Can I find the number of digits of a BigInteger in C#? - c#

I am solving this problem, in which they ask for the index of the first Fibonacci number of 1000 digits, and my first idea was something similar to:
BigInteger x = 1;
BigInteger y = 1;
BigInteger tmp = 0;
int currentIndex = 2;
while (x.NoOfDigits < 1000)
{
tmp = x + y;
y = x;
x = tmp;
currentIndex++;
}
return currentIndex;
However, as far as I can tell, there is no method for counting the number of digits of a BigInteger. Is this true? One way of circumventing it is to use the .ToString().Length method of a BigInteger, but I'm told that string processing is slow.
A BigInteger also has a .ToByteArray(), and I thought of converting a BigInteger to a byte array and checking the length of that array - but I don't think that this uniquely determines the number of digits in the BigInteger.
For what it's worth, I implemented another way of solving it, which is manually storing the Fibonacci numbers in array, and which stops as soon as the array is full, and I compared this to the .ToString-based method, which is about 2.5 times slower, but the first method takes 0.1 second, which also seems like a long time.
Edit: I've tested the two suggestions in the answers below (the one with BigInteger.Log and the one with MaxLimitMethod). I get the following run times:
Original method: 00:00:00.0961957
StringMethod: 00:00:00.1535350
BigIntegerLogMethod: 00:00:00.0387479
MaxLimitMethod: 00:00:00.0019509
Program
using System;
using System.Collections.Generic;
using System.Numerics;
using System.Diagnostics;
class Program
{
static void Main(string[] args)
{
Stopwatch clock = new Stopwatch();
clock.Start();
int index1 = Algorithms.IndexOfNDigits(1000);
clock.Stop();
var elapsedTime1 = clock.Elapsed;
Console.WriteLine(index1);
Console.WriteLine("Original method: {0}",elapsedTime1);
Console.ReadKey();
clock.Reset();
clock.Start();
int index2 = Algorithms.StringMethod(1000);
clock.Stop();
var elapsedTime2 = clock.Elapsed;
Console.WriteLine(index2);
Console.WriteLine("StringMethod: {0}", elapsedTime2);
Console.ReadKey();
clock.Reset();
clock.Start();
int index3 = Algorithms.BigIntegerLogMethod(1000);
clock.Stop();
var elapsedTime3 = clock.Elapsed;
Console.WriteLine(index3);
Console.WriteLine("BigIntegerLogMethod: {0}", elapsedTime3);
Console.ReadKey();
clock.Reset();
clock.Start();
int index4 = Algorithms.MaxLimitMethod(1000);
clock.Stop();
var elapsedTime4 = clock.Elapsed;
Console.WriteLine(index4);
Console.WriteLine("MaxLimitMethod: {0}", elapsedTime4);
Console.ReadKey();
}
}
static class Algorithms
{
//Find the index of the first Fibonacci number of n digits
public static int IndexOfNDigits(int n)
{
if (n == 1) return 1;
int[] firstNumber = new int[n];
int[] secondNumber = new int[n];
firstNumber[0] = 1;
secondNumber[0] = 1;
int currentIndex = 2;
while (firstNumber[n-1] == 0)
{
int carry = 0, singleSum = 0;
int[] tmp = new int[n]; //Placeholder for the sum
for (int i = 0; i<n; i++)
{
singleSum = firstNumber[i] + secondNumber[i];
if (singleSum >= 10) carry = 1;
else carry = 0;
tmp[i] += singleSum % 10;
if (tmp[i] >= 10)
{
tmp[i] = 0;
carry = 1;
}
int countCarries = 0;
while (carry == 1)
{
countCarries++;
if (tmp[i + countCarries] == 9)
{
tmp[i + countCarries] = 0;
tmp[i + countCarries + 1] += 1;
carry = 1;
}
else
{
tmp[i + countCarries] += 1;
carry = 0;
}
}
}
for (int i = 0; i < n; i++ )
{
secondNumber[i] = firstNumber[i];
firstNumber[i] = tmp[i];
}
currentIndex++;
}
return currentIndex;
}
public static int StringMethod(int n)
{
BigInteger x = 1;
BigInteger y = 1;
BigInteger tmp = 0;
int currentIndex = 2;
while (x.ToString().Length < n)
{
tmp = x + y;
y = x;
x = tmp;
currentIndex++;
}
return currentIndex;
}
public static int BigIntegerLogMethod(int n)
{
BigInteger x = 1;
BigInteger y = 1;
BigInteger tmp = 0;
int currentIndex = 2;
while (Math.Floor(BigInteger.Log10(x) + 1) < n)
{
tmp = x + y;
y = x;
x = tmp;
currentIndex++;
}
return currentIndex;
}
public static int MaxLimitMethod(int n)
{
BigInteger maxLimit = BigInteger.Pow(10, n - 1);
BigInteger x = 1;
BigInteger y = 1;
BigInteger tmp = 0;
int currentIndex = 2;
while (x.CompareTo(maxLimit) < 0)
{
tmp = x + y;
y = x;
x = tmp;
currentIndex++;
}
return currentIndex;
}
}

