How to choose Strategy in an application depending on the Customer - c#

In the company i work for we are developing an application that is used from various customers (other companies). The core of the application is the same but when it comes to some details every customer has its own requirements.
I think the way to deal with this is the strategy pattern by injecting the appropriate strategy to the component that needs to use it.
My question is, is there a way to know which strategy implementation to inject depending on the customer that is using the application, without avoiding "cases", or "if elses"?
How would you implement it in real life applications?
public IStrategy GetStrategy(string customerName) {
switch(customerName) {
case "customer1":
return new Strategy1();
case "customer2":
return new Strategy2();
}
}
EDIT:
As the accepted answer of this question (Strategy Pattern with no 'switch' statements?) suggests, "Strategy isn't a magic anti-switch solution.".
Are there any other opinions about that?

What about passing a strategyName parameter instead of customerName? I mean, if you retrieve your customerName from database, add one column for strategy name (it must be strategy class name). Then, call GetStrategy method with that strategyName and use Activator.CreateInstance method to create strategy class instance.
How to use Activator.CreateInstance (MSDN)
Activator.CreateInstance Example

Related

Implementing a domain service with DDD in C#

I'm working on a domain model writing my software all DDD and stuff doing a great job, when I suddenly bump into the same problem I have been facing over and over again and now it's time to share some insights. The root of the problem lies in the uniqueness of data.
For example, let's say we're writing this awesome domain model for a user. Obviously the username is unique and just to be as flexible as possible we want the user to be able to change his name, so I implemented the following method:
public void SetUsername(string value)
{
if (string.IsNullOrWhiteSpace(value))
{
throw new UserException(UserErrorCode.UsernameNullOrEmpty,
"The username cannot be null or empty");
}
if (!Regex.IsMatch(value, RegularExpressions.Username))
{
throw new UserException(UserErrorCode.InvalidUsername,
"The username {value} does not meet the required ");
}
if (!Equals(Username, value))
{
Username = value;
SetState(TrackingState.Modified);
}
}
Again, this is all fine and fancy, but this function lacks the ability to check if the username is unique or not. So writing all these nice articles about DDD, this would be a nice use-case for a Domain Service. Ideally, I would inject that service using dependency injection but this ruins the constructor of my domain model. Alternatively, I can demand an instance of a domain service as a function argument like so: public void SetUsername(string value, IUsersDomainService service) and to be honest I don't see any solid alternatives.
Who has faced this problem and maybe came up with a nice rock-solid solution?
I agree with #TomTom. But as most times with software decisions, it depends, there is almost always a tradeoff. As a rule of thumb, you gain more by not injecting a domain service into an entity. This is a common question when one is starting with DDD and CQRS+ES. And has been thoroughly discussed in the CQRS mailing list here
However, there are some cases where the approach you suggested (known as method injection) might be beneficial it depends on the scenario. I’ll try and drive some analysis points next.
Consider the case where you want to make some validation before creating an entity. Let's think of a hypothetical and way oversimplified international banking context, with the following entity:
public class BankNote
{
private BankNote() {}
public static FromCurrency(
Currency currency,
ISupportedCurrencyService currencyService)
{
currencyService.IsAvailable(currency);
}
}
I am using the factory method pattern FromCurrency inside your entity to abstract the entity creation process and add some validation so that the entity is always created in the correct state.
Since the supported currencies might change overtime, and the logic of which currencies are supported is a different responsibility than the bank note issuing logic, injecting the ISupportedCurrencyService in the factory method gives us the following benefits:
By the way, the method dependency injection for domain services is suggested in the book: Hands-On Domain-Driven Design with .NET Core
By Alexey Zimarev. Chapter 5 "Implementing the Model" page 120
Pros
The BankNote is always created with a supported Currency, even if the currencies supported change overtime.
Since we are depending on an interface instead of a concrete implementation, we can easily swap and change the implementation without changing the entity.
The service is never stored as an instance variable of the class, so no risk of depending on it more than we need.
Cons
If we keep going this way we might add a lot of dependencies injected into the entity and it will become hard to maintain overtime.
We still are adding a loosely coupled dependency to the entity and hence the entity now needs to know about that interface. We are violating the Single Responsibility Principle, and now you would need to mock the ISupportedCurrencyService to test the factory method.
We can’t instantiate the entity without depending on a service implemented externally from the domain. This can cause serious memory leak and performance issues depending on the scenario.
Another approach
You can avoid all the cons if you call the service before trying to instantiate the entity. Say having a different class for the factory instead of a factory method, and make that separate factory use the ISupportedCurrencyService and only then call the entity constructor.
public class BankNoteFactory
{
private readonly ISupportedCurrencyService _currencyService;
private BankNoteFactory(
ISupportedCurrencyService currencyService)
=> _currencyService = currencyService;
public BankNote FromCurrency(
Currency currency)
{
if(_currencyService.IsAvailable(currency))
return new BanckNote(currency);
// To call the constructor here you would also need
// to change the constructor visibility to internal.
}
}
Using this approach you would end with one extra class and an entity that could be instantiated with unsupported currencies, but with better SRP compliance.

