Do TCP sockets automatically close after 64kB send? - c#

I'm trying to send multiple files over TCP using C# TcpClient, for a file below 64kB it works great, but when I have more it throws an exeption that host-computer disconnected.
Here is my code:
Server side(sending).
1) SocketServer class
public abstract class SocketServer
{
private Socket serverSocket;
public SocketServer(IPEndPoint localEndPoint)
{
serverSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);
serverSocket.Bind(localEndPoint);
serverSocket.Listen(0);
serverSocket.BeginAccept(BeginAcceptCallback, null);
}
private void BeginAcceptCallback(IAsyncResult ar)
{
Socket clientSocket = serverSocket.EndAccept(ar);
Console.WriteLine("Client connected");
ClientConnection clientConnection = new ClientConnection(this, clientSocket);
Thread clientThread = new Thread(new ThreadStart(clientConnection.Process));
clientThread.Start();
serverSocket.BeginAccept(BeginAcceptCallback, null);
}
internal abstract void OnReceiveMessage(ClientConnection client, byte header, byte[] data);
}
Here goes ClientConnection:
public class ClientConnection
{
private SocketServer server;
private Socket clientSocket;
private byte[] buffer;
private readonly int BUFFER_SIZE = 8192;
public ClientConnection(SocketServer server, Socket clientSocket)
{
this.server = server;
this.clientSocket = clientSocket;
buffer = new byte[BUFFER_SIZE];
}
public void Process()
{
clientSocket.BeginReceive(buffer, 0, buffer.Length, SocketFlags.Peek, BeginReceiveCallback, null);
}
private void BeginReceiveCallback(IAsyncResult ar)
{
int bytesReceived = clientSocket.EndReceive(ar);
if (bytesReceived >= 4)
{
clientSocket.Receive(buffer, 0, 4, SocketFlags.None);
// message size
int size = BitConverter.ToInt32(buffer, 0);
// read message
int read = clientSocket.Receive(buffer, 0, size, SocketFlags.None);
// if data still fragmented, wait for it
while (read < size)
{
read += clientSocket.Receive(buffer, read, size - read, SocketFlags.None);
}
ProcessReceivedData(size);
}
clientSocket.BeginReceive(buffer, 0, buffer.Length, SocketFlags.Peek, BeginReceiveCallback, null);
}
private void ProcessReceivedData(int size)
{
using (PacketReader pr = new PacketReader(buffer))
{
// message header = 1 byte
byte header = pr.ReadByte();
// next message data
byte[] data = pr.ReadBytes(size - 1);
server.OnReceiveMessage(this, header, data);
}
}
public void Send(byte[] data)
{
// first of all, send message length
clientSocket.Send(BitConverter.GetBytes(data.Length), 0, 4, SocketFlags.None);
// and then message
clientSocket.Send(data, 0, data.Length, SocketFlags.None);