Provided that x > 0
int digits = (int)Math.Floor(BigInteger.Log10(x) + 1);
will get the number of digits.
Out of curiosity, I tested the
int digits = x.ToString().Length;
approach. For 100 000 000 iterations, it's 3 times slower than the Log10 solution.

Expanding on my comment--instead of testing based on number of digits, test based on exceeding a constant that has the upper limit of the problem:
public static int MaxLimitMethod(int n)
{
BigInteger maxLimit = BigInteger.Pow(10, n);
BigInteger x = 1;
BigInteger y = 1;
BigInteger tmp = 0;
int currentIndex = 2;
while (x.CompareTo(maxLimit) < 0)
{
tmp = x + y;
y = x;
x = tmp;
currentIndex++;
}
return currentIndex;
}
This should result in a significant performance increase.

UPDATE:
This is an even quicker method on .NET 5 (since GetBitLength() is required):
private static readonly double exponentConvert = Math.Log10(2);
private static readonly BigInteger _ten = 10;
public static int CountDigits(BigInteger value)
{
if (value.IsZero)
return 1;
value = BigInteger.Abs(value);
if (value.IsOne)
return 1;
long numBits = value.GetBitLength();
int base10Digits = (int)(numBits * exponentConvert).Dump();
var reference = BigInteger.Pow(_ten, base10Digits);
if (value >= reference)
base10Digits++;
return base10Digits;
}
The slowest part of this algorithm for large values is the BigInteger.Pow() operation. I have optimized the CountDigits() method in Singulink.Numerics.BigIntegerExtensions with a cache that holds powers of 10, so check that out if you are interested in the fastest possible implementation. It caches powers up to exponents of 1023 by default but if you want to trade memory usage for faster performance on even larger values you can increase the max cached exponent by calling BigIntegerPowCache.GetCache(10, maxSize) where maxSize = maxExponent + 1.
On an i7-3770 CPU, this library takes 350ms to get the digit count for 10 million BigInteger values (single-threaded) when the digit count <= the max cached exponent.
ORIGINAL ANSWER:
The accepted answer is unreliable, as indicated in the comments. This method works for all numbers:
private static int CountDigits(BigInteger value)
{
if (value.IsZero)
return 1;
value = BigInteger.Abs(value);
if (value.IsOne)
return 1;
int exp = (int)Math.Ceiling(BigInteger.Log10(value));
var test = BigInteger.Pow(10, exp);
return value >= test ? exp + 1 : exp;
}

