Why isn't conversion of Decimal.MaxValue between Single and Decimal transitive? - c#

If I try and convert Decimal.MaxValue from Decimal to Single and back again, the conversion fails with an OverflowException:
Convert.ToDecimal(Convert.ToSingle(Decimal.MaxValue))
// '...' threw an exception of type 'System.OverflowException'
// base: {"Value was either too large or too small for a Decimal."}
What gives? Surely the value of Decimal.MaxValue as a Single should be a valid Decimal value?
I understand that the differences between Single and Decimal and expect a loss of precision converting from Decimal to Single but as Single.MaxValue is greater than Decimal.MaxValue it doesn't make sense that the "Value was either too large or too small for Decimal". If you think that does make sense please explain why in an answer.
Additionally,
Convert.ToSingle(Decimal.MaxValue)
// 7.92281625E+28
so there is no problem converting this number to a Single.

You're making an incorrect assumption:
Surely the value of Decimal.MaxValue as a Single should be a valid
Decimal value?
The value of Decimal.MaxValue is 79,228,162,514,264,337,593,543,950,335. A float can't represent anywhere near that level of precision, so when you convert the decimal value to a float you end up with an approximation.
In this case the float is represented internally as 2^96. This turns out to be a pretty good approximation -- 79,228,162,514,264,337,593,543,950,336 -- but take note of that last digit.
The value of the float is larger than Decimal.MaxValue, which is why your attempt to convert it back into a decimal fails.
(The .NET framework doesn't offer much help when trying to diagnose these kind of problems. It'll always display a pre-rounded value for the float -- 7.92281625E+28 or similar -- and never the full approximation that it's using internally.)

Related

Rounding to specfic digits fails with this double-precision value

I'm attempting to truncate a series of double-precision values in C#. The following value fails no matter what rounding method I use. What is wrong with this value that causes both of these methods to fail? Why does even Math.Round fail to correctly truncate the number? What method can be used instead to correctly truncate such values?
The value :
double value = 0.61740451388888251;
Method 1:
return Math.Round(value, digits);
Method 2:
double multiplier = Math.Pow(10, decimals)
return Math.Round(value * multiplier) / multiplier;
Fails even in VS watch window!
Double is a floating binary point type. They are represented in binary system (like 11010.00110). When double is presented in decimal system it is only an approximation as not all binary numbers have exact representation in decimal system. Try for example this operation:
double d = 3.65d + 0.05d;
It will not result in 3.7 but in 3.6999999999999997. It is because the variable contains a closest available double.
The same happens in your case. Your variable contains closest available double.
For precise operations double/float is not the most fortunate choice.
Use double/float when you need fast performance or you want to operate on larger range of numbers, but where high precision is not required. For instance, it is perfect type for calculations in physics.
For precise decimal operations use, well, decimal.
Here is an article about float/decimal: http://csharpindepth.com/Articles/General/FloatingPoint.aspx
If you need a more exact representation of the number you might have to use the decimal type, which has more precision but smaller range (it's usually used financial calculations).
More info on when to use each here: https://stackoverflow.com/a/618596/1373170
According to this online tool which gives the binary representation of doubles, the two closest double values to 0.62 are:
6.19999999999999995559107901499E-1 or 0x3FE3D70A3D70A3D7
link
6.20000000000000106581410364015E-1 or 0x3FE3D70A3D70A3D8
link
I'm not sure why neither of these agree with your value exactly, but like the others said, it is likely a floating point representation issue.
I think you are running up against the binary limit of a double-precision float (64 bits). From http://en.wikipedia.org/wiki/Double-precision_floating-point_format, a double only gives between 15-17 significant digits.

