Switch between production and test Webservice.
I have 2 version for the same WebService definition. Each version has its own database url etc.
MyLib.FooWebServicePROD.FooWebService _serviceProd;
MyLib.FooWebServiceTEST.FooWebService _serviceTest;
For now to siwtch form one to the other I used the Rename option in Visual Studio.
I would like to wrap all my instance and definition in a layer of abstration so the programe will not be edited everytime.
So I made mine singleton public sealed class FooBarWrap but with a huge amount a duplication like:
public bool Close()
{
if (_serviceProd != null)
{
_serviceProd.logout(guid);
log4N.Info("Closing PROD");
}
if (_serviceTest != null)
{
_serviceTest.logout(guid);
log4N.Info("Closing TEST");
}
return true;
}
public bool Login()
{
try
{
log4N.Info("Connection to FooBar webservice...");
if (isProd)
{
_serviceProd = new MyLib.FooWebServicePROD.FooWebService();
_serviceProd.Timeout = System.Threading.Timeout.Infinite;
_serviceProd.Logon(guid);
}
else {
_serviceTest = new MyLib.FooWebServiceTEST.FooWebService();
_serviceTest.Timeout = System.Threading.Timeout.Infinite;
_serviceTest.Logon(guid);
}
log4N.Info("done");
return true;
}
catch (Exception ex)
{
log4N.Info("failed !");
log4N.Error("Echec connexion au webservice FooBar", ex);
return false;
}
}
Is there a simplier way to achieve this? Without the client having a reference to one or the other web service, and without the heavy code duplication?
if (FooBarWrap.Instance.Login()){
//DoSomething
var ClientResult = FooBarWrap.Instance.SomeRequest()
}
Is there a simplier way to achieve this? Without the client having a reference to one or the other web service, and without the heavy code duplication?
It is.
You could simply use conditional dependency injection where depending on the environment you are or any other condition like host name, port number or url path, you would get different implementation of the service interface.
A simple conditional dependency injection that depending on condition provides one or the other implementation of the same interface.
kernel.Bind<ISomeService>().To<SomeService1>();
kernel.Bind<ISomeService>().To<SomeService2>().When(x => HttpContext.Current[host|port|url path] == "some value");
Ninject calls that kind of injection contextual binding
https://github.com/ninject/ninject/wiki/Contextual-Binding
I am trying to load many pages using the AngleSharp. The idea is that it loads a page, and if this page has a link to the next, loads the next page and so forth, the methods are described like bellow. But I am getting the inner exception:
Specified argument was out of the range of valid values.
Parameter name: index"
I believe is something related with Thread and syncrhronization.
public static bool ContainsNextPage(IDocument document)
{
String href = document.QuerySelectorAll(".prevnext a")[0].GetAttribute("href");
if (href == String.Empty)
return false;
else
return true;
}
public static string GetNextPageUrl(IDocument document)
{
return document.QuerySelectorAll(".prevnext a")[0].GetAttribute("href");
}
public static async Task<IDocument> ParseUrlSynch(string Url)
{
var config = new Configuration().WithDefaultLoader();
IDocument document = await BrowsingContext.New(config).OpenAsync(Url);
return document;
}
public static async Task<ConcurrentBag<IDocument>> GetAllPagesDOMs(IDocument initialDocument)
{
ConcurrentBag< IDocument> AllPagesDOM = new ConcurrentBag< IDocument>();
IDocument nextPageDOM;
IDocument currentDocument = initialDocument;
if (initialDocument != null)
{
AllPagesDOM.Add(initialDocument);
}
while (ContainsNextPage(currentDocument))
{
String nextPageUrl = GetNextPageUrl(currentDocument);
nextPageDOM = ParseUrlSynch(nextPageUrl).Result;
if (nextPageDOM != null)
AllPagesDOM.Add(nextPageDOM);
currentDocument = nextPageDOM;
}
return AllPagesDOM;
}
static void Main(string[] args)
{
List<IDocument> allPageDOMs = new List<IDocument>();
IDocument initialDocument = ParseUrlSynch(InitialUrl).Result;
List<String> urls = new List<string>();
List<Subject> subjects = new List<Subject>();
IHtmlCollection<IElement> subjectAnchors = initialDocument.QuerySelectorAll(".course_title a");
String[] TitleAndCode;
String Title;
String Code;
String Description;
IDocument currentDocument = initialDocument;
ConcurrentBag<IDocument> documents =
GetAllPagesDOMs(initialDocument).Result; //Exception in here
...
