Properties in an Interface - c#

In my interface, I have declared a property with setter and getter.
public interface ITestInterface
{
string AProperty { get; set; }
}
When I code my class which inherit that interface, why I need to define these two properties again?
public sealed class MyClass: ITestInterface
{
public string AProperty { get; set; }
}

Because you are not inheriting from an interface, you are implementing the interface. (although they both share same syntax :)
public class MyClass : IMyInterface { ... } //interface implementing
public class MyClass : MyBaseClass { ... } //inheriting from a class
Assume you are inheriting a candy box (not from your ancestors, in programming manner), it is something (not exactly) like you put the candy box in another box, now the outer box (the derived class, the inherited one) is inherited from candy box and have all the things candy box have, but if you want to implement (make) a candy box yourself you must build a box and put some candy in it. This is the way interfaces work.

Your interface definition only tells there is a property with a getter and setter, not how it is implemented. You could use auto-implemented properties, but you are not required to.
Following the interface, this would be a valid implementation:
public sealed class MyClass: ITestInterface
{
public string APROPERTY
{
get { return someField + " hello"; }
set { someOtherField = value; }
}
}
In an interface definition, string AProperty { get; set; } is the declaration of the property, while in a class, it means that the property is auto-implemented.

Short answer
Because interfaces contain no more than a definition of a class, and cannot contain the actual implementation of any member functions. It's by design.
Long answer
First you have to realize that properties are basically get and set member functions with some simplified syntax. The question here is therefore: why can't an interface definition contain an implementation of a member function?
Well, in some languages (most notably: C++) you can.
If you have an inheritance chain, that's basically solved through lookup tables. Say that you have member function 1, then in all the classes in the inheritance chain, there's a table which contains a pointer to function 1. Once you call a member function, the call basically grabs the first entry from the table belonging to the type of your object, and calls that. This thing is called a vtable (and for more details, see here).
Now, in C++, VTables are very transparent to the developer: each class basically has a vtable and there's no such thing as a real 'interface'. This also means that all classes can have implementations and members such as fields. If you have a class with only pure virtual members (e.g. functions without an implementation), you have the C++ equivalent of an 'interface'.
In software engineering, these classes were often called 'interface' classes, because they contain only a definition of what's going on, not the actual implementation. Interfaces have the nice property that they describe functionality without actually going into the details, thereby giving the possibility to put 'boundaries' in your code. There are a lot of use cases for this, including (RPC) communication, a lot of design patterns, and so on.
In C++, a class can derive from multiple classes (multiple inheritance) with and without an implementation. Also, because interfaces are in fact more like 'abstract' classes than like 'interfaces' in C#, this means you can also add functionality there. The vtable that was previously described therefore contains pointers to functions in all the base classes.
The problems with this start when you're starting to add functionality to interface classes. For starters, let's say you have something like this (I'll do this in sort-of C#):
interface A { Foo(); } // basically an interface.
interface B : A { Foo(); } // another interface
class B : A { void Foo() {...} } // implementation of Foo, inherits A
class D : B,C { } // inherits both B, C (and A via both B and C).
What we're interested in here is what happens if you call Foo in class D. For that, we have to construct a vtable for class D. Basically this vtable would look like this:
Foo() -> C::Foo()
This means that if you construct an object of D, and call Foo, you'll end up calling the implementation of Foo in type C:
var tmp = new D();
tmp.Foo(); // calls C::Foo()
It becomes more difficult when we're changing the definition of B into something like this:
class B : A { void Foo() {...} } // changed into an implementation
Again, we try to construct the vtable for class D and we end up with a problem:
Foo() -> C::Foo() or B::Foo()???
The problem we're facing here is: what implementation of Foo are we going to use when calling that member? Also, what constructor are we going to call? And what about destruction order? In C++ there are workarounds for this called virtual inheritance.
While designing .NET and the C# language, they thought about past experiences with multiple inheritance and the implications of virtual inheritance and decided that it's not only a difficult thing to implement, but also very confusing for developers at best. As you've seen, these problems don't exist when you just add interfaces.
So, that's why you cannot have a property (or a method) in your interface.

I think the problem here is, that the same syntax has two different meanings for interfaces and classes. AProperty { get; set; } is in an interface is the declaration-only, in a class it's an automatically implemented interface.
So that term is dependent on the context.
public interface ITestInterface
{
string AProperty { get; set; }
}
Declares the Property, but cannot implement it.
public sealed class MyClass: ITestInterface
{
public string AProperty { get; set; }
}
Implements the interface, where the property is automatically implemented (which only works for classes).

Interface contain property signatures not the actual definitions. You are actually requesting for any class implementing ITestInterface to implement get and set for AProperty. See this and this for more details.