Looking for a Design pattern which can create different instances of a class with different interface implementations

I have a class which contains a view dependencies (all interfaces). Basically the behavior of the class is defined through the implementation of those interfaces. I want to be able to have a "builder" which can create instances of this class with different implementations of the interfaces(or parts of it). Something like this:
public class API
{
private readonly ISomeInterface _someInterface;
private readonly ISomeOtherInterface _someOtherInterface;
private readonly ISomeAnotherInterface _someAnotherInterface;
API(ISomeInterface someInterface,ISomeOtherInterface someOtherInterface,ISomeAnotherInterface someAnotherInterface)
{*/implementation ommitted*/}
//Example method
public void DoSomethingWhichDependsOnOneOrMoreInterfaces()
{
//somecode
id(_someInterface != null)
_someInterface.SomeMethode();
}
public class MyApiBuilder()
{
// implementation ommitted
API CreateAPI(someEnum type)
{
switch(type)
{
case SpecificAPI32:
var speficImplementationOfSomeInterface = new ImplementsISomeInterface();
speficImplementationOfSomeInterface .Setup("someSetup");
var specificImplementationOfOtherInterface = new ImplementsISomeOtherInterface();
returns new API(speficImplementationOfSomeInterface,specificImplementationOfOtherInterface ,null);
}
}
}
What is the most elegant way of implementing this (if this makes sense at all)? I was first thinking of the Builder Design Patterns but as far as I understood it, its slightly different.
[Edit]
As pointed out, the way I am implementing it is a factory method but I am not fully satisfied with it. The API can contain a varity of different interfaces which can be totally independent of each other but some may depend on others.(but not mandatory) I would like to give the user (the developer using this "API") as much freedom as possible in creating the API he wants to use. Lets try to explain what I am basically up to:
Let's say I am developing a plugin for a game engine which can post achievments and other stuff to various social media channels. So basically there could be a Interface which implements the access to twitter,facebook,youtube,whathever or some custom server. This custom server could need some kind of authentification process. The user should be able to build at start the API in a nice (hmm fluent is nice..) way. So basically something like this:
var myTotallyForMyNeedsBuildAPI = API.CreateCustomApi().With(Api.Twitter).And(Api.Facebook).And(Api.Youtube).And(Api.CustomServer).With(Security.Authentification);
I actually do not know how to make that fluent but something like this would be nice.
It's a good practice to use Dependency Injection as you want to give the programmer the ability to compose the object with desired configuration.
Check MEF and Unity frameworks which are great for this job.
For example in Unity you can write this:
// Introducing an implementation for ISomeInterface
container.Register<ISomeInterface, SomeImplementation>();
// Introducing an implementation for ISomeOtherInterface
container.Register<ISomeOtherInterface, SomeOtherImplementation>();
// Introducing an implementation for ISomeAnotherInterface
container.Register<ISomeAnotherInterface, SomeAnotherImplemenation>();
container.Register<API, API>();
// and finally unity will compose it for you with desired configurations:
var api = container.Resolve<API>();
In this scenario the api will be composed with desired implementations.
What you have implemented is the Factory method pattern.
It's perfectly fine for what you are trying to do, but you could have a look at the other factory patterns (i.e. here) based on your context and how you think you're code will evolve in the future.
Anyway, I will also consider to not tie this three interface together in a single factory. If they are really so tighten together to be consumed together and built together, maybe they should not be three different interfaces in the first place, or at least all three implemented by the same class, so your factory will build the appropriate class with the proper implementation of these.
Probably what you are after is the Decorator pattern.
In your API class you invoke each interface if they have been provided to the API instance, which is the behaviour of the Decorator pattern.
With this pattern you obtain a modular implementation that allow you to add multiple behaviours to your API.