Related

Returns incorrect output

Description of challenge:
Have the function KaprekarsConstant(num) take the num parameter being passed which will be a 4-digit number with at least two distinct digits.
Your program should perform the following routine on the number:
Arrange the digits in descending order and in ascending order (adding
zeroes to fit it to a 4-digit number), and subtract the smaller
number from the bigger number. Then repeat the previous step.
Performing this routine will always cause you to reach a fixed number: 6174.
Then performing the routine on 6174 will always give you 6174 (7641 - 1467 = 6174).
Your program should return the number of times this routine must be performed until 6174 is reached.
For example: if num is 3524 your program should return 3 because of the following steps:
5432 - 2345 = 3087
8730 - 0378 = 8352
8532 - 2358 = 6174
Web-site where I took this challenge Coderbyte
Problem :
All works correctly until returning the result in Foo() I don't know why but it calls this function some times until Count==2
Please help.Sorry please if I made mistakes and my code is really bad because I am schooler(9 Grade) and I have been programming for half a year
using System;
class MainClass
{
public static int Foo(int num,int Counter)
{
int Count = Counter;
int[] arr = new int[4];
arr[0] = num / 1000;
arr[1] = num % 10;
arr[2] = (num / 100) % 10;
arr[3] = (num % 100) / 10;
Array.Sort(arr);
int[] AscArr = new int[4];
arr.CopyTo(AscArr, 0);
Array.Reverse(arr);
int[] DescArr = arr;
int sub = 0;
string AscStr = string.Empty;
string DescStr = string.Empty;
for (int i = 0; i < AscArr.Length; i++)
{
AscStr += AscArr[i];
}
for (int i = 0; i < DescArr.Length; i++)
{
DescStr += DescArr[i];
}
int b = int.Parse(AscStr);
int a = int.Parse(DescStr);
sub = a - b;
if (sub!=6174)
{
Count++;
Foo(sub,Count);
}
if (sub==6174)
{
Count++;
}
return Count;
}
public static int KaprekarsConstant(int num)
{
int[] arr=new int[4];
arr[0] = num / 1000;
arr[1] = num % 10;
arr[2] = (num / 100) % 10;
arr[3] = (num % 100) / 10;
Array.Sort(arr);
int[] AscArr=new int[4];
arr.CopyTo(AscArr,0);
Array.Reverse(arr);
int[] DescArr = arr;
int sub = 0 ;
string AscStr=string.Empty;
string DescStr = string.Empty;
for (int i = 0; i < AscArr.Length; i++)
{
AscStr += AscArr[i];
}
for (int i = 0; i < DescArr.Length; i++)
{
DescStr += DescArr[i];
}
int b = int.Parse(AscStr);
int a = int.Parse(DescStr);
sub = a - b;
int Counter =1;
int Count=0;
if (Count!=6174)
{
Count = Foo(sub, Counter);
}
return Count;
}
static void Main()
{
// keep this function call here
Console.WriteLine(KaprekarsConstant(int.Parse(Console.ReadLine())));
}
}
Your code is too much complex, plus, your way of dividing number to array is giving wrong results.
// this is wrong you can print array, the numbers goes into wrong indexes
arr[0] = num / 1000;
arr[1] = num % 10;
arr[2] = (num / 100) % 10;
arr[3] = (num % 100) / 10;
Use this:
using System;
class MainClass
{
public static int count = 0;
public static void KaprekarsConstant(int num)
{
if (num == 6174) // base case
return;
count++;
string[] Aarr=new string[4];
string[] Darr = new string[4];
string asc = "", dsc = "";
Aarr[3] = (num % 10).ToString();
Darr[3] = (num % 10).ToString();
num /= 10;
Aarr[2] =(num % 10).ToString();
Darr[2] = (num % 10).ToString();
num /= 10;
Aarr[1] = (num % 10).ToString();
Darr[1] = (num % 10).ToString();
num /= 10;
Aarr[0] =(num % 10).ToString();
Darr[0] = (num % 10).ToString();
Array.Sort(Aarr); // ascneding sorted
Array.Sort<string>(Darr, new Comparison<string>( (i1, i2) => i2.CompareTo(i1))); // descending sorted
for(int i = 0; i< 4;i++)
{
asc += Aarr[i];
dsc += Darr[i];
}
KaprekarsConstant(Convert.ToInt32(dsc) -Convert.ToInt32(asc) );
}
static void Main()
{
KaprekarsConstant(int.Parse(Console.ReadLine()));
Console.WriteLine("\nIt took "+count + "times to reach 6174");
}
}