}
}
Implementation of FileServer class:
public class FileServer : SocketServer
{
string BinaryPath;
public FileServer(IPEndPoint localEndPoint) : base(localEndPoint)
{
BinaryPath = Path.GetDirectoryName(System.Reflection.Assembly.GetExecutingAssembly().Location);
}
internal override void OnReceiveMessage(ClientConnection client, byte hdr, byte[] data)
{
// Convert header byte to ENUM
Headers header = (Headers)hdr;
switch(header)
{
case Headers.Queue:
Queue(client, data);
break;
default:
Console.WriteLine("Wrong header received {0}", header);
break;
}
}
private void Queue(ClientConnection client, byte[] data)
{
// this message contains fileName
string fileName = Encoding.ASCII.GetString(data, 1, data.Length - 1);
// combine path with assembly location
fileName = Path.Combine(BinaryPath, fileName);
if (File.Exists(fileName))
{
FileInfo fileInfo = new FileInfo(fileName);
long fileLength = fileInfo.Length;
// pass the message that is now start a file transfer, contains:
// 1 byte = header
// 16 bytes = file length
using (PacketWriter pw = new PacketWriter())
{
pw.Write((byte)Headers.Start);
pw.Write(fileLength);
client.Send(pw.GetBytes());
}
//
using (FileStream fs = new FileStream(fileName, FileMode.Open, FileAccess.Read))
{
int read = 0, offset = 0;
byte[] fileChunk = new byte[8191];
while (offset < fileLength)
{
// pass message with file chunks, conatins
// 1 byte = header
// 8195 bytes = file chunk
using (PacketWriter pw = new PacketWriter())
{
fs.Position = offset;
read = fs.Read(fileChunk, 0, fileChunk.Length);
pw.Write((byte)Headers.Chunk);
pw.Write(fileChunk, 0, read);
client.Send(pw.GetBytes());
}
offset += read;
}
}
}
}
}
And helper classes:
public class PacketWriter : BinaryWriter
{
private MemoryStream memoryStream;
public PacketWriter() : base()
{
memoryStream = new MemoryStream();
OutStream = memoryStream;
}
public byte[] GetBytes()
{
byte[] data = memoryStream.ToArray();
return data;
}
}
public class PacketReader : BinaryReader
{
public PacketReader(byte[] data) : base(new MemoryStream(data))
{
binaryFormatter = new BinaryFormatter();
}
}
Client have the almost same code. Except receive:
internal override void OnReceiveMessage(ServerConnection client, byte hdr, byte[] data)
{
Headers header = (Headers)hdr;
switch(header)
{
case Headers.Start:
Start(data); // save length of file and prepare for receiving it
break;
case Headers.Chunk:
Chunk(data);
break;
default:
Console.WriteLine("Wrong header received {0}", header);
break;
}
}
private void Chunk(byte[] data)
{
// Process reveived data, write it into a file
}