Should I use a factory pattern?

I currently have a class named ConfigProfile factory and it contains methods for say a default profile, current settings, ect. This class gets used internally by my Profile service. I was thinking that it would be better to simply make this a true factory and just create the appropriate Profile Service for each of the products we are configuring.
public string GetDefaultProfile(string product)
{
if (string.IsNullOrEmpty(product))
{
throw new ArgumentNullException("product");
}
string profile = null;
if (product.Contains("Product 1", StringComparison.CurrentCultureIgnoreCase) ||
product.Contains("product1", StringComparison.CurrentCultureIgnoreCase))
{
profile = Resources.product1DefaultProfile;
}
return profile;
}
that is only one product there, but we have several more which means I will have to add more if statements for each one. The profile service already has an interface and is what gets used for most of my program. Also there are several methods that use this same way of doing things. So would a factory that returns the appropriate profile service based on product name be a better solution or is there something else I could do?
Edit: This is one of the simpler methods in this class. the more complex one is the one that retrieves the current system settings from the required places. Like all products have IIS settings, but some will have theme support while others will have database configuration to do.
Factory is a very good solution. It allows you to hide the configuration complexity behind a simple interface.
If you need to be able to configure it at run-time/start-up, combine with Strategy.
Both solutions - static factory or Strategy - can be combined with Prototype. Prototype would be useful as an optimization, if you often use the same profile, and it's read-only.
EDIT: You are probably using Prototype already. Your sample code looks like you are copying/referencing a profile rather than building it as a complex product.