Raising a number to a power using only addition

I am trying to raise a number to a power using only addition but it does not work, it just raises a number bigger than the original.Here is my code:
private void ExpOperation()
{
result = 0;
num01 = Int32.Parse(inpu01.Text);
num02 = Int32.Parse(inpu02.Text);
int a = num02;
num02 = num01;
int i = 1;
while (i <= a)
{
result = SimpleMulti(num01,num02);
num01 = result;
i++;
}
result_Text.Text = result.ToString();
}
private int SimpleMulti (int num1, int num2)
{
int c = 0;
int i = 1;
while (i <= num2)
{
c += num1;
i++;
}
return c;
}
private int SimpleMulti (int x, int y)
{
int product = 0; //result of multiply
for (int i = 0; i<y; i++){
product += x;
}
//multiplication is repeated addition of x, repeated y times
//the initial solution with a while loop looks correct
return product;
}
private int ExpOperation(int x, int exponent)
{
int result = 1;
if (exponent == 0) {
return result; //anything that powers to 0 is 1
}
else
{
for (int i = 0; i < exponent; i++){
result = SimpleMulti(result, x);
//loop through exponent, multiply result by initial number, x
//e.g. 2^1 = 2, 2^2 = result of 2^1 x 2, 2^3 = result of 2^2 x 2
}
}
return result;
}
Keep in mind that this method does not support negative exponent, which deals with division, but instead of using SimpleMulti, you can create a method for SimpleDivide which uses subtraction instead. The principle is the same
I don't think this question is quite relevant to the main reason of this site, however I got a solution:
public long ExpOperation(int a, int b)
{
long result = 0;
long temp = 0;
for (int i = 1; i <= b; i++) // Executes a full loop when we have successfully multiplied the base number "a" by itself
{
for (int j = 1; j <= a; j++) // Increase the result by itself for a times to multiply the result by itself
result += temp;
temp = result:
}
return result;
}
Because x^y = x * x^(y-1), it can be solved recursively. Since SimpleMulti in question returns integer, I assume both base and exponent are non-negative integer.
private static int PowerWithAddition(int x, int y)
{
if(y == 0){
return 1;
}
var y1 = PowerWithAddition(x, y - 1);
var sum = 0;
for (int i = 0; i < y1; i++)
{
sum += x;
}
return sum;
}