Do TCP sockets automatically close after 64kB send?
No, TCP sockets do not automatically close after 64 KB of sent data, nor after any amount of sent data. They remain open until either end closes the connection or a network error of some sort happens.
Unfortunately, your question is extremely vague, providing practically no context. But I will point out one potentially serious bug in your client code: you are not restricting the data read by the client to that which you expect for the current file. If the server is sending more than one file, it is entirely possible and likely that on reaching the end of the data for the current file, a read containing that final sequence of bytes will also contain the initial sequence of bytes for the next file.
Thus, the expression totalBytesRead == fileLenght will fail to ever be true and your code will attempt to read all of the data the server sends as if it's all part of the first file.
One easy way to check for this scenario is to look at the size of the file that was written by the client. It will be much larger than expected, if the above is the issue.
You can fix the code by only ever receiving at most the number of bytes you actually expect to be remaining:
while ((bytesRead = binaryReader.Read(
buffer, 0, Math.Min(fileLenght - totalBytesRead, buffer.Length))) > 0)
{
fs.Write(buffer, 0, bytesRead);
totalBytesRead += bytesRead;
if (totalBytesRead == fileLenght)
{
break;
}
}
While you're at it, you might fix the spelling of the variable named fileLenght. I know Intellisense makes it easy to type the variable name whether it's spelled right or not, but if you one day have to grep through the source code looking for code that involves itself with "length" values, you'll miss that variable.
EDIT:
Having pointed out the problem in the code you posted with your question originally, I now find myself looking at completely different code, after your recent edit to the question. The example is still not a good, minimal, complete code example and so advice will still have to be of a limited nature. But I can see at least two major problems in your receive handling:
You are mixing Receive() and BeginReceive(). This is probably not too terrible in general; what makes it really bad in your case is that in the completion handler for the initial asynchronous receive, you are blocking the thread while you use the synchronous Receive() to (attempt to) receive the rest of the data, and then to make matters worse, in the FileServer case you continue to block that thread while you transmit the file data to the client.I/O completion handlers must not block the thread for any significant amount of time; they must retrieve the data for the completed operation, and return as quickly as is feasible. There's a lot of wiggle room, but not enough to justify tying up the IOCP thread for the entire file transfer.
While the first issue is bad, it's probably not bad enough to actually cause the connection to reset. In a low-volume scenario, and especially if you're just dealing with one client at a time at the moment, I doubt blocking the IOCP thread that's being used to call your I/O completion callback will cause any easily observable problems.What's much worse is that you allocate the buffer array once, with a length of 8192, and then proceed to attempt to stuff the entire counted-byte stream of bytes being sent. On the assumption that the client will be sending short messages, this is probably fine on the server side. But on the client side, the value of size can easily be greater than the 8192 bytes allocated in the buffer array.I find it very likely that your BeginReceiveCallback() method is throwing an ArgumentOutOfRangeException after receiving the first 8192 bytes, due to the fact that you are passing the Receive() method a size value that exceeds the length of the buffer array. I can't prove that, because the code example is incomplete. You'll have to follow up on that theory yourself.
As long as I'm reviewing the code you posted, some other irregularities stood out as I scanned through it:
It's a bit odd to be using a buffer length of 8191 when transmitting the file.
Your BeginReceiveCallback() method discards whatever bytes were sent initially. You call EndReceive(), which returns the count of bytes received, but the code that follows assumes that the size value in the stream is still waiting to be read, when it very easily could have been sent in the first block of bytes. Indeed, your comparison bytesReceived >= 4 seems to be intended to refrain from processing received data until you have that length value. Which is wrong for another reason:
If your header is 1 byte followed by a 4-byte count-of-bytes value, then you really need bytesReceived > 4. But worse, TCP is allowed to drip out a single byte at a time if it really wants to (it won't, but if you write your code correctly, it won't matter). Since you only process received data if you get at least 4 bytes, and since if you don't get 4 bytes, you just ignore whatever was sent so far, you could theoretically wind up ignoring all of the data that was sent.
That you have the risk that any data could be ignored at all is terrible. But #2 above guarantees it, and #3 just adds insult to injury.
When receiving the size value, you are reading a 32-bit integer, but when sending the size value (i.e. for the file itself), you are writing a 64-bit integer. You'll get the right number on the receiving end, because BinaryWriter uses little-endian and that means that the first four bytes of any 64-bit integer less than 2^31 are identical to the four bytes of the 32-bit integer representation of the same number. But you'll still wind up with four extra zero bytes after that; if treated as file data as they likely would, that would corrupt your file.