C# Convert.ToDouble() loses decimal points when converting string to double

Let's say we have the following simple code
string number = "93389.429999999993";
double numberAsDouble = Convert.ToDouble(number);
Console.WriteLine(numberAsDouble);
after that conversion numberAsDouble variable has the value 93389.43. What can i do to make this variable keep the full number as is without rounding it? I have found that Convert.ToDecimal does not behave the same way but i need to have the value as double.
-------------------small update---------------------
putting a breakpoint in line 2 of the above code shows that the numberAsDouble variable has the rounded value 93389.43 before displayed in the console.
93389.429999999993 cannot be represented exactly as a 64-bit floating point number. A double can only hold 15 or 16 digits, while you have 17 digits. If you need that level of precision use a decimal instead.
(I know you say you need it as a double, but if you could explain why, there may be alternate solutions)
This is expected behavior.
A double can't represent every number exactly. This has nothing to do with the string conversion.
You can check it yourself:
Console.WriteLine(93389.429999999993);
This will print 93389.43.
The following also shows this:
Console.WriteLine(93389.429999999993 == 93389.43);
This prints True.
Keep in mind that there are two conversions going on here. First you're converting the string to a double, and then you're converting that double back into a string to display it.
You also need to consider that a double doesn't have infinite precision; depending on the string, some data may be lost due to the fact that a double doesn't have the capacity to store it.
When converting to a double it's not going to "round" any more than it has to. It will create the double that is closest to the number provided, given the capabilities of a double. When converting that double to a string it's much more likely that some information isn't kept.
See the following (in particular the first part of Michael Borgwardt's answer):
decimal vs double! - Which one should I use and when?
A double will not always keep the precision depending on the number you are trying to convert
If you need to be precise you will need to use decimal
This is a limit on the precision that a double can store. You can see this yourself by trying to convert 3389.429999999993 instead.
The double type has a finite precision of 64 bits, so a rounding error occurs when the real number is stored in the numberAsDouble variable.
A solution that would work for your example is to use the decimal type instead, which has 128 bit precision. However, the same problem arises with a smaller difference.
For arbitrary large numbers, the System.Numerics.BigInteger object from the .NET Framework 4.0 supports arbitrary precision for integers. However you will need a 3rd party library to use arbitrary large real numbers.
You could truncate the decimal places to the amount of digits you need, not exceeding double precision.
For instance, this will truncate to 5 decimal places, getting 93389.42999. Just replace 100000 for the needed value
string number = "93389.429999999993";
decimal numberAsDecimal = Convert.ToDecimal(number);
var numberAsDouble = ((double)((long)(numberAsDecimal * 100000.0m))) / 100000.0;

Parsing a string into a float

Now i know to use the method of float.Parse but have bumped into a problem.
I'm parsing the string "36.360", however the parsed float becomes 36.3600006103516.
Am i safe to round it off to the 3 decimal places or is there a better tactic for parsing floats from strings.
Obviously i'm looking for the parsed float to be 36.360.
This has nothing to do with the parsing, but is an inherent "feature" of floating-point numbers. Many numbers which have an exact decimal representation cannot be exactly stored as floating-point number, which causes such inequalities to appear.
Wikipedia (any many articles on the web) explain the issues.
Floating point numbers are inherently prone to rounding errors; even different CPU architectures would give a different number out in the millionths decimal place and beyond. This is also why you cannot use == when comparing floating point numbers....they'll rarely evaluate as equal because of floating point precision errors.
This is due to the fact that float or double are both stored in such a way that it is a mathematical process to read the value from memory. If you want to store the value as the actual value a better choice would be decimal.
Per the MSDN Page on System.Decimal:
The Decimal value type is appropriate for financial calculations
requiring large numbers of significant integral and fractional digits
and no round-off errors. The Decimal type does not eliminate the need
for rounding. Rather, it minimizes errors due to rounding.
There are limits in the precision of floating point numbers. Check out this link for additional details.
If you need more precise tracking, consider using something like a double or decimal type.
That's not an odd issue at all, it's just one of the charming features of floats you'll always going to run into. floats can't express that kind of decimal values accurately!
So if you need the result to be exactly 36.36, use a decimal rather than a float.
Otherwise, you're free to round off. Note that rounding won't help though, because it won't be exactly 36.36 after rounding either.