Number of zeroes at the end of factorial

I need to find the number of zeroes at the end of a factorial number. So here is my code, but it doesn't quite work :/
using System;
class Sum
{
static void Main(string[] args)
{
int n = int.Parse(Console.ReadLine());
long factoriel = 1;
for (int i = 1; i <= n; i++)
{
factoriel *= i;
}
Console.WriteLine(factoriel);
int timesZero = 0;
while(factoriel % 10 != 0)
{
timesZero++;
}
Console.WriteLine(timesZero);
}
}
I know I can use a for loop and divide by 5, but I don't want to. Where is the problem in my code and why isn't it working?
There's problem with your algorithm: integer overflow. Imagine, that you are given
n = 1000
and so n! = 4.0238...e2567; you should not compute n! but count its terms that are in form of (5**p)*m where p and m are some integers:
5 * m gives you one zero
25 * m gives you two zeros
625 * m gives you three zeros etc
The simplest code (which is slow on big n) is
static void Main(string[] args) {
...
int timesZero = 0;
for (int i = 5; i <= n; i += 5) {
int term = i;
while ((term % 5) == 0) {
timesZero += 1;
term /= 5;
}
}
...
}
Much faster implementation is
static void Main(string[] args) {
...
int timesZero = 0;
for (int power5 = 5; power5 <= n; power5 *= 5)
timesZero += n / power5;
...
}
Counting Trailing zeros in Factorial
static int countZerosInFactOf(int n)##
{
int result = 0;
int start = 1;
while (n >= start)
{
start *= 5;
result += (int)n/start;
}
return result;
}
Make sure to add inbuilt Reference System.Numeric
using System.Text;
using System.Threading.Tasks;
using System.Numeric
namespace TrailingZeroFromFact
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine("Enter a no");
int no = int.Parse(Console.ReadLine());
BigInterger fact = 1;
if (no > 0)
{
for (int i = 1; i <= no; i++)
{
fact = fact * i;
}
Console.WriteLine("{0}!={1}", no, fact);
string str = fact.ToString();
string[] ss = str.Split('0');
int count = 0;
for (int i = ss.Length - 1; i >= 0; i--)
{
if (ss[i] == "")
count = count + 1;
else
break;
}
Console.WriteLine("No of trailing zeroes are = {0}", count);
}
else
{
Console.WriteLine("Can't calculate factorial of negative no");
}
Console.ReadKey();
}
}
}
static void Main(string[] args)
{
Console.WriteLine("Enter the number:");
int n = int.Parse(Console.ReadLine());
int zero = 0;
long fac=1;
for (int i = 1; i <= n; i++)
{
fac *= i;
}
Console.WriteLine("Factorial is:" + fac);
ab:
if (fac % 10 == 0)
{
fac = fac / 10;
zero++;
goto ab;
}
else
{
Console.WriteLine("Zeros are:" + zero);
}
Console.ReadLine();
}
Your code seems fine, just a little correction in the while-condition:
public static int CalculateTrailingZeroes(BigInteger bigNum)
{
int zeroesCounter = 0;
while (bigNum % 10 == 0)
{
zeroesCounter++;
bigNum /=10;
}
return zeroesCounter;
}
That works, I just tested it.