Related

TcpListener and NetworkStream doesn't get data

I am trying to receive a message from an equipment. This equipment is an authentication terminal, and it will send the message as soon as the user set his credentials.
Also, the manual of the equipment says the message will be sent in the ILV format, standing I for identification, L for length and V for value.
a normal message would be:
I -> 0x00 (byte 0 indicating success)
L -> 0x04 0x00 (two bytes for length, being 4 the length in this case)
V -> 0x35 0x32 0x38 0x36 (the message itself)
The message is sent in TCP protocol, so I created a socket using the TcpListener class, following this sample from Microsoft:
https://msdn.microsoft.com/en-us/library/system.net.sockets.tcplistener(v=vs.110).aspx
new Thread(() =>
{
TcpListener server = null;
try
{
Int32 port = 11020;
IPAddress localAddr = IPAddress.Parse("192.168.2.2");
server = new TcpListener(localAddr, port);
server.Server.SetSocketOption(SocketOptionLevel.Socket, SocketOptionName.ReuseAddress, true);
server.Start();
byte[] bytes = new byte[256];
String data = null;
while (true)
{
TcpClient client = server.AcceptTcpClient();
data = null;
NetworkStream stream = client.GetStream();
int i = 0;
while((i = stream.Read(bytes, 0, bytes.Length)) != 0)
{
// this code is never reached as the stream.Read above runs for a while and receive nothing
data = System.Text.Encoding.ASCII.GetString(bytes, 0, i);
}
client.Close();
}
}
catch (SocketException ex)
{
// Actions for exceptions.
}
finally
{
server.Stop();
}
}).Start();
If the stream.Read is removed, then the code flows (although I got nothing either), however if I put any stream.Read statement the execution holds for a while like it was waiting for some response, and then it ends with no response, all bytes read is zero.
I am running Wireshark on the computer and the data is being sent.
Anybody knows what I am doing wrong?
I think the problem is right in the Read method, which halts until the buffer fills completely, but that's obviously won't happen anytime.
In that while-loop, you should spin by checking for available data first, then read them and append to the byte-array. Moreover, since the loop become too "tight", it's better to yield the control to the task scheduler for a bit.
Here is an example:
while (true)
{
if (stream.DataAvailable)
{
int count = stream.Read(bytes, i, bytes.Length);
i += count;
// ...add something to detect the end of message
}
else
{
Thread.Sleep(0);
}
}
It's worthwhile to notice that there's no timeout, but that's a very common feature in order to quit the loop when no data (or broken) are incoming.
Furthermore, the above pattern is not the best way to accumulate data, because you may get an exception when too many bytes are received. Consider a spurious stream of 300 bytes: that will overflow the available buffer. Either use the "bytes" as a temporary buffer for what the Read method gives, or provide a safety check before calling the Read method (so that you may provide the best byte count to read).
Useful links here:
https://learn.microsoft.com/en-us/dotnet/api/system.net.sockets.networkstream.read?view=netframework-4.7.1#System_Net_Sockets_NetworkStream_Read_System_Byte___System_Int32_System_Int32_

C# Socket.Receive() malfunctions when TCP package is larger than MTU

I'm using C# Socket class to send/receive TCP messages to/from our server by short connection. The pseudo-code (exclude some false tolerant logic to make it clear) is as followings.
class MyTCPClient {
private Socket mSocket;
MyTCPClient() {
mSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);
}
void Connect(ipEndpoint, sendTimeOut, receiveTimeOut) {
mSocket.Connect(ipEndpoint);
mSocket.SetSocketOption(SocketOptionLevel.Socket, SocketOptionName.SendTimeout, sendTimeOut);
mSocket.SetSocketOption(SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, receiveTimeOut);
}
void Send(msg) {
mSocket.Send(msg);
}
void Receive(data) {
ByteStreamWriter bsw = new ByteStreamWriter();
int totalLen = 0;
while (true) {
byte[] temp = new byte[1024];
int len = mSocket.Receive(temp, SocketFlags.None);
System.Threading.Thread.Sleep(50); // This is the weirdest part
if (len <= 0) break;
totalLen += len;
bsw.WriteBytes(temp);
}
byte[] buff = bsw.GetBuffer();
data = new byte[totalLen];
Array.Copy(buff, 0, data, 0, totalLen);
}
~MyTCPClient() {
mSocket.Close();
}
}
I was using this class to request the same message from our server several times by short connection, and the following things occurred (only when the message size was larger than one MTU -- 1500 bytes).
If the "Sleep(50)" was commented out, the most of the times (90%) I received wrong "data", specifically to say, the "totalLen" was right, but the "data" was wrong.
If I replaced "Sleep(50)" to "Sleep(10)", about half of the times I received wrong "data", and "totalLen" was also right always.
If I used "Sleep(50)", occasionally, I received wrong "data".
I can guarantee that, every time, our server sent the right data, and the client received the right data too at TCP layer (I used WireShark to monitor all messages through the port I used). Is there anyone who can help to answer why my C# code cannot get the right data?
Also, if I use mSocket.Available instead of the return value of Socket.Receive() to judge the while loop, I would always get the right data and data length...
You don't truncate temp to len bytes before writing it. All the bytes after len in temp have not been filled with current data and thus contain nonsensical, stale date.
When copying to another stream you could use stream.Write(temp, 0, len)

