I have made a loop that loops for every month from a current age through year x, say 80.
I have an array yearCalculation years and every yearCalculation contains among other things an array of monthCalculation. (Just in case anyone wants to throw a comment about Lists, I am currently using arrays and want to see if there is an easy solution.)
This looks as following:
yearCalculations[] years = years.InstantiateArray(//Number of years, [80 minus age]//);
monthCalculations[] months = months.InstantiateArray(//Number of months in a year, [this should be 12]//);
After the instantiation I loop through all the periods and fill them with all sorts of calculations. (However, after age x is being reached, all calculations will result in zero):
for (int i = 0; i < yearCalculations.Length; i++) {
for (int j = 0; j < yearCalculations[i].monthCalculations.Length; j++) {
Double age = calculateAge(birthDate, dateAtTimeX);
if(age < ageX){
//Do all sorts of calculations.
}else{
//Break out of the loops
}
}
}
As you can understand at age X (80), the calculations will be complete, but the last yearcalculation will contain some results, without calculations being made. Lets say this is from month 7 and on. What is the easiest way to resize this array, removing all the months without calculations (So index 6 and on)?
Just for the sake of completeness, here is the instantiateArray function;
public static T[] InstantiateArray<T>(this T[] t, Int64 periods) where T : new()
{
t = new T[periods];
for (int i = 0; i < t.Length; i++){
t[i] = new T();
}
return t;
}
To remove blank values from the array you could use LINQ
var arr = years.Where(x => !string.IsNullOrEmpty(x)).ToArray();//or what ever you need
You can't resize an array.
To quote MSDN:
The number of dimensions and the length of each dimension are established when the array instance is created. These values can't be changed during the lifetime of the instance.
What methods like Array.Resize actually do is allocate a new array and copy the elements over. It's important to understand that. You're not resizing the array, but reallocating it.
So long as you're using arrays, in the end the answer is going to boil down to "allocate a new array, then copy what you want to keep over to it".
The Array.Resize method should do the trick with the new total length. You know the total new length to be the total old length - (12 - month as an int in year)
Related
I am trying to update an array and add it to a list if a certain condition is true. As you can see in my code the array "rows" is updated every time inside the if condition, and the it is added to "checkList".
The problem is that when I iterate through the list to check the values, it seems that only the last value of rows has been added in every entry in the list.
Here is some code to explain
int[] rows = new int[2];
List<int[]> checkList = new List<int[]>();
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
if (true)
{
rows[0] = i;
rows[1] = j;
checkList.Add(rows);
}
}
}
foreach (var row in checkList)
{
Console.WriteLine(row[0] + " " + row[1]);
}
Output:
I hope someone can explain this. Thanks
Most object types in .NET (including arrays) are passed by reference, so checkList.Add(rows); adds a reference to the same array to the list, multiple times.
Instead, you'll want to create a new array instance every time:
List<int[]> checkList = new List<int[]>();
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
if (true)
{
checkList.Add(new int[]{ i, j });
}
}
}
I believe the issue here is that when you are
checkList.Add(rows);
You are adding a reference to the rows array every time to the list, not a separate copy of it. This leads to your current behaviour.
A solution would be to instantiate the array inside the loop, so a new array is created every iteration.
List<int[]> checkList = new List<int[]>();
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
if (true)
{
int[] rows = new int[2];
rows[0] = i;
rows[1] = j;
checkList.Add(rows);
}
}
}
As a supplement to Matthias answer, one of the things that's perhaps not easy to appreciate about C# is that most variables you have and use are merely a reference to something else. When you assign some variable like this:
int[] rows = new int[2];
C# creates some space in memory to keep an array of 2 integers, it attaches a reference to it, and that thing becomes your variable that you use, named rows. If you then do:
int[] rows2 = rows;
It doesn't clone the memory space used and create a new array, it just creates another reference attached to the same data in memory. If the data were a dog, it now has 2 leads attached to its collar but there is still only one dog. You can pull on either lead to urge the dog to stop peeing on a car, but it's the same dog you're affecting.
Array/list slots are just like variables in this regard. To say you have:
List<int[]> checkList = new List<int[]>();
Means declare a list where each of its slots are a variable capable of referring to an int array. It's conceptually no different to saying:
int[] checkList0 = row;
int[] checkList1 = row;
int[] checkList2 = row;
int[] checkList3 = row;
It's just that those numbers are baked into the name, whereas a list permits you a way of varying the name programmatically (and having more than 4 slots):
checkList[0] = row;
checkList[1] = row;
checkList[2] = row;
checkList[3] = row;
checkList[0] is conceptually the entire variable name, just like checkList0 is a variable name, and remember that this is hence just another variable that is just a reference to that same array in memory.