As others say interface is just a container for your methods and properties signatures. It needs implementation but this implementation signature will be perfectly match with one that is used in interface. Also it guarantees that all of this members can be accessed in a class instance as they are by default public properties and without implementation program will not compile at all.
Let's say you have interface:
public interface ITestInterface
{
string AProperty { get; }
}
and class that implements it:
class MyClass : ITestInterface
{
public string AProperty { get { if (DateTime.Today.Day > 7) return "First week of month has past"; return "First week of month is on"; } }
}
It's not possible to use auto-implemented properties and not possible to add setter in this class because interface property lacks set accessor and auto-implemented properties requires that interface contains auto-implemented properties signature ({ get; set;}). So in your example interface just declares properties and that's it.
Just by knowing what interfaces class has inherited you know what members are there and if you just want to use (or allow user to use) some of this methods (not allowing to change anything though) you can always upcast your class instance to one of these interface types and pass it as a parameter.

I think the confusion here comes from the fact that auto properties (just the get and or set declarations) look the same in the interface and the implementation. The interface is merely a declaration (contract) of what a class must provide in order to be deemed an implementer of the interface. It is much clearer if you consider a method declaration in an interface vs its implementation in a class.
Interface = requirements;
Class = how those requirements are fulfilled
public interface ITestInterface
{
string GetAProperty();
}
public class MyClass : ITestInterface
{
public string GetAProperty()
{
// Do work...
return "Value";
}
}

Related

Reference specific class from its generic base class

When working with generics if I have for example a class:
class Foo<T> where T:Cheese
{
}
and then 2 derived classes
class FooDerivedBlue:Foo<BlueCheese>
{
}
class FooDerivedWhite:Foo<WhiteCheese>
{
}
where BlueChesse and WhiteCheese inherit from chesse.
Now there is another class, that will conditionally use FooDerivedBlue or FooDerivedWhite.
The class should have a property like
public Foo<Cheese> Foo {get;set;}
so I can set it to the FooDerivedXXX I need at runtime.
When doing this an trying to set Foo=new FooDerivedWhite() the compiler will complain, since FooDerivedWhite cant be converted to Foo<cheese>.
A more practical example:
If I have a
ArticleRepository<T>
AssemblyArticleRepository:ArticleRepository<AssemblyArticle>
ProductionArticleRepository:ArticleRepository<ProductionArticle>.
ProductionArticle and AssemblyArticle inherit from Article.
Both specific repositories inherit from ArticleRepository and have a lot of common logic. There are certain parts I need only access to the logic they shared (for example adding a new item or deleting it) and in order to avoid duplicate code, I want to instantiate the proper repo and pass it.
For example, I could have an ArticleService, which I pass a type and it instantiates the right repository. Instead, I would need to have a service for each Article type. (??- with my actual knowledge)
Which is the way to solve it in .NET? Or maybe I am facing the problem/writing my code in a wrong way?
Update Here a gist with the concrete problem:
https://gist.github.com/rgomez90/17ec21a1a371be6d78a53a4072938f7f
There are a few ways to deal with this, but the most straightforward is probably to make your "other class" also have a generic type parameter that describes what kind of cheese it operates on. Then all the types can be statically correct.
public abstract class Cheese { }
public class BlueCheese : Cheese { }
public abstract class CheeseTool<T> where T:Cheese { }
public class BlueCheeseTool : CheeseTool<BlueCheese> { }
public class CheeseEater<T> where T : Cheese {
public T Cheese;
public CheeseTool<T> Tool;
}
Then all typing is statically correct:
CheeseEater<BlueCheese> eater = new CheeseEater<BlueCheese>();
eater.Cheese = new BlueCheese();
eater.Tool = new BlueCheeseTool();
More complicated solutions might involve explicit casts and type factories, but simplest is best if it does the job.