How to find the Largest Difference in an Array

Suppose I have an array of integers:
int[] A = { 10, 3, 6, 8, 9, 4, 3 };
My goal is to find the largest difference between A[Q] and A[P] such that Q > P.
For example, if P = 2 and Q = 3, then
diff = A[Q] - A[P]
diff = 8 - 6
diff = 2
If P = 1 and Q = 4
diff = A[Q] - A[P]
diff = 9 - 3
diff = 6
Since 6 is the largest number between all the difference, that is the answer.
My solution is as follows (in C#) but it is inefficient.
public int solution(int[] A) {
int N = A.Length;
if (N < 1) return 0;
int difference;
int largest = 0;
for (int p = 0; p < N; p++)
{
for (int q = p + 1; q < N; q++)
{
difference = A[q] - A[p];
if (difference > largest)
{
largest = difference;
}
}
}
return largest;
}
How can I improve this so it will run at O(N)? Thanks!
Simply getting the max and min wont work. Minuend (Q) should come after the Subtrahend (P).
This question is based on the "Max-profit" problem in codility (http://codility.com/train/). My solution only scored 66%. It requires O(N) for a score of 100%.
The following code runs in O(n) and should conform to the specification (preliminary tests on codility were successful):
public int solution(int[] A)
{
int N = A.Length;
if (N < 1) return 0;
int max = 0;
int result = 0;
for(int i = N-1; i >= 0; --i)
{
if(A[i] > max)
max = A[i];
var tmpResult = max - A[i];
if(tmpResult > result)
result = tmpResult;
}
return result;
}
Update:
I submitted it as solution and it scores 100%.
Update 02/26/16:
The original task description on codility stated that "each element of array A is an integer within the range [0..1,000,000,000]."
If negative values would have been allowed as well, the code above wouldn't return the correct value. This could be fixed easily by changing the declaration of max to int max = int.MinValue;
Here is the O(n) Java implementation
public static int largestDifference(int[] data) {
int minElement=data[0], maxDifference=0;
for (int i = 1; i < data.length; i++) {
minElement = Math.min(minElement, data[i]);
maxDifference = Math.max(maxDifference, data[i] - minElement);
}
return maxDifference;
}
After some attempts, I end up with this:
int iMax = N - 1;
int min = int.MaxValue, max = int.MinValue;
for (int i = 0; i < iMax; i++) {
if (min > A[i]) min = A[i];
if (max < A[N - i - 1]){
iMax = N - i - 1;
max = A[iMax];
}
}
int largestDiff = max - min;
NOTE: I have just tested it with some cases. Please if you find any case in which it doesn't work, let me know in the comment. I'll try to improve it or remove the answer. Thanks!
int FirstIndex = -1;
int SecondIndex = -1;
int diff = 0;
for (int i = A.Length-1; i >=0; i--)
{
int FirstNo = A[i];
int tempDiff = 0;
for (int j = 0; j <i ; j++)
{
int SecondNo = A[j];
tempDiff = FirstNo - SecondNo;
if (tempDiff > diff)
{
diff = tempDiff;
FirstIndex = i;
SecondIndex = j;
}
}
}
MessageBox.Show("Diff: " + diff + " FirstIndex: " + (FirstIndex+1) + " SecondIndex: " + (SecondIndex+1));
PHP Solution
<?php
$a = [0,5,0,5,0];
$max_diff = -1;
$min_value = $a[0];
for($i = 0;$i<count($a)-1;$i++){
if($a[$i+1] > $a[$i]){
$diff = $a[$i+1] - $min_value;
if($diff > $max_diff){
$max_diff = $diff;
}
} else {
$min_value = $a[$i+1];
}
}
echo $max_diff;
?>
We can do it in a much simpler way by calculating biggest and smallest element of the array. I know that you're also looking for time complexity. But for anyone looking to understand and solve this problem in a simple and easy to understand way, then here is my code:
#include<stdio.h>
#define N 6