}
Error message is caused by this code:
document.QuerySelectorAll(".prevnext a")[0]
One of your documents doesn't have any anchors inside prevnext. Maybe it's first page, maybe the last, either way you need to check the array for it's length.
Also blocking call on async method is a bad practice and should be avoided. You'll get the deadlock in any UI app. The only reason you don't get it now is that you're in console app.
Your instincts are correct, if you are using this from an application with a non-default SynchronizationContext such as WPF, Win Forms, or ASP.NET then you will have a deadlock because you are synchronously blocking on an async Task returning function (this is bad and should be avoided). When the first await is reaching inside of the blocking call, it will try to post the continuation to the current SyncronizationContext, which will be already locked by the blocking call (if you use .ConfigureAwait(false) you avoid this, but that is a hack in this case).
A quick fix would be to use async all the way through by changing:
nextPageDOM = ParseUrlSynch(nextPageUrl).Result;
with:
nextPageDOM = await ParseUrlSynch(nextPageUrl);
After you get stung by this a few times, you'll learn to have alarm bells go off in your head every time you block an asynchronous method.
I have an Excel Add-In written in C#, .NET 4.5. It will send many web service requests to a web server to get data. E.g. it sends 30,000 requests to web service server. When data of a request comes back, the addin will plot the data in Excel.
Originally I did all the requests asynchronously, but sometime I will get OutOfMemoryException
So I changed, sent the requests one by one, but it is too slow, takes long time to finish all requests.
I wonder if there is a way that I can do 100 requests at a time asynchronously, once the data of all the 100 requests come back and plot in Excel, then send the next 100 requests.
Thanks
Edit
On my addin, there is a ribbon button "Refresh", when it is clicked, refresh process starts.
On main UI thread, ribbon/button is clicked, it will call web service BuildMetaData,
once it is returned back, in its callback MetaDataCompleteCallback, another web service call is sent
Once it is returned back, in its callback DataRequestJobFinished, it will call plot to plot data on Excel. see below
RefreshBtn_Click()
{
if (cells == null) return;
Range firstOccurence = null;
firstOccurence = cells.Find(functionPattern, null,
null, null,
XlSearchOrder.xlByRows,
XlSearchDirection.xlNext,
null, null, null);
DataRequest request = null;
_reportObj = null;
Range currentOccurence = null;
while (!Helper.RefreshCancelled)
{
if(firstOccurence == null ||IsRangeEqual(firstOccurence, currentOccurence)) break;
found = true;
currentOccurence = cells.FindNext(currentOccurence ?? firstOccurence);
try
{
var excelFormulaCell = new ExcelFormulaCell(currentOccurence);
if (excelFormulaCell.HasValidFormulaCell)
{
request = new DataRequest(_unityContainer, XLApp, excelFormulaCell);
request.IsRefreshClicked = true;
request.Workbook = Workbook;
request.Worksheets = Worksheets;
_reportObj = new ReportBuilder(_unityContainer, XLApp, request, index, false);
_reportObj.ParseParameters();
_reportObj.GenerateReport();
//this is necessary b/c error message is wrapped in valid object DataResponse
//if (!string.IsNullOrEmpty(_reportObj.ErrorMessage)) //Clear previous error message
{
ErrorMessage = _reportObj.ErrorMessage;
Errors.Add(ErrorMessage);
AddCommentToCell(_reportObj);
Errors.Remove(ErrorMessage);
}
}
}
catch (Exception ex)
{
ErrorMessage = ex.Message;
Errors.Add(ErrorMessage);
_reportObj.ErrorMessage = ErrorMessage;
AddCommentToCell(_reportObj);
Errors.Remove(ErrorMessage);
Helper.LogError(ex);
}
}
}
on Class to GenerateReport
public void GenerateReport()
{
Request.ParseFunction();
Request.MetacompleteCallBack = MetaDataCompleteCallback;
Request.BuildMetaData();
}
public void MetaDataCompleteCallback(int id)
{
try
{
if (Request.IsRequestCancelled)
{
Request.FormulaCell.Dispose();