By not making a new array each time, you attached every variable slot in the list to the same array in memory, and thus you ended up with something in memory that looks like:
The black is the list, the blue is the array. Every list slot is just a reference to the same array. You might have changed the numbers in the array 200 times, but at the end of the oepration, because there was only ever one array, you only see the final set of numbers you wrote into the array. You might have attached 20 leads to your dog and pulled each of them once, but it's still just the same dog that has 20 times been stopped from peeing on 20 cars.
Matthias answer works (and is how it should be done) because you concretely make a new array each time
Numbers in blue are fabricated and not intended to represent the answers you should see printed; the concept being explained is that of linking to new array objects in memory
You'd be forgiven for thinking that a clone would be made, bcause it is for int. int is a value type, whcih means the value is copied when it's used:
int x = 1;
int y = x;
y = y + 1;
y is now 2, but x is still 1. It'd be pretty hard work to write C# if it wasn't this way i.e. if every time you incremented some int variable, every other variable that had touched the variable that it came from was also affected.. So I think it's perhaps intrinsically reasonable to assume that whenever an assignment of anything is made, changes that affect the value of the assigned variable don't affect earlier iterations of it.. but that's not the case. There's this clear divide between value types (types whose data is copied/cloned when they're assigned) and reference types (types whose data is not copied/cloned). While int is a value type (cloned), an int[] is a reference type (not cloned)
..and that's something you'll really need to get down with and remember
Roll on the what's ref/out for? query :D
I have a task to find the difference between every integer in an array of random numbers and return the lowest difference. A requirement is that the integers can be between 0 and int.maxvalue and that the array will contain 1 million integers.
I put some code together which works fine for a small amount of integers but it takes a long time (so long most of the time I give up waiting) to do a million. My code is below, but I'm looking for some insight on how I can improve performance.
for(int i = 0; i < _RandomIntegerArray.Count(); i++) {
for(int ii = i + 1; ii < _RandomIntegerArray.Count(); ii++) {
if (_RandomIntegerArray[i] == _RandomIntegerArray[ii]) continue;
int currentDiff = Math.Abs(_RandomIntegerArray[i] - _RandomIntegerArray[ii]);
if (currentDiff < lowestDiff) {
Pairs.Clear();
}
if (currentDiff <= lowestDiff) {
Pairs.Add(new NumberPair(_RandomIntegerArray[i], _RandomIntegerArray[ii]));
lowestDiff = currentDiff;
}
}
}
Apologies to everyone that has pointed out that I don't sort; unfortunately sorting is not allowed.
Imagine that you have already found a pair of integers a and b from your random array such that a > b and a-b is the lowest among all possible pairs of integers in the array.
Does an integer c exist in the array such that a > c > b, i.e. c goes between a and b? Clearly, the answer is "no", because otherwise you'd pick the pair {a, c} or {c, b}.
This gives an answer to your problem: a and b must be next to each other in a sorted array. Sorting can be done in O(N*log N), and the search can be done in O(N) - an improvement over O(N2) algorithm that you have.
As per #JonSkeet try sorting the array first and then only compare consecutive array items, which means that you only need to iterate the array once:
Array.Sort(_RandomIntegerArray);
for (int i = 1; i < _RandomIntegerArray.Count(); i++)
{
int currentDiff = _RandomIntegerArray[i] - _RandomIntegerArray[i-1];
if (currentDiff < lowestDiff)
{
Pairs.Clear();
}
if (currentDiff <= lowestDiff)
{
Pairs.Add(new NumberPair(_RandomIntegerArray[i], _RandomIntegerArray[i-1]));
lowestDiff = currentDiff;
}
}
In my testing this results in < 200 ms elapsed for 1 million items.
You've got a million integers out of a possible 2.15 or 4.3 billion (signed or unsigned). That means the largest possible min distance is either about 2150 or 4300. Let's say that the max possible min distance is D.
Divide the legal integers into groups of length D. Create a hash h keyed on integers with arrays of ints as values. Process your array by taking each element x, and adding it to h[x/D].