int main()
{
int num[N], i, big, small, pos = 0;
printf("Enter %d integer numbers\n", N);
for(i = 0; i < N; i++)
scanf("%d", &num[i]);
big = small = num[0];
for(i = 1; i < N; i++)
{
if(num[i] > big)
{
big = num[i];
pos = i;
}
}
for(i = 1; i < pos; i++)
{
if(num[i] < small)
small = num[i];
}
printf("The largest difference is %d, ", (big - small));
printf("and its between %d and %d.\n", big, small);
return 0;
}
Output:
Enter 6 integer numbers
7
9
5
6
13
2
The largest difference is 8, and its between 13 and 5.
Source: C Program To Find Largest Difference Between Two Elements of Array
C++ solution for MaxProfit of codility test task giving 100/100 https://app.codility.com/programmers/lessons/9-maximum_slice_problem/max_profit/
int Max(vector<int> &A)
{
if (A.size() == 1 || A.size() == 0)
return 0;
int min_price = A[0];
int max_val = 0;
for (int i = 1; i < A.size(); i++)
{
max_val = std::max(max_val, A[i] - min_price);
min_price = std::min(min_price, A[i]);
}
return max_val;
}
My 100% JavaScript solution with O(N) time complexity:
function solution(A) {
// each element of array A is an integer within the range [0..200,000]
let min = 200000;
// The function should return 0 if it was impossible to gain any profit.
let maxDiff = 0;
for (const a of A) {
min = Math.min(min, a);
// find the maximum positive difference (profit) between current global minimum and current value of a
maxDiff = Math.max(maxDiff, a - min);
}
return maxDiff;
}
function solution(A) {
var n = A.length;
var min = Infinity, max = -Infinity, maxNet=0;
// find smallest and largest in the array following each other
for(let i = 0; i < n; i++){
if(A[i]<min) { // if you are updating the min you cannot consider the old max
min = A[i];
max = -Infinity;
} else if(A[i]> max){
max = A[i];
}
if(max!=-Infinity && max-min>maxNet) maxNet = max-min;
}
return maxNet;
}
PHP solution for MaxProfit of codility test task giving 100/100 found at http://www.rationalplanet.com/php-related/maxprofit-demo-task-at-codility-com.html
function solution($A) {
$cnt = count($A);
if($cnt == 1 || $cnt == 0){
return 0;
}
$max_so_far = 0;
$max_ending_here = 0;
$min_price = $A[0];
for($i = 1; $i < $cnt; $i++){
$max_ending_here = max(0, $A[$i] - $min_price);
$min_price = min($min_price, $A[$i]);
$max_so_far = max($max_ending_here, $max_so_far);
}
return $max_so_far;
}
100% score JavaScript solution.
function solution(A) {
if (A.length < 2)
return 0;
// Init min price and max profit
var minPrice = A[0];
var maxProfit = 0;
for (var i = 1; i < A.length; i++) {
var profit = A[i] - minPrice;
maxProfit = Math.max(maxProfit, profit);
minPrice = Math.min(minPrice, A[i]);
}
return maxProfit;
}
Python solution
def max_diff_two(arr):
#keep tab of current diff and min value
min_value = arr[0]
#begin with something
maximum = arr[1] - arr[0]
new_min = min_value
for i,value in enumerate(arr):
if i == 0:
continue
if value < min_value and value < new_min:
new_min = value
current_maximum = value - min_value
new_maximum = value - new_min
if new_maximum > current_maximum:
if new_maximum > maximum:
maximum = new_maximum
min = new_min
else:
if current_maximum > maximum:
maximum = current_maximum
return maximum
100% for Javascript solution using a more elegant functional approach.
function solution(A) {
var result = A.reverse().reduce(function (prev, val) {
var max = (val > prev.max) ? val : prev.max
var diff = (max - val > prev.diff) ? max - val : prev.diff
return {max: max, diff: diff}
}, {max: 0, diff: 0})
return result.diff
}