return;
}
ErrorMessage = Request.ErrorMessage;
if (string.IsNullOrEmpty(Request.ErrorMessage))
{
_queryJob = new DataQueryJob(UnityContainer, Request.BuildQueryString(), DataRequestJobFinished, Request);
}
else
{
ModifyCommentOnFormulaCellPublishRefreshEvent();
}
}
catch (Exception ex)
{
ErrorMessage = ex.Message;
ModifyCommentOnFormulaCellPublishRefreshEvent();
}
finally
{
Request.MetacompleteCallBack = null;
}
}
public void DataRequestJobFinished(DataRequestResponse response)
{
Dispatcher.Invoke(new Action<DataRequestResponse>(DataRequestJobFinishedUI), response);
}
public void DataRequestJobFinished(DataRequestResponse response)
{
try
{
if (Request.IsRequestCancelled)
{
return;
}
if (response.status != Status.COMPLETE)
{
ErrorMessage = ManipulateStatusMsg(response);
}
else // COMPLETE
{
var tmpReq = Request as DataRequest;
if (tmpReq == null) return;
new VerticalTemplate(tmpReq, response).Plot();
}
}
catch (Exception e)
{
ErrorMessage = e.Message;
Helper.LogError(e);
}
finally
{
//if (token != null)
// this.UnityContainer.Resolve<IEventAggregator>().GetEvent<DataQueryJobComplete>().Unsubscribe(token);
ModifyCommentOnFormulaCellPublishRefreshEvent();
Request.FormulaCell.Dispose();
}
}
on plot class
public void Plot()
{
...
attributeRange.Value2 = headerArray;
DataRange.Value2 = ....
DataRange.NumberFormat = ...
}
OutOfMemoryException is not about the too many requests sent simultaneously. It is about freeing your resources right way. In my practice there are two main problems when you are getting such exception:
Wrong working with immutable structures or System.String class
Not disposing your disposable resources, especially graphic objects and WCF requests.
In case of reporting, for my opinion, you got a second one type of a problem. DataRequest and DataRequestResponse are good point to start the investigation for the such objects.
If this doesn't help, try to use the Tasks library with async/await pattern, you can find good examples here:
// Signature specifies Task<TResult>
async Task<int> TaskOfTResult_MethodAsync()
{
int hours;
// . . .
// Return statement specifies an integer result.
return hours;
}
// Calls to TaskOfTResult_MethodAsync
Task<int> returnedTaskTResult = TaskOfTResult_MethodAsync();
int intResult = await returnedTaskTResult;
// or, in a single statement
int intResult = await TaskOfTResult_MethodAsync();
// Signature specifies Task
async Task Task_MethodAsync()
{
// . . .
// The method has no return statement.
}
// Calls to Task_MethodAsync
Task returnedTask = Task_MethodAsync();
await returnedTask;
// or, in a single statement
await Task_MethodAsync();
In your code I see a while loop, in which you can store your Task[] of size of 100, for which you can use the WaitAll method, and the problem should be solved. Sorry, but your code is huge enough, and I can't provide you a more straight example.
I'm having a lot of trouble parsing your code to figure out is being iterated for your request but the basic template for batching asynchronously is going to be something like this:
static const int batchSize = 100;
public async Task<IEnumerable<Results>> GetDataInBatches(IEnumerable<RequestParameters> parameters) {
if(!parameters.Any())
return Enumerable.Empty<Result>();
var batchResults = await Task.WhenAll(parameters.Take(batchSize).Select(doQuery));
return batchResults.Concat(await GetDataInBatches(parameters.Skip(batchSize));
}
where doQuery is something with the signature
Task<Results> async doQuery(RequestParameters parameters) {
//.. however you do the query
}
I wouldn't use this for a million requests since its recursive, but your case should would generate a callstack only 300 deep so you'll be fine.
Note that this also assumes that your data request stuff is done asynchronously and returns a Task. Most libraries have been updated to do this (look for methods with the Async suffix). If it doesn't expose that api you might want to create a separate question for how to specifically get your library to play nice with the TPL.
