I have array of 4 points and I want to check whether these points will create a rectangle or not. If it will create a rectangle than calculate area of this.
x,y value of point can be positive or negative or mix of it.
You can calculate the six distances between the four points.
Use Pythagoras for this.
If they result in three pairs of equal non-zero distances it is a rectangle.
The product of the shorter two is its area.
Make sure not to fall into rounding error traps; so use an epsilon criterion when comparing for 'equality' as floating point numbers have a tendency to not be equal even if they should be mathematically!
Related
I implemented a simplex noise algorithm (by KdotJPG: OpenSimplex2S) which works fine, but I'd like to add a "function" which can increase/decrease the contrast of the noise. The noise method returns a value between -1 and 1 but the overall result is quite homogeneous. It is not bad at all, but I need to get a different outcome now.
So basically I should "pull" the value of the noise toward the range edges.. this will result more contrasting noise (more distance between the smaller and bigger values). Of course this change must be consistent and proportionally scaled between -1 and 1 (or 0-1) to get natural result.
Actually this is pure mathematical issue, but I'm not good in math at all! I'd like to make it more understandable to give this picture of two graphs:
So, on these graph the Y axis is the noise value (-1 is bottom and +1 it the top) and X axis is the time passed. The left graph shows the original result of the noise generator, and the right is the stretched version what I need to get. As you can see on the right graph everything the same but their values stretched/pulled toward the edge (toward the min, max limit) but still in range.
Is there any math formula or c# built in function to stretch the return value of the noise proportionally respect to the min, max values (-1/1 or 0/1)? If you need the code of the noise you can see it here OpenSimplex2S too, but this is irrelevant in my case, as I just wish to modify its return value. Thanks!
This question already has answers here:
Closest point on a cubic Bezier curve?
(6 answers)
Closed 4 years ago.
My approach was to loop trough the curve and check the mouse distance to various points
But the points get closer together as the curve get steeper, and if the mouse distance threshold is too high it prioritizes the first point in the loop instead of the closet to the mouse.
is there a way to get uniform points in it? Or to check if the mouse is over the Bézier curve and get the position in the curve?
I do it like this:
subdivide you curve to few chunks
tne number of chunks depends on the order of curve. As I usually use cubics I empirically find out that ~8 chunks is enough (for my purposes).
compute the closest point to a chunk
So simply handle each chunk as line and compute closest point on the line to the mouse position (minimal perpendicular distance). By computing it for each chunk and remember the closest one.
Now after this we know which chunk contain the "closest" point so from the intersection between line and perpendicular line to it going through mouse position from previous step we should have a parameter u=<0,1> telling us where on the chunk line the closest point is and we also know the curve parameter t of both endpoints of the chunk line (t0,t1). From this we can approximate t for the closest point simply by doing this:
t = t0 + (t1-t0)*u
On the image t0=0.25 and t1=0.375. This is sometimes enough but if you want better solution so after this just set:
dt = (t1-t0)/4
t0 = t-dt
t1 = t+dt
Use the t0,t,t1 to compute 3 endpoints of 2 chunks and look for the closest point again. You can recursively do this few times as with each iteration you increase precision of the result
The perpendicular distance of point to a line is computed by computing intersection between the line and axis perpendicular to it going through the point in question. So if the line is defined by endpoints p0,p1 and the queried point (mouse) is q then the axis in 2D will be:
dp=p1-p0 // line direction
dq=(dp.y,-dp.x) // axis direction is perpendicular to dp
dq/= |dq| // normalize
p(u) = p0+dp*u // point on line
p(v) = q +dq*v // point on axis
u = <0,1> // parameter on line
v = <-inf,+inf> // parameter on axis
And we want to know u,v from
p0+dp*u = q +dq*v
which is system of 2 linear equations in 2D. In 3D you need to exploit cross product to obtain the dq and the system would contain 3 equations. Solving this sytem will give you u,v where u will tell you where in the chunk the closest point is and |v| is the perpendicular distance itself. Do not forget that if u is not in the range <0,1> then you have to use closer endpoint of the line as the closest point.
The system can be solved either algebraically (but beware the edge cases as there are 2 solutions for the equations in 2D) or use inverse matrix...
There are two main approaches - subdivision of curve into small line segments and analytical solution.
