also, images can be a rectangle region within a larger image, making the "padding" between lines in the smaller image even larger (since the stride is the larger image's stride). - In this case the image can also have an offset for its start point within the buffer.
Better practice is:
// Overload this method 3 time for different bit per SUB-pixel values (8, 16, or 32)
// = (byte, int, float)
// SUB-pixel != pixel (= 1 3 or 4 sub-pixels (grey or RGB or BGR or BGRA or RGBA or ARGB or ABGR)
unsafe
{
byte[] buffer = image.Buffer;
int stride = image.buffer.Length / image.PixelHeight;
// or int stride = image.LineSize; (or something like that)
fixed (float* regionStart = (float*)(void*)buffer) // or byte* or int* depending on datatype
{
for (int y = 0; y < height; y++) // height in pixels
{
// float* and float or byte* and byte or int* and int
float* currentPos
= regionStart + offset / SizeOf(float) + stride / SizeOf(float) * y;
for (int x = 0; x < width; x++) // width in pixels
{
for (int chan = 0; chan < channel; chan++) // 1, 3 or 4 channels
{
// DO NOT USE DECIMAL - you want accurate image values
// with best performance - primative types
// not a .NET complex type used for nice looking values for users e.g. 12.34
// instead use actual sub pixel type (float/int/byte) or double instead!
var currentValue = value;
currentPos++;
}
}
}
}
}
I find something I don't understand:
decimal value = ((bpp*width)/32)/4;
int RowSize = (int)Math.Ceiling(value);
RowSize, in my opinion, should be (bpp*width) / 8 + (bpp%8==0?0:1)
struct BitmapDataAccessor
{
private readonly byte[] data;
private readonly int[] rowStarts;
public readonly int Height;
public readonly int Width;
public BitmapDataAccessor(byte[] data, int width, int height)
{
this.data = data;
this.Height = height;
this.Width = width;
rowStarts = new int[height];
for (int y = 0; y < Height; y++)
rowStarts[y] = y * width;
}
public byte this[int x, int y, int color] // Maybe use an enum with Red = 0, Green = 1, and Blue = 2 members?
{
get { return data[(rowStarts[y] + x) * 3 + color]; }
set { data[(rowStarts[y] + x) * 3 + color] = value; }
}
public byte[] Data
{
get { return data; }
}
}
public static byte[, ,] Bitmap2Byte(Bitmap obraz)
{
int h = obraz.Height;
int w = obraz.Width;
byte[, ,] wynik = new byte[w, h, 3];
BitmapData bd = obraz.LockBits(new Rectangle(0, 0, w, h), ImageLockMode.ReadOnly, PixelFormat.Format24bppRgb);
int bytes = Math.Abs(bd.Stride) * h;
byte[] rgbValues = new byte[bytes];
IntPtr ptr = bd.Scan0;
System.Runtime.InteropServices.Marshal.Copy(ptr, rgbValues, 0, bytes);
BitmapDataAccessor bda = new BitmapDataAccessor(rgbValues, w, h);
for (int i = 0; i < h; i++)
{
for (int j = 0; j < w; j++)
{
wynik[j, i, 0] = bda[j, i, 2];
wynik[j, i, 1] = bda[j, i, 1];
wynik[j, i, 2] = bda[j, i, 0];
}
}
obraz.UnlockBits(bd);
return wynik;
}
public static Bitmap Byte2Bitmap(byte[, ,] tablica)
{
if (tablica.GetLength(2) != 3)
{
throw new NieprawidlowyWymiarTablicyException();
}
int w = tablica.GetLength(0);
int h = tablica.GetLength(1);
Bitmap obraz = new Bitmap(w, h, PixelFormat.Format24bppRgb);
for (int i = 0; i < w; i++)
{
for (int j = 0; j < h; j++)
{
Color kol = Color.FromArgb(tablica[i, j, 0], tablica[i, j, 1], tablica[i, j, 2]);
obraz.SetPixel(i, j, kol);
}
}
return obraz;
}
Now, if I do:
private void btnLoad_Click(object sender, EventArgs e)
{
if (dgOpenFile.ShowDialog() == DialogResult.OK)
{
try
{
Bitmap img = new Bitmap(dgOpenFile.FileName);
byte[, ,] tab = Grafika.Bitmap2Byte(img);
picture.Image = Grafika.Byte2Bitmap(tab);
picture.Size = img.Size;
}
catch (Exception ex)
{
MessageBox.Show(ex.Message);
}
}
}
Most of pictures are handled correctly butsome not.
Example of picture that doesn't work:
(source: ifotos.pl)
It produce following result (this is only fragment of picture) :
(source: ifotos.pl)
Why is that?
You need to account for BitmapData.Stride when you access the data.
EDIT:
Here is a solution that I use to copy a DirectX surface to a Bitmap. The idea is the same, but you'll need to modify it slightly. I copy one scanline of the image at a time with a call to RtlMoveMemory (P/Invoke to kernel32.dll)
//// Snippet
int pitch;
int bytesPerPixel = 4;
Rectangle lockRectangle = new Rectangle(0, 0, bitmap.Width, bitmap.Height);
// Lock the bitmap
GraphicsStream surfacedata = surface.LockRectangle(LockFlags.ReadOnly, out pitch);
BitmapData bitmapdata = bitmap.LockBits(lockRectangle, ImageLockMode.WriteOnly, PixelFormat.Format32bppRgb);
// Copy surface to bitmap
for (int scanline = 0; scanline < bitmap.Height; ++scanline)
{
byte* dest = (byte*)bitmapdata.Scan0 + (scanline * bitmap.Width * bytesPerPixel);
byte* source = (byte*)surfacedata.InternalData + (scanline * pitch);
RtlMoveMemory(new IntPtr(dest), new IntPtr(source), (bitmap.Width * bytesPerPixel));
}
////
EDIT #2:
Check this out: Stride/Pitch Tutorial
It is all aimed at DirectX but the concept is the same.
It seems the memory allocated for bitmaps must be aligned on a 32-bit boundary and so there is possibly padding on some of the images due to their size. As you have a 24-bit pixel here then some line widths will end on a 32-bit others will not. You need to use the following formula to work out the padding being used and then account for it:
int padding = bd.Stride - (((w * 24) + 7) / 8);
You might want to load your byte array using GetPixel(x,y) rather than going through the whole transform to byte array before you start reading pixels.
Thanx to #Lazarus and tbridge I managed how to do this.
First we need to calculate padding in Bitmap2Byte:
int padding = bd.Stride - (((w * 24) + 7) / 8);
and pass it to BitmapDataAccessor and modify the line
this.Width = width;
to
this.Width = width + (4-padding)%4;
That's all. Thanx guys.