The point of doing this is that any valid pair of points is either contained in h(k) for some k, or collectively in h(k) and h(k+1).
Find your pair of points by going through the keys of the hash and checking the points associated with adjacent keys. You can sort if you like, or use a bitvector, or any other method but now you're dealing with small arrays (on average 1 element per array).
As elements of the array are b/w 0 to int.maxvalue, so I suppose maxvalue will be less than 1 million. If it is so you just need to initialise the array[maxvalue] to 0 and then as you read 1 million values increment the value in your array.
Now read this array and find the lowest value as described by others as if all the values were sorted. If at any element is present more than 1 than its value will be >1 so you could easily say that min. difference is 0.
NOTE- This method is efficient only if you do not use sorting and more importantly int.maxvalue<<<<<(less than) 10^6(1 million).
It helps a little if you do not count on each iteration
int countIntegers = _RandomIntegerArray.Count();
for(int i = 0; i < countIntegers; i++) {
//...
for(int ii = i + 1; ii < countIntegers; ii++) {
//...
Given that Count() is only returning the number of Ints in an array on each successful count and not modifying the array or caching output until modifications.
How about splitting up the array into arraysize/number of processors sized chunks and running each chunk in a different thread. (Neil)
Assume three parts A, B and C of size as close as possible.
For each part, find the minimum "in-part" difference and that of pairs with the first component from the current part and the second from the next part (A being the next from C).
With a method taking O(n²) time, n/3 should take one ninth, done 2*3 times, this amounts to two thirds plus change for combining the results.
This calls to be applied recursively - remember Карацу́ба/Karatsuba multiplication?
Wait - maybe use two parts after all, for three fourth of the effort - very close to "Karatsuba". (When not seeing how to use an even number of parts, I was thinking multiprocessing with every processor doing "the same".)
This question already has answers here:
Sorting an array related to another array
(4 answers)
Sorting two arrays (values,keys), then sorting the keys
(5 answers)
Closed 5 years ago.
This is my first post on stackoverflow, so forgive any formatting mistakes.
I have a project named BOGOTotal - basically, its job is to take a decimal array of prices, sort them in ascending order, and then determine which prices will be bought and which prices will be free. Anyways, that's just a bit of backstory, but I need something more specific.
I've got two arrays - one of the prices, and one of the quantities of those prices. For example, in my Items array (should have been named "prices"), Items[0] is set to 2.20m, and my Quantities array, Quantites[0] is set to 5. Meaning I have five of the same item that are priced at $2.20.
//create items array
decimal[] Items = new decimal[5];
Items[0] = 2.20m;
Items[1] = 1.50m;
Items[2] = 8.40m;
Items[3] = 4.60m;
Items[4] = 3.75m;
//create quantity array
int[] Quantity = new int[Items.Length];
Quantity[0] = 5;
Quantity[1] = 2;
Quantity[2] = 1;
Quantity[3] = 3;
Quantity[4] = 6;
I then had to sort the Items array in ascending order.
Array.Sort(Items);
However, when I sorted my Items array, the relation of each item to its quantity is now lost, because Items[0] and Quantity[0] no longer are related. Now, instead of Items[0] = 2.20m, it has become Items[0] = 1.50m. Now, I have 5 items that are $1.50 instead of $2.20.
Here's where I had my idea - I would go ahead and calculate the prices of the old arrays by creating a firstPrices array, putting them in a for loop, and saying
decimal[] firstPrices = new decimal[Items.Length];
//calculate prices before sorting - will match back up afterward
for (int i = 0; i < Items.Length; i++)
{
firstPrices[i] = Items[i] * Convert.ToDecimal(Quantity[i]);
}
Here comes the hard part: I'm trying to re-align (for lack of a better word) each quantity to its Item - meaning I'm trying to make the item that is $2.20 match back up with its correct quantity (being 5). However, I'm having a hard time doing this. I tried a nested for loop within another for loop that tested each quantity by multiplying it by the current Item and then comparing it to that spot in firstPrices:
//i would be newItems
//j would be quantity
for (int i = 0; i < Items.Length; i++)
{
for (int j = 0; j < Items.Length; j++)
{
if (Items[i] * Quantity[j] == firstPrices[i])
{
Quantity[i] = Quantity[j];
break;
}
}
}
When it found a match, I set it to break out of the nested loop and increment "i", which goes to the next item in the Items array. Is there something I'm doing wrong here?