Accepting multiple similar entities in a Method - Elegant solution

I have two data entities, which are almost similar, design is something like:
public Class Entity1 : Base
{
public int layerId;
public List<int> Groups;
}
Difference is Entity1 has an extra collection of integer Groups
public Class Entity2 : Base
{
public int layerId;
}
These entities are filled as an input from UI using Json, I need to pass them to a processing method, which gives the same Output entity. Method has a logic to handle if List<int> Groups is null, I need to create a method which is capable of handling each of the input in an elegant manner. I cannot just use only Entity1, since they are two different functional inputs for different business process, so using Entity1 as direct replacement would be a mis-representation
Instead of creating overload of the function, I can think of following options:
Use object type as input and typecast in the function internally
I think we can similarly use dynamic types, but solution will be similar as above, it will not be a clean solution in either case, along with the switch-case mess.
What I am currently doing is processing method is like this:
public OuputEntity ProcessMethod(Entity 1)
{
// Data Processing
}
I have created a constructor of Entity1, that takes Entity2 as Input.
Any suggestion to create an elegant solution, which can have multiple such entities. May be using generic, where we use a Func delegate to create a common type out of two or more entities, which is almost similar to what I have currently done. Something like:
Func<T,Entity1>
Thus use Entity1 output for further processing in the logic.
I need to create a method which is capable of handling each of the input in an elegant manner
Create an Interface, or a contract so to speak, where each entity adheres to the particular design. That way common functionality can be processed in a similar manner. Subsequently each difference is expressed in other interfaces and testing for that interface sis done and the differences handled as such.
May be using generic,
Generic types can be tested against interfaces and a clean method of operations hence follows suit.
For example say we have two entities that both have Name properties as string, but one has an Order property. So we define the common interface
public interface IName
{
string Name { get; set; }
string FullName { get; }
}
public interface IOrder
{
decimal Amount { get; set; }
}
So once we have our two entities of EntityName and EntityOrder we can add the interfaces to them, usually using the Partial class definition such as when EF creates them on the fly:
public partial class EntityName : IName
{
// Nothing to do EntityName already defines public string Name { get; set; }
public string FullName { get { return "Person: " + Name; }}
}
public partial class EntityOrder : IName, IOrder
{
// Nothing to do Entity Order already defines public string Name { get; set; }
// and Amount.
public string FullName { get { return "Order: " + Name; } }
}
Then we can process each of them together in the same method
public void Process(IName entity)
{
LogOperation( entity.FullName );
// If we have an order process it uniquely
var order = entity as IOrder;
if (order != null)
{
LogOperation( "Order: " + order.Amount.ToString() );
}
}
Generic methods can enforce an interface(s) such as:
public void Process<T>(T entity) where T : IName
{
// Same as before but we are ensured that only elements of IName
// are used as enforced by the compiler.
}
Just create generic method that will do this work for you:
List<OuputEntity> MyMethod<T>(T value) where T : Base
// adding this constraint ensures that T is of type that is derived from Base type
{
List<OutputEntity> result = new List<OutputEntity>();
// some processing logic here like ...
return result;
}
var resultForEntity1 = MyMethod<Entity1>();
var resultForEntity2 = MyMethod<Entity2>();
P.S. check my answer for this question as you may find it useful too:
map string to entity for using with generic method
You probably want to implement an interface or an abstract class.
From MSDN
If you anticipate creating multiple versions of your component, create
an abstract class. Abstract classes provide a simple and easy way to
version your components. By updating the base class, all inheriting
classes are automatically updated with the change. Interfaces, on the
other hand, cannot be changed once created. If a new version of an
interface is required, you must create a whole new interface.
If the functionality you are creating will be useful across a wide range of
disparate objects, use an interface. Abstract classes should be used
primarily for objects that are closely related, whereas interfaces are
best suited for providing common functionality to unrelated classes.
If you are designing small, concise bits of functionality, use
interfaces. If you are designing large functional units, use an
abstract class.
If you want to provide common, implemented
functionality among all implementations of your component, use an
abstract class. Abstract classes allow you to partially implement your
class, whereas interfaces contain no implementation for any members.
Abstract Class Example
Cat and Dog can both inherit from abstract class Animal, and this abstract base class will implement a method void Breathe() which all animals will thus do in exactly the same fashion. (You might make this method virtual so that you can override it for certain animals, like Fish, which does not breath the same as most animals).
Interface Example
All animals can be fed, so you'll create an interface called IFeedable and have Animal implement that. Only Dog and Horse are nice enough though to implement ILikeable - You'll not implement this on the base class, since this does not apply to Cat.

Why would you mask a base class member?