C# Maths gives wrong results!

I understand the principle behind this problem but it's giving me a headache to think that this is going on throughout my application and I need to find as solution.
double Value = 141.1;
double Discount = 25.0;
double disc = Value * Discount / 100; // disc = 35.275
Value -= disc; // Value = 105.824999999999999
Value = Functions.Round(Value, 2); // Value = 105.82
I'm using doubles to represent quite small numbers. Somehow in the calculation 141.1 - 35.275 the binary representation of the result gives a number which is just 0.0000000000001 out. Unfortunately, since I am then rounding this number, this gives the wrong answer.
I've read about using Decimals instead of Doubles but I can't replace every instance of a Double with a Decimal. Is there some easier way to get around this?
If you're looking for exact representations of values which are naturally decimal, you will need to replace double with decimal everywhere. You're simply using the wrong datatype. If you'd been using short everywhere for integers and then found out that you needed to cope with larger values than that supports, what would you do? It's the same deal.
However, you should really try to understand what's going on to start with... why Value doesn't equal exactly 141.1, for example.
I have two articles on this:
Binary floating point in .NET
Decimal floating point in .NET
You should use decimal – that's what it's for.
The behaviour of floating point arithmetic? That's just what it does. It has limited finite precision. Not all numbers are exactly representable. In fact, there are an infinite number of real valued numbers, and only a finite number can be representable. The key to decimal, for this application, is that it uses a base 10 representation – double uses base 2.
Instead of using Round to round the number, you could use some function you write yourself which uses a small epsilon when rounding to allow for the error. That's the answer you want.
The answer you don't want, but I'm going to give anyway, is that if you want precision, and since you're dealing with money judging by your example you probably do, you should not be using binary floating point maths. Binary floating point is inherently inaccurate and some numbers just can't be represented correctly. Using Decimal, which does base-10 floating point, would be a much better approach everywhere and will avoid you making costly mistakes with your doubles.
After spending most of the morning trying to replace every instance of a 'double' to 'decimal' and realising I was fighting a losing battle, I had another look at my Round function. This may be useful to those who can't implement the proper solution:
public static double Round(double dbl, int decimals) {
return (double)Math.Round((decimal)dbl, decimals, MidpointRounding.AwayFromZero);
}
By first casting the value to a decimal, and then calling Math.Round, this will return the 'correct' value.

C# : Number Conversion Problem

Today I faced a strange problem in C#. I have an ASP.NET page where user can enter certain price, quantity etc. I get the price value, convert it to double, then multiply it with 100 and then typecast it to an integer. When the price is "33.30", after converting it to double it remains 33.3 (obviously...), but after multiplying it with 100, it becomes 3329.9999999999995, and when I cast it to integer by applying simple cast operator "(int) (price * 100) ", it becomes 3329.
Right now I have no idea why this is happening. So I thought may be you guys can help :) .
This happens because of the way doubles are stored. You should use decimal when working with money to avoid rounding errors.
don't cast it, round it using Math.Round. and its better to use a decimal type for currency
This is happening due to floating point rounding errors. Floating point numbers cannot be accurately represented in binary, so rounding errors such as the one you are experiencing happen. See this wikipedia article for more detail.
To overcome this, you should round to the closest integer - this is best achieved by using Math.Round.
When dealing with currencies however, best practice it to use the decimal type instead of double.
If you want to cast to the closest integer there is a Math.Round method for this.
What you are doing by default is flooring - which is exactly what you observe. (and is consistent with C)
The error is because doubles are stored in binary form. While every binary fraction has an exact decimal expansion, most decimals don't have an exact binary expansion. The decimal 33.3 has an inexact binary expansion. This approximation is then multiplied by 100, and converted to its exact decimal expansion, which is 3329.9999999999995. (Actually, this may not be the exact expansion, due to display truncation, but the gist of it is the same.)
Floating Point arithmetic in computing is almost always an approximation of the "Real" value

Categories

Resources