You got two seperate arrays that are related, wich is not a good thing. Make a Struct, Class or Tupel containing both values. Optionally also a custom comparer. Make a array of that type.
Then it would be as simple as calling Array.Sort().
In caess where there is no single order (sometimes you want to sort by prices times quantity. Sometimes single item price), Array.Sort() has overrides that allow you to specify the comparer to be used.
You could also go for Linq, if you have experience with it. But getting both values into one type is a requirement. And the perfect time to learn that.
I have an array of boolean values and need to randomly select a specific quantity of indices for values which are true.
What is the most efficient way to generate the array of indices?
For instance,
BitArray mask = GenerateSomeMask(length: 100000);
int[] randomIndices = RandomIndicesForTrue(mask, quantity: 10);
In this case the length of randomIndices would be 10.
There's a faster way to do this that requires only a single scan of the list.
Consider picking a line at random from a text file when you don't know how many lines are in the file, and the file is too large to fit in memory. The obvious solution is to read the file once to count the lines, pick a random number in the range of 0 to Count-1, and then read the file again up to the chosen line number. That works, but requires you to read the file twice.
A faster solution is to read the first line and save it as the selected line. You replace the selected line with the next line with probability 1/2. When you read the third line, you replace with probability 1/3, etc. When you've read the entire file, you have selected a line at random, and every line had equal probability of being selected. The code looks something like this:
string selectedLine = null;
int numLines = 0;
Random rnd = new Random();
foreach (var line in File.ReadLines(filename))
{
++numLines;
double prob = 1.0/numLines;
if (rnd.Next() >= prob)
selectedLine = line;
}
Now, what if you want to select 2 lines? You select the first two. Then, as each line is read the probability that it will replace one of the two lines is 2/n, where n is the number of lines already read. If you determine that you need to replace a line, you randomly select the line to be replaced. You can follow that same basic idea to select any number of lines at random. For example:
string[] selectedLines = new int[M];
int numLines = 0;
Random rnd = new Random();
foreach (var line in File.ReadLines(filename))
{
++numLines;
if (numLines <= M)
{
selectedLines[numLines-1] = line;
}
else
{
double prob = (double)M/numLines;
if (rnd.Next() >= prob)
{
int ix = rnd.Next(M);
selectedLines[ix] = line;
}
}
}
You can apply that to your BitArray quite easily:
int[] selected = new int[quantity];
int num = 0; // number of True items seen
Random rnd = new Random();
for (int i = 0; i < items.Length; ++i)
{
if (items[i])
{
++num;
if (num <= quantity)
{
selected[num-1] = i;
}
else
{
double prob = (double)quantity/num;
if (rnd.Next() > prob)
{
int ix = rnd.Next(quantity);
selected[ix] = i;
}
}
}
}
You'll need some special case code at the end to handle the case where there aren't quantity set bits in the array, but you'll need that with any solution.
This makes a single pass over the BitArray, and the only extra memory it uses is for the list of selected indexes. I'd be surprised if it wasn't significantly faster than the LINQ version.
Note that I used the probability calculation to illustrate the math. You can change the inner loop code in the first example to:
if (rnd.Next(numLines+1) == numLines)
{
selectedLine = line;
}
++numLines;
You can make a similar change to the other examples. That does the same thing as the probability calculation, and should execute a little faster because it eliminates a floating point divide for each item.
There are two families of approaches you can use: deterministic and non-deterministic. The first one involves finding all the eligible elements in the collection and then picking N at random; the second involves randomly reaching into the collection until you have found N eligible items.
Since the size of your collection is not negligible at 100K and you only want to pick a few out of those, at first sight non-deterministic sounds like it should be considered because it can give very good results in practice. However, since there is no guarantee that N true values even exist in the collection, going non-deterministic could put your program into an infinite loop (less catastrophically, it could just take a very long time to produce results).
Therefore I am going to suggest going for a deterministic approach, even though you are going to pay for the guarantees you need through the nose with resource usage. In particular, the operation will involve in-place sorting of an auxiliary collection; this will practically undo the nice space savings you got by using BitArray.
Theory aside, let's get to work. The standard way to handle this is:
Filter all eligible indices into an auxiliary collection.
Randomly shuffle the collection with Fisher-Yates (there's a convenient implementation on StackOverflow).
Pick the N first items of the shuffled collection. If there are less than N then your input cannot satisfy your requirements.