I have just learned how to mask a base class member (using new) but am missing the point as to why I would want to do that. Does masking provide us with a certain level of protection as is the case in using encapsulation? Please advise.
You will very rarely use "new" to mask a base class member.
It's mainly used for the cases where the derived class had the member first, and then it was added to the base class --- the same name for a different purpose. The new is there to that you acknowledge that you know you are using it differently. When a base member is added in C++, it just silently merges the existing method into the inheritance chain. In C#, you will have to choose between new and override, to show you know what is happening.
It's not just used for masking. It actually breaks the inheritance chain, so if you call the base class method, the method in the derived class will not be called (just the one in the base class).
You're essentially creating a new method that has nothing to do with the base class method. Hence the "new" keyword.
Keeping that in mind the "new" keyword can be used if you want to define a method with the same signature as a base type method, but having a different return type.
The only valid safe examples that I've come across is being more specific with return types or providing a set accessor on a property. I'm not saying those are the only ones, but that's all I've found.
For example, suppose you have a very simple base that looks like this:
public abstract class Base
{
public string Name { get; protected set; }
public Base(string name)
{ Name = name; }
}
You could have a derived that looks more like this:
public class Derived : Base
{
public new string Name
{
get { return base.Name; }
set { base.Name = value; }
}
public Derived(string name) : base(name)
{ }
}
Assuming business rules allows this one specific Derived to have a changeable name, I believe this is acceptable. The problem with new is that it changes behavior depending on what type the instance is viewed as. For example, if I were to say:
Derived d = new Derived("Foo");
d.Name = "Bar";
Base b = d;
b.Name = "Baz"; // <-- No set available.
In this trivial example, we're fine. We are overriding the behavior with new, but not in a breaking way. Changing return types requires a bit more finesse. Namely, if you use new to change a return type on a derived type, you shouldn't allow that type to be set by the base. Check out this example:
public class Base
{
public Base(Base child)
{ Child = child; }
public Base Child { get; private set; }
}
public class Derived
{
public Derived(Derived child) : base(child)
{ }
public new Derived Child
{ get { return (Derived)base.Child; } }
}
If I could set Child on the Base class, I could have a casting problem in the Derived class. Another example:
Derived d = new Derived(someDerivedInstance);
Base b = d;
var c = b.Child; // c is of type Base
var e = d.Child; // e is of type Derived
I can't break any business rules by treating all of my Derived classes as Bases, it's just convenient to not type check and cast.
I have just learned how to mask a base class member (using new)
FYI this feature is usually called "hiding" rather than "masking". I think of "masking" as clearing bits in a bit array.
am missing the point as to why I would want to do that.
Normally you don't want to. For some reasons to use and not use this feature, see my article on the subject from 2008:
http://blogs.msdn.com/b/ericlippert/archive/2008/05/21/method-hiding-apologia.aspx
Does masking provide us with a certain level of protection as is the case in using encapsulation?
No, it does not.
What you are referring to is called Name Hiding. It is mostly a convenience feature. If you are inheriting from a class for which you do not control the source using new will let you change the behavior of a method even if it wasn't declared as virtual (or completely change the signature if it is virtual). The new keyword simply suppresses a compiler warning. You are basically informing the compiler that you are intentionally hiding the method from a parent class.
Delphi had the reintroduce keyword for the same reason.
What does this buy you other than a suppressed warning? Not a whole lot. You can't access the new method from a parent class. You can access it from an interface if your child class directly implements the interface (as apposed to inheriting it from its parent class). You can still call the parent class' member from the child. Any additional descendants of your class will inherit the new member rather than the one in the parent.
This is actually called member hiding. There are a couple of common scenarios where this can be appropriately used.
It allows you to work around versioning issues in which either the base or derived class author unwittingly creates a member name that collides with an existing identifier.
It can be used to simulate covariance on return types.
Regarding the first point...it is possible that an author of a base class could later add a member with the same name as an exisiting member in a derived class. The base class author may not have an knowledge of the derived classes and thus there is no expectation that she should avoid name collisions. C# supports the independent evolution of class hierarchies using the hiding mechanisms.
Regarding the second point...you may want a class to implement an interface that dictates a certain method signature and so you are locked into returning instances of a certain type only while at the same time you have subclassed that type and would really like for callers to see the concrete type instead. Consider this example.
public interface IFoo { }
public class ConcreteFoo { }
public abstract class Base
{
private IFoo m_Foo;
public Base(IFoo x) { m_Foo = x; }
public IFoo Foo { get { return m_Foo; } }
}
public class Derived
{
public Derived(ConcreteFoo x) : base(x) { }
public new ConcreteFoo Foo { get { return (ConcreteFoo)base.Foo; } }
}