For the second case you have to build polynomial for squared distance from point to curve depending on parameter t, differentiate it, and find zeros of result (5-th order polynomial). Then choose minimum from distances to point at t[i], t=0, t=1.
Another point of view - get projection of point onto curve, so curve tangent in this point is perpendicular to vector point-curvepoint, it should give the same expression.
About uniform points - it is rather hard problem because curve length could not be calculated analytically. But subdivision gives quite good approximation.
In an X and Y axis I have a field constrained by a min and a max curve. Within that field there can be an infinite amount of potential curves. I need to predict how the curve crossing a given x,y point within that field will look like.
In the image above the orange curves cross given x,y points (blue, grey, purple).
My base data is basically a collection (~100) of the following set:
A given x (double)
A given y (double)
The cross curve's x values as an array of doubles
The cross curve's y values as an array of doubles
How can I model this in accord.NET to predict a curve within this field for any x,y?
Which algorithm(s) from the library should I use to achieve my goal?
I have a number of non-coplanar 3D points and I want to calculate the nearest plane to them (They will always form a rough plane but with some small level of variation). This can be done by solving simultaneous linear equations, one for each point, of the form:
"Ax + By + Cz + D = 0"
The problem I'm having at the moment is twofold.
Firstly since the points are 3D floats they can't be relied on to be precise due to rounding errors.
Secondly all of the methods to solving linear equations programatically that I have found thus far involve using NXN matrices which severely limits what I would be able to do given that I have 4 unknowns and any number of linear equations (due to the variation in the number of 3D points).
Does anyone have a decent way to either solve the simultaneous linear equations without these constraints or, alternatively, a better way to calculate the nearest plane to non-coplanar points? (The precision of the plane calculation is not too much of a concern)
Thanks! :)
If your points are all close to the plane, you have a choice between ordinary least squares (where you see Z as a function of two independent variables X and Y and you minimize the sum of squared vertical distances to the plane), or total least squares (all variables independent, minimize the sum of normal distances). The latter requires a 3x3 SVD. (See http://en.wikipedia.org/wiki/Total_least_squares, unfortunately not the easiest presentation.)
If some of the points are outliers, you will need to resort to robust fitting methods. One of them is RANSAC: choose three points are random, build their plane and compute the sum of distances of all points to the plane, as a measure of fitness. Keep the best result after N drawings.
There are numerical methods for linear regression, which calculates the nearest line y=mx+c to a set of points. Your solution will be similar, only it has one more dimension and is thus a "planar regression".
If you don't care the mathematical accuracy of the algorithm and just want to get a rough result, then perhaps you'd randomly 3 points to construct a plane vector, then adjust it incrementally as you go through the rest of the points. Just some thoughts...
Bit of a weird one this. I'm rendering datasets on a map and need to split out points that have exactly the same long and lat. I had the idea of grouping my dataset by long and lat and where they are the same adjusting slightly so that they are visible as seperate entities on the map - rather than overlapping.
I'm using linq to group them and then enumerating my grouped items and I'd like to spiral the adjusted points around the orginal point (this is a requirement as I may have a few hundred points that are the same geographically) so that they spread out from the original point.
Does anyone know of a simple calculation i can add to my loop to adjust the items in this manner.
Thanks,
The math behind this is pretty simple. A circle can be represented by the sine function in the x-axis and the cosine function in the y-axis. Here's some pseudo-code:
int num = OverlappingPoints.Length;
for(int i = 0; i < num; ++i)
{
int radius = 50;
// using 2*pi because most math functions use radians... change 2*pi to 360 if your math library uses 360 degrees instead of 2*pi radians to represent a circle.
Map.Plot(OverlappingPoints[i].Latitude + radius*sin(2*pi*i/num),
OverlappingPoints[i].Latitude + radius*cos(2*pi*i/num));
}
That pseudo-code, if properly implemented, will draw the points out in a circle around the original point. Change the radius multiplier to the sine and cosine functions if you want to increase the radius of the circle. If you want the points to spiral out instead of making a circle, choose a number of points per circle revolution and replace num with that number in the sin/cos functions. Also, increase the radius after each loop iteration, probably by using a number and multiplying it by the loop index. (i.e. you could change radius to 50*i).
Hope this helps.