Translated into LINQ:
var results = mask
.Select((i, f) => Tuple.Create) // project into index/bool pairs
.Where(t => t.Item2) // keep only those where bool == true
.Select(t => t.Item1) // extract indices
.ToList() // prerequisite for next step
.Shuffle() // Fisher-Yates
.Take(quantity) // pick N
.ToArray(); // into an int[]
if (results.Length < quantity)
{
// not enough true values in input
}
If you have 10 indices to choose from, you could generate a random number from 0 to 2^10 - 1, and use that as you mask.
i am developing a mine sweeper game in c# of dimension (8 x 8).The difficulty levels increase/decrease the number of mines on the grid.
I use a random class (with min,max set;) to generate a random cell number.The problem i am facing is ,the random object keeps repeating the same number.I tried to resolve this issue by maintaining a local list where i store the generated unique random numbers.The next time i call Next(), i would check it against the local list ,to see if its already present.If the number is already present i would keep calling Next() until i get a new number which is unique and not present in the list.But this doesnt look in itself a good solution as sometimes it takes painful amount of time to generate a new list.
Any suggestions on this please
Even if you use the same random number generator, repeating values are possible.
One way to avoid this would be to generate a list of possible values and using the random number generated to access a value in this list (using as indice) and reducing this list, as you find places to put mines to.
For 8 X 8 example, you have 64 possible places
List<int> possibleValues = new List<int>();
for (int i = 0; i < 64; i++)
{
possibleValues[i] = i;
}
List<int> result = new List<int>();
Random r = new Random();
int numberOfMines = 50; //say you want to put 50 mines there
for (int i = 0; i < numberOfMines; i++)
{
int indice = r.Next(possibleValues.Count);
int value = possibleValues[indice];
possibleValues.Remove(value);
result.Add(value);
}
It looks like you want a shuffle based on a fixed number of cells (8,8), e.g. a Fisher-Yates shuffle. This would guarantee that any coordinate only appears exactly once (as opposed to repeatedly using Random.Next() where you can draw the same number many times), and the order of appearance of coordinates is randomized.
Initialize an array that contains all the coordinates of your cells, shuffle the array and maintain an index of the next "random" cell, return the cell at the offset of the index and increase the index.
First calculate the number of mines, and empty fields.
Random rand=new Random();
int mines=GetMinesFromDifficulty(...);
int empty=TotalFields-mines;
Then for each field:
for(int y=0;y<height;y++)
for(int x=0;y<height;y++)
{
if(random.Next(mines+empty) < mines))
{
field[x,y]=Mine;
mines--;
}
else
{
field[x,y]=Empty;
empty--;
}
}
Instead of picking slots where the mines should be, loop through the slots and calculate the probability that there should be a mine there. The implementation for this becomes very simple, as you just need a single loop:
bool[] mines = new bool[64];
int cnt = 12;
Random rnd = new Random();
for (int i = 0; i < mines.Length; i++) {
if (rnd.Next(mines.Length - i) < cnt) {
mines[i] = true;
cnt--;
}
}
(Room for improvement: You can exit out of the loop when cnt reaches zero, if you don't need to initialise all slots.)
If your grid is 8x8, and you want to randomly choose an unused cell instead of pulling random numbers until you hit an unused one, then keep track of the number of unused cells. Say 8 have been used, leaving 55 unused. Then generate a random number between 0 and 54. You would then have to count through, and find the nth empty cell.
It would probably be easier to think of the problem in a more linear way. Instead of say a 2D array... Squares[8][8] think of it as a single dimension array Squares[64].
At this point you generate a number between 0-63 for your random mine placement. If say the value is 10 you could store for later to offset subsequent numbers. You can reduce your range now from 0-62, if you pulled out the value 16 you would want to add +1 for each value you'd already pulled out underneath it (so actually use 17 in this case, but square 10 has been excluded from our set).
Without seeing any code it's kind of hard to get the gist of things, but from what I can tell you have the following:
A multi-dimensional array [8][8] for the grid layout of the game, you're now trying to randomly place mines?
You'll need to keep one instance of Random for generating the numbers, else you will get the same number over and over again. Something like this
private readonly Random randomNumber = new Random();
for(int i = 0; i < 10; i++)
{
Console.WriteLine(this.randomNumber.Next(1, 10));
}
This will then generate 10 random numbers, each one different.