I'm fairly new at working with Windows services but I found a peculiar incident and I would like some clarification. I have a Windows service written in C# which I install and start using the command line (great instructions found on stackoverflow). The main method of my service looks like this:
static void Main(string[] args)
{
if (args.Length == 0)
{
ServiceBase.Run(new MyServiceName());
}
else if (args.Length == 1)
{
const string name = "MyServiceName";
Type type = typeof(MyAssembly);
switch (args[0])
{
case "-install":
ServiceUtils.InstallService(name, type);
ServiceUtils.StartService(args, name);
break;
case "-uninstall":
ServiceUtils.StopService(name);
ServiceUtils.UninstallService(name, type);
break;
default:
throw new NotImplementedException();
}
}
}
When I debug, I ALWAYS send one parameter (-install) to the application. Because of this, the first if statement (if (args.Length == 0) is NEVER executed. This is expected and my service is installed and started just fine. However, if I remove that if statement and just leave the if (args.Length == 1) statement, my service installs correctly but it does not start and I get the following error:
Cannot start MyServiceName on computer '.'
My question is: Why is the code in the first if statement needed when it is NEVER executed in my application?
Here is the supporting code for the InstallService and StartService methods (which I got from stackoverflow also):
public static void InstallService(string serviceName, Type t)
{
if (IsInstalled(serviceName)) return;
try
{
Assembly a = t.Assembly;
using (AssemblyInstaller installer = GetInstaller(a))
{
IDictionary state = new Hashtable();
try
{
installer.Install(state);
installer.Commit(state);
}
catch
{
try
{
installer.Rollback(state);
}
catch
{ }
throw;
}
}
}
catch
{
throw;
}
}
public static void StartService(string[] args, string serviceName)
{
if (!IsInstalled(serviceName)) return;
Console.WriteLine("Service is installed. Attempting to start service.");
ServiceController sc = new ServiceController();
sc.ServiceName = serviceName;
if (sc.Status == ServiceControllerStatus.Stopped)
{
Console.WriteLine("Starting {0}: ", sc.ServiceName);
try
{
sc.Start(args);
sc.WaitForStatus(ServiceControllerStatus.Running);
}
catch (Exception ex)
{
Console.WriteLine(ex.Message);
}
}
}
the first if statement (if (args.Length == 0) is NEVER executed
That's not correct, it is executed. By ServiceController.Start(). You cannot see this because the service controller starts your EXE again, creating another process. A service process this time, not a console process. One that you don't have a debugger attached to. If you remove that if statement then the service immediately exits after getting started. And the service controller correctly complains about that with the "Cannot start MyServiceName" exception message.
if (args.Length == 0)
{
ServiceBase.Run(new MyServiceName());
}
is run when the service is started by the Service Controller, as the Service Controller doesn't pass any arguments in to Main().
If you don't do ServiceBase.Run(new MyServiceName()), then your service will not respond to any commands from the Service Controller, and you get errors as the ones you see.
Main() is still the entry point of the application. The process is started as a separate step from starting the service(s) within.
It's actually possible to have multiple services running in the same process, and this way of handling things enables that. That is... not just the same exe program, but actually in the same running process.
I am currently writing a little bootstrap code for a service that can be run in the console. It essentially boils down to calling the OnStart() method instead of using the ServiceBase to start and stop the service (because it doesn't run the application if it isn't installed as a service and makes debugging a nightmare).
Right now I am using Debugger.IsAttached to determine if I should use ServiceBase.Run or [service].OnStart, but I know that isn't the best idea because some times end users want to run the service in a console (to see the output etc. realtime).
Any ideas on how I could determine if the Windows service controller started 'me', or if the user started 'me' in the console? Apparantly Environment.IsUserInteractive is not the answer. I thought about using commandline args, but that seems 'dirty'.
I could always see about a try-catch statement around ServiceBase.Run, but that seems dirty. Edit: Try catch doesn't work.
I have a solution: putting it up here for all the other interested stackers:
public void Run()
{
if (Debugger.IsAttached || Environment.GetCommandLineArgs().Contains<string>("-console"))
{
RunAllServices();
}
else
{
try
{
string temp = Console.Title;
ServiceBase.Run((ServiceBase[])ComponentsToRun);
}
catch
{
RunAllServices();
}
}
} // void Run
private void RunAllServices()
{
foreach (ConsoleService component in ComponentsToRun)
{
component.Start();
}
WaitForCTRLC();
foreach (ConsoleService component in ComponentsToRun)
{
component.Stop();
}
}
EDIT: There was another question on StackOverflow where the guy had problems with the Environment.CurrentDirectory being "C:\Windows\System32" looks like that may be the answer. I will test today.