C# Design Questions [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
How to approach unit testing of private methods?
I have a class that loads Employee data into a database. Here is a sample:
>
public class EmployeeFacade
{
public Employees EmployeeRepository = new Employees();
public TaxDatas TaxRepository = new TaxDatas();
public Accounts AccountRepository = new Accounts();
//and so on for about 20 more repositories etc.
public bool LoadAllEmployeeData(Employee employee)
{
if (employee == null)
throw new Exception("...");
bool exists = EmployeeRepository.FetchExisting(emps.Id);
if (!exists)
{
EmployeeRepository.AddNew();
}
try
{
EmployeeRepository.Id = employee.Id;
EmployeeRepository.Name = employee.EmployeeDetails.PersonalDetails.Active.Names.FirstName;
EmployeeRepository.SomeOtherAttribute;
}
catch() {}
try
{
emps.Save();
}
catch(){}
try
{
LoadorUpdateTaxData(employee.TaxData);
}
catch() {}
try
{
LoadorUpdateAccountData(employee.AccountData);
}
catch() {}
... etc. for about 20 more other employee objects
}
private bool LoadorUpdateTaxData(employeeId, TaxData taxData)
{
if (taxData == null)
throw new Exception("...");
...same format as above but using AccountRepository
}
private bool LoadorUpdateAccountData(employee.TaxData)
{
...same format as above but using TaxRepository
}
}
I am writing an application to take serialised objects(e.g. Employee above) and load the data to the database.
I have a few design question that I would like opinions on:
A - I am calling this class "EmployeeFacade" because I am (attempting?) to use the facade pattern. Is it good practace to name the pattern on the class name?
B - Is it good to call the concrete entities of my DAL layer classes "Repositories" e.g. "EmployeeRepository" ?
C - Is using the repositories in this way sensible or should I create a method on the repository itself to take, say, the Employee and then load the data from there e.g. EmployeeRepository.LoadAllEmployeeData(Employee employee)? I am aim for cohesive class and but this will requrie the repository to have knowledge of the Employee object which may not be good?
D - Is there any nice way around of not having to check if an object is null at the begining of each method?
E - I have a EmployeeRepository, TaxRepository, AccountRepository declared as public for unit testing purpose. These are really private enities but I need to be able to substitute these with stubs so that the won't write to my database(I overload the save() method to do nothing). Is there anyway around this or do I have to expose them?
F - How can I test the private methods - or is this done (something tells me it's not)?
G- "emps.Name = employee.EmployeeDetails.PersonalDetails.Active.Names.FirstName;" this breaks the Law of Demeter but how do I adjust my objects to abide by the law?
A - I wouldn't call it XXXFacade, but something more meaningful (which may in fact mean you should call it XXXFacade)
B - I would call them XXXRepository
C - I don't really understand your model here - you're passing in an Employee object and assigning its values to the equivilent values in EmployeeRepository. The Repository shouldn't contain data fields - each instance of the repository does not represent a row in the database. The Repository is a way of getting data in and out of the database, by operating on collections of entities from the database (ie: Repository is the table, Entities are the rows). I would expect the Repository object to have a Save method which takes an Employee object as a parameter and it persists it to the database. As well as a Load method which takes an Id and returns and Employee:
Employee myEmployee = repository.Load(112345);
myEmployee.Name = "New Name";
repository.Save(myEmployee);
The Repository base class doesn't need to know about the specific implementation of the Employee class, through the use of generics and polymorphism. Take a look at Sh#rpArchitecture for a good example of this pattern.
D - yes, put that common logic in an abstract base class (Repository)
E - don't make them public if they should be private. If you need the use the logic of the repository in your unit tests to simulate fetching data, implement a common interface and then mock that interface out in your tests. You don't need to test that the repository returns the correct data since data is transient and inconsistent in reality. Better to fake it and test your behaviour does what you expect on precanned data from a mock repository.
F - Don't. Test behaviour not implementation.
G - I don't think this issue exists if you examine your architecture as described above.
How to approach unit testing of private methods?
You shouldn't write tests for private methods.
The only possible way of creating private methods is a refactorings of already tested public methods.
A - I am calling this class
"EmployeeFacade" because I am
(attempting?) to use the facade
pattern. Is it good practace to name
the pattern on the class name?
I don't think testing private methods a good idea; however, you can test "internal" classes, which are similar to private in the sense that external assemblies will not have access to them, by marking them as Internal Visible to your unit test project.
AssemblyInfo.cs --
[assembly: InternalsVisibleTo("YourClass.Tests")]
B - Is it good to call the concrete
entities of my DAL layer classes
"Repositories" e.g.
"EmployeeRepository" ?
I do this frequently, I don't think there is anything wrong with it.
C - Is using the repositories in this
way sensible or should I create a
method on the repository itself to
take, say, the Employee and then load
the data from there e.g.
EmployeeRepository.LoadAllEmployeeData(Employee
employee)? I am aim for cohesive class
and but this will requrie the
repository to have knowledge of the
Employee object which may not be good?
Unless I don't understand correctly, I would keep them seperate. I typically use my Repository classes as simply CRUD helpers, I would write a wrapper around the repository that exposes the functionality you need.
D - Is there any nice way around of
not having to check if an object is
null at the begining of each method?
If there is, I don't know it, I would just use ArgumentNullException()
E - I have a EmployeeRepository,
TaxRepository, AccountRepository
declared as public for unit testing
purpose. These are really private
enities but I need to be able to
substitute these with stubs so that
the won't write to my database(I
overload the save() method to do
nothing). Is there anyway around this
or do I have to expose them?
See my answer for A, marking them as Internal and then setting InternalsVisible To your unit test assembly. See also MSDN.
F - How can I test the private methods
- or is this done (something tells me it's not)?
I do not typically test private methods, and private classes that need to tested I mark as internal and use them in my test assembly.
A - I don't think its particularly bad to use the pattern name in the class name, though I honestly don't know how often it's done.
F - I think zerkms is right, you probably have to make them public, test them, then make them private when you're satisfied. Once their private, you could still test public methods that make use of the private methods to ensure they continue working.
As for your DAL and such, I would suggest looking into LINQ to SQL, available in .NET 3.0 and higher. It's a nice framework for handling the abstraction layer between your business logic and the database. Here are a few links to check out...
Quick Tutorial for LINQ to SQL in C#
Part 1 of Scott Guthrie's blog
Scott Guthrie has a lot of good stuff on LINQ, if you're interested, you should check out more of his posts.
A - IMO, yes. It immediate remind you the pattern, and help you understand the code, and this is maybe one of the important practices in code writing - letting other people understand your code.
B - I prefer the xxDAO convention (Data Access Object).
C - I prefer "service oriented programming", meaning a service that "knows" to save an employee and not a "repository object" that mix between "model" and "control".
D - Maybe using Aspect, but I don't recommend it.
E - You can create an interface for those classed, and inject them from "outside" using setters (just like spring does), or get them from some kind of factory, In that way it will be easy for you to replace the classes with mock, and still leave the members "private".
F - I think that those methods should be extracted out side of the "load employee" and be self services. IMO, you should abstract the "employee data" objects (especially if you got 20 of them :-)). and write a simple service that know to load a "employee data object" of any kind.
Hope that I helped,
Shay
Your naming convention seems ok.
By calling concrete repositories you are tightly coupling the system. Pass them repo objects in constructor. Or use a DI/IOC container.
If repository is returning employee it will know of it. You might want the repo to know the contract for an employee class.
If you are getting null value for something, you should make sure provider code does not send down nulls.
You can achieve that by implementing dependency injection properly and using interfaces.
Standard unit testing frameworks will not give you that, you will need something like Moles. A sample is show on this post
Use inheritance more than composition if you can. But if the object model requires that, then you are helpless in my opinion.