Any real example of using interface related to multiple inheritance

I m trying to understand Interfaces so that I can implement them in my programs but I m not able to imagine how should i use them.
Also give me some eg of using them with multiple inheritance in C#
A good example for an interface is a repository pattern. Your interface will define methods like Get, GetAll, Update, Delete, etc. No implementation, just function signatures.
Then, you can write a 'concrete' implementation of that class to work with, say, MySQL. Your UI should only refer to the interface, though.
Later, if you decide to change to Microsoft SQL, you write another concrete implementation, but your UI code doesn't have to change (much).
Multiple inheritance doesn't exist in C#, in the sense that you can only inherit from one 'concrete' class; though you can inherit (or 'implement') as many interfaces as you want.
I am writing a video game. In this video game I apply different forces to objects in the game. Thrust forces, impact forces, gravitational forces. While they are calculated differently, they all have the same basic elements. I need to call an update function that will evaluate the force and add the force to the object it's attached to.
So, what I've done is create an IForce interface that has an update function for its signature. All of my forces implement this interface:
public interface IForce
{
void Update(Particle particle, GameTime gameTime);
}
Here is a sample implementation.
public class Spring : IForce
{
private Particle ThisParticle;
private Particle ThatParticle;
private float K;
public Spring(Particle thisParticle, Particle thatParticle, float k)
{
ThisParticle = thisParticle;
ThatParticle = thatParticle;
}
public void Update(Particle particle, GameTime gameTime)
{
float X = Vector3.Length(ThisParticle - ThatParticle);
ThisParticle.Forces.Add(K * X);
}
}
The update function has a simplified spring force update to make it easier to understand.
This helps in a few ways.
I can completely change the way a force is calculated without effecting other parts of my code. I do this all the time. Along the same lines, it is rediculously easy for me to add new forces. As long as it implements the IForce interface I know it will mesh well with my existing code.
Another way it helps is with handling a large number of forces. I have a force registry that has a List of IForce. Since all forces implement that interface and have an Update function it's very easy to update all the forces in my game. When I create the force I add it to the list. Then, I loop through the list and call each elements update function without worrying about what type of force it is and all my forces update.
I use interfaces every day in a lot of different situations. They are fantastic!
Note :Interface is used to restrict and access the methods or events etc from differents classes at any cost, It means we can defined many more methods inside any class but when we are calling methods through Interface means we want only other than restricted methods. In the program below User1 can use Read & Write both but User2 can Write and Execute. See this Program below.........
namespace ExplConsole
{
class Program
{
static void Main ()
{
System.Console.WriteLine("Permission for User1");
User1 usr1 = new Test(); // Create instance.
usr1.Read(); // Call method on interface.
usr1.Write();
System.Console.WriteLine("Permission for User2");
User2 usr2 = new Test();
usr2.Write();
usr2.Execute();
System.Console.ReadKey();
}
}
interface User1
{
void Read();
void Write();
}
interface User2
{
void Write();
void Execute();
}
class Test : NewTest,User1, User2
{
public void Read()
{
Console.WriteLine("Read");
}
public void Write()
{
Console.WriteLine("Write");
}
}
class NewTest
{
public void Execute()
{
Console.WriteLine("Execute");
}
}
}
Output:
Permission for User1
Read
Write
Permission for User2
Write
Execute
Interfaces simply define a contract of the public elements (e.g. properties, methods, events) for your object, not behavior.
interface IDog
{
void WagTail(); //notice no implementation
ISound Speak(); //notice no implementation
}
class Spaniel : IDog
{
public void WagTail()
{
Console.WriteLine("Shook my long, hairy tail");
}
public ISound Speak()
{
return new BarkSound("yip");
}
}
class Terrier : IDog
{
public void WagTail()
{
Console.WriteLine("Shook my short tail");
}
public ISound Speak()
{
return new BarkSound("woof");
}
}
UPDATE
In "real examples" I use interfaces with:
- Unit Testing
- GENERICS (e.g. Repository, Gateway, Settings)