Another workaround.. so can run as WinForm or as windows service
var backend = new Backend();
if (Environment.UserInteractive)
{
backend.OnStart();
Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run(new Fronend(backend));
backend.OnStop();
}
else
{
var ServicesToRun = new ServiceBase[] {backend};
ServiceBase.Run(ServicesToRun);
}
I usually flag my Windows service as a console application which takes a command line parameter of "-console" to run using a console, otherwise it runs as a service. To debug you just set the command line parameters in the project options to "-console" and you're off!
This makes debugging nice and easy and means that the app functions as a service by default, which is what you'll want.
What works for me:
The class doing the actual service work is running in a separate thread.
This thread is started from within the OnStart() method, and stopped from OnStop().
The decision between service and console mode depends on Environment.UserInteractive
Sample code:
class MyService : ServiceBase
{
private static void Main()
{
if (Environment.UserInteractive)
{
startWorkerThread();
Console.WriteLine ("====== Press ENTER to stop threads ======");
Console.ReadLine();
stopWorkerThread() ;
Console.WriteLine ("====== Press ENTER to quit ======");
Console.ReadLine();
}
else
{
Run (this) ;
}
}
protected override void OnStart(string[] args)
{
startWorkerThread();
}
protected override void OnStop()
{
stopWorkerThread() ;
}
}
Like Ash, I write all actual processing code in a separate class library assembly, which was then referenced by the windows service executable, as well as a console app.
However, there are occasions when it is useful to know if the class library is running in the context of the service executable or the console app. The way I do this is to reflect on the base class of the hosting app. (Sorry for the VB, but I imagine that the following could be c#-ified fairly easily):
Public Class ExecutionContext
''' <summary>
''' Gets a value indicating whether the application is a windows service.
''' </summary>
''' <value>
''' <c>true</c> if this instance is service; otherwise, <c>false</c>.
''' </value>
Public Shared ReadOnly Property IsService() As Boolean
Get
' Determining whether or not the host application is a service is
' an expensive operation (it uses reflection), so we cache the
' result of the first call to this method so that we don't have to
' recalculate it every call.
' If we have not already determined whether or not the application
' is running as a service...
If IsNothing(_isService) Then
' Get details of the host assembly.
Dim entryAssembly As Reflection.Assembly = Reflection.Assembly.GetEntryAssembly
' Get the method that was called to enter the host assembly.
Dim entryPoint As System.Reflection.MethodInfo = entryAssembly.EntryPoint
' If the base type of the host assembly inherits from the
' "ServiceBase" class, it must be a windows service. We store
' the result ready for the next caller of this method.
_isService = (entryPoint.ReflectedType.BaseType.FullName = "System.ServiceProcess.ServiceBase")
End If
' Return the cached result.
Return CBool(_isService)
End Get
End Property
Private Shared _isService As Nullable(Of Boolean) = Nothing
#End Region
End Class
Jonathan, not exactly an answer to your question, but I've just finished writing a windows service and also noted the difficulty with debugging and testing.
Solved it by simply writing all actual processing code in a separate class library assembly, which was then referenced by the windows service executable, as well as a console app and a test harness.
Apart from basic timer logic, all more complex processing happened in the common assembly and could be tested/run on demand incredibly easily.