TCP server is not reading fixed size messages correctly

I'm sending sensor data from an android device to a TCP server in C#. The android client sends the data in fixed size chunks of 32 bytes.
In the server I read the data expecting it would come in full packs, but since TCP is a stream protocol some messages arrive at the server split in two parts. I know that because I can watch it with a software called SocketSniff.
The problem is that I don't know how to handle it on my server.
All examples I found use the NetworkStream.Read(), in this method I have to pass a array of bytes to store the data read, an offset and the number of bytes to read. This array of bytes must have a know size, in my case 32.
I don't know the real size of the message that arrived on my server, but it could be one of the following situations.
If the received data size is 32 bytes, it's all OK.
If the received data size if greater than 32 bytes, I think I'm loosing data.
If the received data size is less than 32 bytes, lets say 20 bytes, these bytes are stored in my array and the last 12 bytes of the array remain with the value of zero. Since I may be really receiving some zeros there's no way to know the size I really received, so I can't merge it with the remaining data which should come in the next reading.
My code which handles the receiving is the following:
int buffer = 32;
...
private void HandleClientComm(object client)
{
TcpClient tcpClient = (TcpClient)client;
NetworkStream clientStream = tcpClient.GetStream();
byte[] message = new byte[buffer];
int bytesRead;
while (true)
{
bytesRead = 0;
try
{
bytesRead = clientStream.Read(message, 0, message.Length);
}
catch
{
break;
}
if (bytesRead == 0)
{
// Connection closed
break;
}
SensorData sensorData = ProcessTcpPacket(message);
}
tcpClient.Close();
}
Is there any way to know the size of the data I'm receiving in the socket?
Well, yes, you have the bytesRead variable - it holds the number of bytes read from the stream. You will read at most message.Length bytes, but you may read less.
Note that if there are more bytes available, you will not lose them by reading just message.Length bytes. Rather, they will be available for you next time you read from the stream.
What you need to do is add another while loop liked this:
int messageRead = 0;
while(messageRead < message.Length)
{
int bytesRead = clientStream.Read(message, messageRead, message.Length - messageRead);
messageRead += bytesRead;
if(bytesRead==0)
return; // The socket was closed
}
// Here you have a full message

C# sending files over internet

I managed to send binary data through TCP using NetworkStream and Sockets.
My only problem is that when I send larger files like few hundred KB images, they don't get transferred correctly, the half of the image is missing. On the server side I Socket.Send to transfer data. On the client side I use Socket.BeginReceive with a 1024 sized buffer that's getting written into a MemoryStream, later I use new Bitmap(Stream) to convert that MemoryStream into an image that can be displayed in a PictureBox.
What method should I use to avoid data loss?
Edit: code posted
listener = new TcpListener(myAddress, 86);
listener.Start();
TcpClient client = listener.AcceptTcpClient();
ns = client.GetStream();
byte[] buffer = new byte[1024];
while (fileTransfer)
{
ms = new MemoryStream();
do
{
int length = ns.Read(buffer, 0, buffer.Length);
ms.Write(buffer, 0, length);
// with this line added the data loss apparently disappears
System.Threading.Thread.Sleep(1);
} while (ns.DataAvailable);
UpdateData();
ms.Dispose();
System.Threading.Thread.Sleep(10);
}
ns.Dispose();
client.Close();
listener.Stop();
Edit: the data is still corrupt sometime even with the sleep method.
I suggest you change this loop:
do
{
int length = ns.Read(buffer, 0, buffer.Length);
ms.Write(buffer, 0, length);
// with this line added the data loss apparently disappears
System.Threading.Thread.Sleep(1);
} while (ns.DataAvailable);
into:
do
{
int length = ns.Read(buffer, 0, buffer.Length);
ms.Write(buffer, 0, length);
} while (length > 0);
That is, read until the end of data (i.e ns.Read returns no data). Read blocks until there are some data or the socket is closed (or some exception is thrown). I removed the useless sleep.
Most likely (at a guess) you are not reading from the stream on the client side correctly.
You need to read the result of the EndReceive ( ) method to see how much data you actually read - it may not be the size of your buffer (1024 bytes in this case)
So:
a) When calling BeginReceive are you passing a callback?
b) If Yes, are you reading the result of this and writing the appropriate amount of bytes into your memory stream?
ie:
public void ReceiveCallback( IAsyncResult result)
{
var buffer = (byte[])result.AsyncState;
int bytesRead = socket.EndReceive();
memoryStream.Write (buffer, 0, bytesRead);//bytesRead may not be 1024!
}
OK I solved it by sending the size of the data before sending the actual data. The reason it didn't work that I wrongly assumed that the transfer was immediate. That's why the Sleep() method in the receiver loop made a difference but did NOT solve the problem. I understand that I can't rely on DataAvailable in this context. Even checking the length of the received data won't work because the client might send data after the loop has finished. Checking the file size (if the data is bigger than the buffer on the receiver side) is the best solution I found so long.