For loop to calculate factorials

Currently I have this set of code and its meant to calculate factorials.
int numberInt = int.Parse(factorialNumberTextBox.Text);
for (int i = 1; i < numberInt; i++)
{
numberInt = numberInt * i;
}
factorialAnswerTextBox.Text = numberInt.ToString();
For some reason it doesn't work and i have no clue why. For example i will input 3 and get the answer as -458131456 which seems really strange.
Any help appreciated. Thanks
int numberInt = int.Parse(factorialNumberTextBox.Text);
int result = numberInt;
for (int i = 1; i < numberInt; i++)
{
result = result * i;
}
factorialAnswerTextBox.Text = result.ToString();
on a side note: this would normally NOT be the correct way to calculate factorials.
You'll need a check on the input before you can begin calculation, in case your starting value is 1 or below, in that case you need to manually return 1.
On another side note: this is also a perfect example of where recursive methods can be useful.
int Factorial(int i)
{
if (i <= 1)
return 1;
return i * Factorial(i - 1);
}
A little late to the party:
Func<int, int> factorial = n => n == 0 ? 1 :
Enumerable.Range(1, n).Aggregate((acc, x) => acc * x);
You can use this (rather elegant) solution:
Func<int, int> factorial = null;
factorial = x => x <= 1 ? 1 : x * factorial(x-1);
int numberInt = int.Parse(factorialNumberTextBox.Text);
factorialAnswerTextBox.Text = factorial(numberInt).ToString();
public static int Factorial(int facno)
{
int temno = 1;
for (int i = 1; i <= facno; i++)
{
temno = temno * i;
}
return temno;
}
i am late to the party but here it is
public ulong Factorial(uint numb)
{
if (numb <= 1) return 1;
ulong final = 1;
for (uint i = 1; i <= numb; i++)
{
final *= i;
}
return final;
}
Note:
i used un-signed types for better range
as this calculates up to Factorial(65), while normal signed types will give negative values
Trying to make a more bulletproof solution for n factorial. Here is one that guards for overflows, as well as negative and zero values of n. Using a result variable of type long (instead of int) allows for "larger" values to be calculated (for long, you can calculate up to and including n = 20).
This code returns 0 if an overflow occurred, but you can change it to do whatever is more appropriate.
static long nFactorial(int n)
{
if (n <= 1)
{
return 1;
}
long result = 1;
try
{
for (int i = 1; i <= n; i++)
{
result = checked(result * i);
}
}
catch (OverflowException)
{
return 0;
}
return result;
}
I had to create a factorial method for calculating combinations and tripped over the fact that factorials get very big very fast with relatively small inputs. Here's my solution without using recursion to avoid stack overflow and implemented using System.Numerics.BigInteger.
static BigInteger factorial(int num) {
BigInteger result = 1;
while (num > 1) {
result *= num--;
}
return result;
}
Obviously, you could also using BigInteger for input but my use case was that I was processing int values.
use factorial function:
static long Factorial(long number)
{
if( number <= 1 )
return 1;
else
return number * Factorial(number - 1);
}
and then call the function:
long result = Factorial(int.Parse(factorialNumberTextBox.Text));
factorialAnswerTextBox.Text = result.ToString();
int numberInt=1 ;
for (int i = 1; i <= int.Parse(factorialNumberTextBox.Text); i++)
{
numberInt = numberInt * i;
}
factorialNumberTextBox.Text = numberInt.ToString();
Try this,
int numberInt = int.Parse(textBox1.Text);
int answer = 1;
for (int i = 1; i <= numberInt; i++)
{
answer = answer * i;
}
textBox1.Text = answer.ToString();
Two methods are implemented: Recursive and Basic factorial calculation.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ConsoleApplication50
{
class Program
{
static void Main(string[] args)
{
NumberManipulator manipulator = new NumberManipulator();
Console.WriteLine("Please Enter Factorial Number:");
int a= Convert.ToInt32(Console.ReadLine());
Console.WriteLine("---Basic Calling--");
Console.WriteLine("Factorial of {0} is: {1}" ,a, manipulator.factorial(a));
Console.WriteLine("--Recursively Calling--");
Console.WriteLine("Factorial of {0} is: {1}", a, manipulator.recursively(a));
Console.ReadLine();
}
}
class NumberManipulator
{
public int factorial(int num)
{
int result=1;
int b = 1;
do
{
result = result * b;
Console.WriteLine(result);
b++;
} while (num >= b);
return result;
}
public int recursively(int num)
{
if (num <= 1)
{
return 1;
}
else
{
return recursively(num - 1) * num;
}
}
}
}
static void Main()
{
int numberFactorial = int.Parse(Console.ReadLine());
int result = numberFactorial;
for (int i = 1; i < numberFactorial; i++)
{
result = result * i;
Console.WriteLine("{0}*{1}",numberFactorial,i);
}
Console.WriteLine(result);
}
A nice factorial solution for your nice evening.
int num = Convert.ToInt32(Console.ReadLine());
int fact = 1;
for (int i = num; i > 0; --i)
fact *= i;
Console.WriteLine(fact);
public static void Main(string[] args)
{
string result = Convert.ToString(GetFactorial(5));
Console.WriteLine(result);
}
internal static int GetFactorial(int factNumber)
{
int factorial =1;
int i = factNumber;
while(factNumber>=1)
{
factorial = factNumber * factorial;
factNumber--;
}
return factorial;
}
How about this?
public int FactorialFunction(int Factorial){
int Product = Factorial -1;
for(int Number = Factorial - 1; Number < Factorial; Number++ ) {
Factorial = Product * Factorial;
Product--;
}
return Factorial;
}

Categories

Resources