How to initialize a class?

The problem is really simple, I have a class "Stock", I want to load its property "StockName", "StockCode' from the db.
so which patten should I use?
pattern 1) Use service class to create it
public interface IStockService{
Stock GetStock(string stockCode);
void SaveStock(Stock stock);
}
public class StockService : IStockService{
}
IStockService stockService = new StockService();
Stock stock = stockService.GetStock();
pattern 2) Use static method in Stock
public class Stock{
public static Stock GetStock(){
Stock stock = new Stock;
//load stock from db and do mapping.
return stock;
}
public void Save(){
}
}
pattern 3) Use constructor to load
public class Stock{
public Stock(){
//load stock from db and do mapping.
this.stockName = ...
this.stockCode = ...
}
}
for pattern 1: it seems it use so many code to create a stock object, and the "SaveStock" method seems a little not object-orient.
for pattern 2: the "Save" method seems ok, but the GetStock method is a static method, it seems a Utility class which always use static method.
for pattern 3: the constructor will load the data from db when on initialize. it seems confused also.
pattern 2) is the factory (method) patten and reminds me of singletons (static = singleton). Note singletons are evil. The factory method is not not polymorph. You can't change it for tests (i.e. you can't mock it). It's evil! Avoid it!
pattern 3) violates that the constructor should not do too much. Querying the database is too much for a ctor in my opinion. The object and it's creation are different concerns and should be separated. Further more creation of an instance should be separated from the instance, so try to use factories (or injectors). You can replace the factory easier than the "new Class" spread throught your code.
pattern 1) remains, which is an abstract factory pattern. It is good. You can use another implementation for testing (a mock). It separates the creation from the object. (Single responsibility principle as Carl Bergquist calls it.)
So I would go with pattern 1.
Pattern 1:
- Easier to test
- Single responsibility principle
- Can require more code.
Pattern 2:
- Static classes/methods can make mocking much harder. I try to avoid it as much as I can.
Pattern 3:
- Is ok for small classes. But keep logic away from the constructor
But I think Orm and serialization cover most parts(object creation).
You are missing an important piece. Specifically, where do you get your connection string for talking to the database?
Update each of your examples with where the connection string comes from and I think it will make the right answer pop out.
Personally I like have my objects abstracted from their data source, so I'd go with a method like #1. #3 you definitely don't want to do...too much processing in constructors can get you in trouble. The preference of #1 vs #2 is likely to come down to how 'loaded' you want your data objects to be.
If you ever foresee getting your object from another data source you'll want to stick with #1 since it gives much better flexibility.
I would go with pattern 1. It presents a clear separation of concerns between the domain model and the data access. It is also easier to unit test.
if you want it to be initialized automatically, then use static constructor which been called by class loader .net service.
something similar to method 1 where you should be calling into the DB layer classes to get the object loaded from there, though you may want to use an ORM to take care of all the data access for you
you should seperate the entity class(stock) and the logic that populates it(stockservice), but instead of writing a stockservice class just use an orm to map db to your entity class(stock).

Categories

Resources