interface Repository<T>{
T Find(Predicate<T>);
List<T> ListAll();
}
interface Gateway<T>{
T GetFrom(IQuery query);
void AddToDatabase(IEntity entityItem);
}
interface Settings<T>{
string Name { get; set; }
T Value { get; set; }
T Default { get; }
}
Here is one (in Java, but this is not important since they're similiar):
In my project I've created simple interface:
public interface Identifiable<T> {
public T getId();
}
Which is simple replacement to some sorts of annotations. The next step: I've made all entity classes implement this interface.
The third step is to write some syntax-sugar-like methods:
public <T> List<T> ids(List<? extends Identifiable<T> entities) { ... }
This was just an example.
The more complex example is something like validation rules: you have some validation engine (probably written by you) and a simple interface for rule:
public interface ValidationRule {
public boolean isValid(...);
}
So, this engine requires the rules to be implemented by you. And of course there will be multiple inheritance since you'll certainly wish more then a single rule.
Multiple inheritance is about having a class be usable in multiple situations: [pseudo code]
interface Shape {
// shape methods like draw, move, getboundingrect, whatever.
}
interface Serializable {
// methods like read and write
}
class Circle : public Shape, public Serializable {
// TODO: implement Shape methods
// TODO: implement Serializable methods
}
// somewhere later
{
Circle circle;
// ...
deserializer.deserialize(circle);
// ...
graphicsurface.draw(circle);
// ...
serializer.serialize(circle);
}
The idea is that your Circle class implements two different interfaces that are used in very different situations.
Sometimes being too abstract just gets in the way and referring to implementation details actually clarifies things. Therefore, I'll provide the close to the metal explanation of interfaces that made me finally grok them.
An interface is just a way of declaring that a class implements some virtual functions and how these virtual functions should be laid out in the class's vtable. When you declare an interface, you're essentially giving a high-level description of a virtual function table to the compiler. When you implement an interface, you're telling the compiler that you want to include the vtable referred to by that interface in your class.
The purpose of interfaces is that you can implicitly cast a class that implements interface I to an instance of interface I:
interface I {
void doStuff();
}
class Foo : I {
void doStuff() {}
void useAnI(I i) {}
}
var foo = new Foo();
I i = foo; // i is now a reference to the vtable pointer for I in foo.
foo.useAnI(i); // Works. You've passed useAnI a Foo, which can be used as an I.
The simple answer, in my opinion, and being somewhat new to interfaces myself is that implementing an interface in a class essentially means: "This class MUST define the functions (and parameters) in the interface".
From that, follows that whenever a certain class implements the interface, you can be sure you are able to call those functions.
If multiple classes which are otherwise different implement the same interface, you can 'cast' them all to the interface and call all the interface functions on them, which might have different effects, since each class could have a different implementation of the functions.
For example, I've been creating a program which allows a user to generate 4 different kinds of maps. For that, I've created 4 different kind of generator classes. They all implement the 'IGenerator' interface though:
public interface IGenerator {
public void generateNow(int period);
}
Which tells them to define at least a "public generateNow(int period)" function.
Whatever generator I originally had, after I cast it to a "IGenerator" I can call "generateNow(4)" on it. I won't have to be sure what type of generator I returned, which essentially means, no more "variable instanceof Class1", "variable instanceof Class2" etc. in a gigantic if statement anymore.
Take a look at something you are familiar with - ie a List collection in C#. Lists define the IList interface, and generic lists define the IList interface. IList exposes functions such as Add, Remove, and the List implements these functions. There are also BindingLists which implement IList in a slightly different way.
I would also recommend Head First Design Patterns. The code examples are in Java but are easily translated into C#, plus they will introduce you to the real power of interfaces and design patterns.