I have modified the ProjectInstaller to append the command-line argument parameter /service, when it is being installed as service:
static class Program
{
static void Main(string[] args)
{
if (Array.Exists(args, delegate(string arg) { return arg == "/install"; }))
{
System.Configuration.Install.TransactedInstaller ti = null;
ti = new System.Configuration.Install.TransactedInstaller();
ti.Installers.Add(new ProjectInstaller());
ti.Context = new System.Configuration.Install.InstallContext("", null);
string path = System.Reflection.Assembly.GetExecutingAssembly().Location;
ti.Context.Parameters["assemblypath"] = path;
ti.Install(new System.Collections.Hashtable());
return;
}
if (Array.Exists(args, delegate(string arg) { return arg == "/uninstall"; }))
{
System.Configuration.Install.TransactedInstaller ti = null;
ti = new System.Configuration.Install.TransactedInstaller();
ti.Installers.Add(new ProjectInstaller());
ti.Context = new System.Configuration.Install.InstallContext("", null);
string path = System.Reflection.Assembly.GetExecutingAssembly().Location;
ti.Context.Parameters["assemblypath"] = path;
ti.Uninstall(null);
return;
}
if (Array.Exists(args, delegate(string arg) { return arg == "/service"; }))
{
ServiceBase[] ServicesToRun;
ServicesToRun = new ServiceBase[] { new MyService() };
ServiceBase.Run(ServicesToRun);
}
else
{
Console.ReadKey();
}
}
}
The ProjectInstaller.cs is then modified to override a OnBeforeInstall() and OnBeforeUninstall()
[RunInstaller(true)]
public partial class ProjectInstaller : Installer
{
public ProjectInstaller()
{
InitializeComponent();
}
protected virtual string AppendPathParameter(string path, string parameter)
{
if (path.Length > 0 && path[0] != '"')
{
path = "\"" + path + "\"";
}
path += " " + parameter;
return path;
}
protected override void OnBeforeInstall(System.Collections.IDictionary savedState)
{
Context.Parameters["assemblypath"] = AppendPathParameter(Context.Parameters["assemblypath"], "/service");
base.OnBeforeInstall(savedState);
}
protected override void OnBeforeUninstall(System.Collections.IDictionary savedState)
{
Context.Parameters["assemblypath"] = AppendPathParameter(Context.Parameters["assemblypath"], "/service");
base.OnBeforeUninstall(savedState);
}
}
This thread is really old, but I thought I would throw my solution out there. Quite simply, to handle this type of situation, I built a "service harness" that is used in both the console and Windows service cases. As above, most of the logic is contained in a separate library, but this is more for testing and "linkability".
The attached code by no means represents the "best possible" way to solve this, just my own approach. Here, the service harness is called by the console app when in "console mode" and by the same application's "start service" logic when it is running as a service. By doing it this way, you can now call
ServiceHost.Instance.RunningAsAService (Boolean)
from anywhere in your code to check if the application is running as a service or simply as a console.
Here is the code:
public class ServiceHost
{
private static Logger log = LogManager.GetLogger(typeof(ServiceHost).Name);
private static ServiceHost mInstance = null;
private static object mSyncRoot = new object();
#region Singleton and Static Properties
public static ServiceHost Instance
{
get
{
if (mInstance == null)
{
lock (mSyncRoot)
{
if (mInstance == null)
{
mInstance = new ServiceHost();
}
}
}
return (mInstance);
}
}
public static Logger Log
{
get { return log; }
}
public static void Close()
{
lock (mSyncRoot)
{
if (mInstance.mEngine != null)
mInstance.mEngine.Dispose();
}
}
#endregion
private ReconciliationEngine mEngine;
private ServiceBase windowsServiceHost;
private UnhandledExceptionEventHandler threadExceptionHanlder = new UnhandledExceptionEventHandler(ThreadExceptionHandler);
public bool HostHealthy { get; private set; }
public bool RunningAsService {get; private set;}
private ServiceHost()
{
HostHealthy = false;
RunningAsService = false;
AppDomain.CurrentDomain.UnhandledException += threadExceptionHandler;
try
{
mEngine = new ReconciliationEngine();
HostHealthy = true;
}
catch (Exception ex)
{
log.FatalException("Could not initialize components.", ex);
}
}
public void StartService()
{
if (!HostHealthy)
throw new ApplicationException("Did not initialize components.");
try
{
mEngine.Start();
}
catch (Exception ex)
{
log.FatalException("Could not start service components.", ex);
HostHealthy = false;
}
}
public void StartService(ServiceBase serviceHost)