C# asynchronous socket Begin/EndReceive questions

I've implemented a async function in order to read large socket data, mostly files will be transferred. Code is based on this question:
public class StateObject
{
public Socket workSocket = null;
public const int BUFFER_SIZE = 1024;
public byte[] buffer = new byte[BUFFER_SIZE];
public StringBuilder sb = new StringBuilder();
}
public static void Read_Callback(IAsyncResult ar)
{
StateObject so = (StateObject) ar.AsyncState;
Socket s = so.workSocket;
int read = s.EndReceive(ar);
if (read > 0)
{
so.sb.Append(Encoding.ASCII.GetString(so.buffer, 0, read));
if (read == StateObject.BUFFER_SIZE)
{
s.BeginReceive(so.buffer, 0, StateObject.BUFFER_SIZE, 0,
new AyncCallback(Async_Send_Receive.Read_Callback), so);
return;
}
}
if (so.sb.Length > 0)
{
//All of the data has been read, so displays it to the console
string strContent;
strContent = so.sb.ToString();
Console.WriteLine(String.Format("Read {0} byte from socket" +
"data = {1} ", strContent.Length, strContent));
}
s.Close();
}
After all of the data has been captured in the stringbuilder, I decrypt it and convert the base64 string to a file using another method. There will be multiple socket receiving\sending files so every workersocket has an ID.
Now here's the case; I want some status on the receiving file. For example a progress bar showing how much is received and the total amount to be received. The Read_Callback method uses a recursive call in order to get all the data from the socket, which prevents me from getting the total amount to be received. Does anyone know how to get the total amount the socket has to receive? Or is my only option to send the size fixed to the listener before transferring the data?
As mentioned before, my stateobject class contains an ID for identifying the socket which the data is for. Upon first connection, the program stores the connection and received info in an arraylist.
In order to get the amount of bytes already read, I have to report the status to one of the initiated worker classes stored in the arraylist. If I want to do this during the recursive call, how will I perform this without losing performance when receiving data?
As last, which buffer size should be used? should this be the MTU of tcp which is 1500 bytes in most cases?
I would suggest sending the total file size as the first step in your communication, before sending along the actual file. For example your StateObject class could have an additional property that holds the total size of the thing your transmitting, then in a different thread (the UI thread) you can create a progress bar and report based of the total transmitted vs the total size of the file as a percentage or whatever you like. Just track how much data has been transmitted as it occurs and update your object appropriately as it does so.
In addition to CG's answer, I would also skip the stringbuilder and use something like:
FileStream fs = File.OpenRead(filePath);
Byte[] bytes = new Byte[fs.Length];
fs.Read(bytes, 0, Convert.ToInt32(fs.Length));
fs.Close();

Categories

Resources