Using Interface variables

I'm still trying to get a better understanding of Interfaces. I know about what they are and how to implement them in classes.
What I don't understand is when you create a variable that is of one of your Interface types:
IMyInterface somevariable;
Why would you do this? I don't understand how IMyInterface can be used like a class...for example to call methods, so:
somevariable.CallSomeMethod();
Why would you use an IMyInterface variable to do this?
You are not creating an instance of the interface - you are creating an instance of something that implements the interface.
The point of the interface is that it guarantees that what ever implements it will provide the methods declared within it.
So now, using your example, you could have:
MyNiftyClass : IMyInterface
{
public void CallSomeMethod()
{
//Do something nifty
}
}
MyOddClass : IMyInterface
{
public void CallSomeMethod()
{
//Do something odd
}
}
And now you have:
IMyInterface nifty = new MyNiftyClass()
IMyInterface odd = new MyOddClass()
Calling the CallSomeMethod method will now do either something nifty or something odd, and this becomes particulary useful when you are passing in using IMyInterface as the type.
public void ThisMethodShowsHowItWorks(IMyInterface someObject)
{
someObject.CallSomeMethod();
}
Now, depending on whether you call the above method with a nifty or an odd class, you get different behaviour.
public void AnotherClass()
{
IMyInterface nifty = new MyNiftyClass()
IMyInterface odd = new MyOddClass()
// Pass in the nifty class to do something nifty
this.ThisMethodShowsHowItWorks(nifty);
// Pass in the odd class to do something odd
this.ThisMethodShowsHowItWorks(odd);
}
EDIT
This addresses what I think your intended question is - Why would you declare a variable to be of an interface type?
That is, why use:
IMyInterface foo = new MyConcreteClass();
in preference to:
MyConcreteClass foo = new MyConcreteClass();
Hopefully it is clear why you would use the interface when declaring a method signature, but that leaves the question about locally scoped variables:
public void AMethod()
{
// Why use this?
IMyInterface foo = new MyConcreteClass();
// Why not use this?
MyConcreteClass bar = new MyConcreteClass();
}
Usually there is no technical reason why the interface is preferred. I usually use the interface because:
I typically inject dependencies so the polymorphism is needed
Using the interface clearly states my intent to only use members of the interface
The one place where you would technically need the interface is where you are utilising the polymorphism, such as creating your variable using a factory or (as I say above) using dependency injection.
Borrowing an example from itowlson, using concrete declaration you could not do this:
public void AMethod(string input)
{
IMyInterface foo;
if (input == "nifty")
{
foo = new MyNiftyClass();
}
else
{
foo = new MyOddClass();
}
foo.CallSomeMethod();
}
Because this:
public void ReadItemsList(List<string> items);
public void ReadItemsArray(string[] items);
can become this:
public void ReadItems(IEnumerable<string> items);
Edit
Think of it like this:
You have to be able to do this.
rather than:
You have to be this.
Essentially this is a contract between the method and it's callers.
Using interface variables is the ONLY way to allow handler methods to be written which can accept data from objects that have different base classes.
This is about as clear as anyone is going to get.
An interface is used so you do not need to worry about what class implements the interface. An example of this being useful is when you have a factory method that returns a concrete implementation that may be different depending on the environment you are running in. It also allows an API designer to define the API while allowing 3rd parties to implement the API in any way they see fit. Sun does this with it's cryptographic API's for Java.
public interface Foo {
}
public class FooFactory {
public static Foo getInstance() {
if(os == 'Windows') return new WinFoo();
else if(os == 'OS X') return new MacFoo();
else return new GenricFoo();
}
}
Your code that uses the factory only needs to know about Foo, not any of the specific implementations.
I was in same position and took me few days to figure out why do we have to use interface variable.
IDepartments rep = new DepartmentsImpl();
why not
DepartmentsImpl rep = new DepartmentsImpl();
Imagine If a class implements two interfaces that contain a member with the same signature, then implementing that member on the class will cause both interfaces to use that member as their implementation.
class Test
{
static void Main()
{
SampleClass sc = new SampleClass();
IControl ctrl = (IControl)sc;
ISurface srfc = (ISurface)sc;
// The following lines all call the same method.
sc.Paint();
ctrl.Paint();
srfc.Paint();
}
}
interface IControl
{
void Paint();
}
interface ISurface
{
void Paint();
}
class SampleClass : IControl, ISurface
{
// Both ISurface.Paint and IControl.Paint call this method.
public void Paint()
{
Console.WriteLine("Paint method in SampleClass");
}
}
// Output:
// Paint method in SampleClass
// Paint method in SampleClass
// Paint method in SampleClass
If the two interface members do not perform the same function, however, this can lead to an incorrect implementation of one or both of the interfaces.
public class SampleClass : IControl, ISurface
{
void IControl.Paint()
{
System.Console.WriteLine("IControl.Paint");
}
void ISurface.Paint()
{
System.Console.WriteLine("ISurface.Paint");
}
}
The class member IControl.Paint is only available through the IControl interface, and ISurface.Paint is only available through ISurface. Both method implementations are separate, and neither is available directly on the class. For example:
IControl c = new SampleClass();
ISurface s = new SampleClass();
s.Paint();
Please do correct me if i am wrong as i am still learning this Interface concept.
Lets say you have class Boat, Car, Truck, Plane.
These all share a common method TakeMeThere(string destination)
You would have an interface:
public interface ITransportation
{
public void TakeMeThere(string destination);
}
then your class:
public class Boat : ITransportation
{
public void TakeMeThere(string destination) // From ITransportation
{
Console.WriteLine("Going to " + destination);
}
}
What you're saying here, is that my class Boat will do everything ITransportation has told me too.
And then when you want to make software for a transport company. You could have a method
Void ProvideServiceForClient(ITransportation transportationMethod, string whereTheyWantToGo)
{
transportationMethod.TakeMeThere(whereTheyWantToGo); // Cause ITransportation has this method
}
So it doesn't matter which type of transportation they want, because we know it can TakeMeThere
This is not specific to C#,so i recommend to move to some othere flag.
for your question,
the main reason why we opt for interface is to provide a protocol between two components(can be a dll,jar or any othere component).
Please refer below
public class TestClass
{
static void Main()
{
IMyInterface ob1, obj2;
ob1 = getIMyInterfaceObj();
obj2 = getIMyInterfaceObj();
Console.WriteLine(ob1.CallSomeMethod());
Console.WriteLine(obj2.CallSomeMethod());
Console.ReadLine();
}
private static bool isfirstTime = true;
private static IMyInterface getIMyInterfaceObj()
{
if (isfirstTime)
{
isfirstTime = false;
return new ImplementingClass1();
}
else
{
return new ImplementingClass2();
}
}
}
public class ImplementingClass1 : IMyInterface
{
public ImplementingClass1()
{
}
#region IMyInterface Members
public bool CallSomeMethod()
{
return true;
}
#endregion
}
public class ImplementingClass2 : IMyInterface
{
public ImplementingClass2()
{
}
#region IMyInterface Members
public bool CallSomeMethod()
{
return false;
}
#endregion
}
public interface IMyInterface
{
bool CallSomeMethod();
}
Here the main method does not know about the classes still it is able to get different behaviour using the interface.
The purpose of the Interface is to define a contract between several objects, independent of specific implementation.
So you would usually use it when you have an Intrace ISomething, and a specific implementation
class Something : ISomething
So the Interface varialbe would come to use when you instantiate a contract:
ISomething myObj = new Something();
myObj.SomeFunc();
You should also read interface C#
Update:
I will explaing the logic of using an Interface for the variable and not the class itself by a (real life) example:
I have a generic repositor interace:
Interface IRepository {
void Create();
void Update();
}
And i have 2 seperate implementations:
class RepositoryFile : interface IRepository {}
class RepositoryDB : interface IRepository {}
Each class has an entirely different internal implementation.
Now i have another object, a Logger, that uses an already instansiated repository to do his writing. This object, doesn't care how the Repository is implemented, so he just implements:
void WriteLog(string Log, IRepository oRep);
BTW, this can also be implemented by using standard classes inheritance. But the difference between using interfaces and classes inheritance is another discussion.
For a slightly more details discussion on the difference between abstract classes and interfaces see here.
Say, for example, you have two classes: Book and Newspaper. You can read each of these, but it wouldn't really make sense for these two to inherit from a common superclass. So they will both implement the IReadable interface:
public interface IReadable
{
public void Read();
}
Now say you're writing an application that will read books and newspapers for the user. The user can select a book or newspaper from a list, and that item will be read to the user.
The method in your application that reads to the user will take this Book or Newspaper as a parameter. This might look like this in code:
public static void ReadItem(IReadable item)
{
item.Read();
}
Since the parameter is an IReadable, we know that the object has the method Read(), thus we call it to read it to the user. It doesn't matter whether this is a Book, Newspaper, or anything else that implements IReadable. The individual classes implement exactly how each item will be read by implementing the Read() method, since it will most likely be different for the different classes.
Book's Read() might look like this:
public void Read()
{
this.Open();
this.TurnToPage(1);
while(!this.AtLastPage)
{
ReadText(this.CurrentPage.Text);
this.TurnPage();
}
this.Close();
}
Newspaper's Read() would likely be a little different:
public void Read()
{
while(!this.OnBackPage)
{
foreach(Article article in this.CurrentPage.Articles)
{
ReadText(article.Text);
}
}
}
The point is that the object contained by a variable that is an interface type is guaranteed to have a specific set of methods on it, even if the possible classes of the object are not related in any other way. This allows you to write code that will apply to a variety of classes that have common operations that can be performed on them.
No, it is not possible. Designers did not provide a way. Of course, it is of common sense also. Because interface contains only abstract methods and as abstract methods do not have a body (of implementation code), we cannot create an object..
Suppose even if it is permitted, what is the use. Calling the abstract method with object does not yield any purpose as no output. No functionality to abstract methods.
Then, what is the use of interfaces in Java design and coding. They can be used as prototypes from which you can develop new classes easily. They work like templates for other classes that implement interface just like a blue print to construct a building.
I believe everyone is answering the polymorphic reason for using an interface and David Hall touches on partially why you would reference it as an interface instead of the actual object name. Of course, being limited to the interface members etc is helpful but the another answer is dependency injection / instantiation.
When you engineer your application it is typically cleaner, easier to manage, and more flexible if you do so utilizing dependency injection. It feels backwards at first if you've never done it but when you start backtracking you'll wish you had.
Dependency injection normally works by allowing a class to instantiate and control the dependencies and you just rely on the interface of the object you need.
Example:
Layer the application first. Tier 1 logic, tier 2 interface, tier 3 dependency injection. (Everyone has their own way, this is just for show).
In the logic layer you reference the interfaces and dependency layer and then finally you create logic based on only the interfaces of foreign objects.
Here we go:
public IEmployee GetEmployee(string id)
{
IEmployee emp = di.GetInstance<List<IEmployee>>().Where(e => e.Id == id).FirstOrDefault();
emp?.LastAccessTimeStamp = DateTime.Now;
return emp;
}
Notice above how we use di.GetInstance to get an object from our dependency. Our code in that tier will never know or care about the Employee object. In fact if it changes in other code it will never affect us here. If the interface of IEmployee changes then we may need to make code changes.
The point is, IEmployee emp = never really knows what the actual object is but does know the interface and how to work with it. With that in mind, this is when you want to use an interface as opposed to an object becase we never know or have access to the object.
This is summarized.. Hopefully it helps.
This is a fundamental concept in object-oriented programming -- polymorphism. (wikipedia)
The short answer is that by using the interface in Class A, you can give Class A any implementation of IMyInterface.
This is also a form of loose coupling (wikipedia) -- where you have many classes, but they do not rely explicitly on one another -- only on an abstract notion of the set of properties and methods that they provide (the interface).

Categories

Resources