{
if (!HostHealthy)
throw new ApplicationException("Did not initialize components.");
if (serviceHost == null)
throw new ArgumentNullException("serviceHost");
windowsServiceHost = serviceHost;
RunningAsService = true;
try
{
mEngine.Start();
}
catch (Exception ex)
{
log.FatalException("Could not start service components.", ex);
HostHealthy = false;
}
}
public void RestartService()
{
if (!HostHealthy)
throw new ApplicationException("Did not initialize components.");
try
{
log.Info("Stopping service components...");
mEngine.Stop();
mEngine.Dispose();
log.Info("Starting service components...");
mEngine = new ReconciliationEngine();
mEngine.Start();
}
catch (Exception ex)
{
log.FatalException("Could not restart components.", ex);
HostHealthy = false;
}
}
public void StopService()
{
try
{
if (mEngine != null)
mEngine.Stop();
}
catch (Exception ex)
{
log.FatalException("Error stopping components.", ex);
HostHealthy = false;
}
finally
{
if (windowsServiceHost != null)
windowsServiceHost.Stop();
if (RunningAsService)
{
AppDomain.CurrentDomain.UnhandledException -= threadExceptionHanlder;
}
}
}
private void HandleExceptionBasedOnExecution(object ex)
{
if (RunningAsService)
{
windowsServiceHost.Stop();
}
else
{
throw (Exception)ex;
}
}
protected static void ThreadExceptionHandler(object sender, UnhandledExceptionEventArgs e)
{
log.FatalException("Unexpected error occurred. System is shutting down.", (Exception)e.ExceptionObject);
ServiceHost.Instance.HandleExceptionBasedOnExecution((Exception)e.ExceptionObject);
}
}
All you need to do here is replace that ominous looking ReconcilationEngine reference with whatever method is boostrapping your logic. Then in your application, use the ServiceHost.Instance.Start() and ServiceHost.Instance.Stop() methods whether you are running in console mode or as a service.
Maybe checking if the process parent is C:\Windows\system32\services.exe.
The only way I've found to achieve this, is to check if a console is attached to the process in the first place, by accessing any Console object property (e.g. Title) inside a try/catch block.
If the service is started by the SCM, there is no console, and accessing the property will throw a System.IO.IOError.
However, since this feels a bit too much like relying on an implementation-specific detail (what if the SCM on some platforms or someday decides to provide a console to the processes it starts?), I always use a command line switch (-console) in production apps...
Here is a translation of chksr's answer to .NET, and avoiding the bug that fails to recognize interactive services:
using System.Security.Principal;
var wi = WindowsIdentity.GetCurrent();
var wp = new WindowsPrincipal(wi);
var serviceSid = new SecurityIdentifier(WellKnownSidType.ServiceSid, null);
var localSystemSid = new SecurityIdentifier(WellKnownSidType.LocalSystemSid, null);
var interactiveSid = new SecurityIdentifier(WellKnownSidType.InteractiveSid, null);
// maybe check LocalServiceSid, and NetworkServiceSid also
bool isServiceRunningAsUser = wp.IsInRole(serviceSid);
bool isSystem = wp.IsInRole(localSystemSid);
bool isInteractive = wp.IsInRole(interactiveSid);
bool isAnyService = isServiceRunningAsUser || isSystem || !isInteractive;
This is a bit of a self-plug, but I've got a little app that will load up your service types in your app via reflection and execute them that way. I include the source code, so you could change it slightly to display standard output.
No code changes needed to use this solution. I have a Debugger.IsAttached type of solution as well that is generic enough to be used with any service. Link is in this article:
.NET Windows Service Runner
Well there's some very old code (about 20 years or so, not from me but found in the wild, wild web, and in C not C#) that should give you an idea how to do the job:
enum enEnvironmentType
{
ENVTYPE_UNKNOWN,
ENVTYPE_STANDARD,
ENVTYPE_SERVICE_WITH_INTERACTION,
ENVTYPE_SERVICE_WITHOUT_INTERACTION,
ENVTYPE_IIS_ASP,
};
enEnvironmentType GetEnvironmentType(void)
{
HANDLE hProcessToken = NULL;
DWORD groupLength = 300;
PTOKEN_GROUPS groupInfo = NULL;
SID_IDENTIFIER_AUTHORITY siaNt = SECURITY_NT_AUTHORITY;
PSID pInteractiveSid = NULL;
PSID pServiceSid = NULL;
DWORD dwRet = NO_ERROR;
DWORD ndx;
BOOL m_isInteractive = FALSE;
BOOL m_isService = FALSE;
// open the token
if (!::OpenProcessToken(::GetCurrentProcess(),TOKEN_QUERY,&hProcessToken))
{
dwRet = ::GetLastError();
goto closedown;
}
// allocate a buffer of default size
groupInfo = (PTOKEN_GROUPS)::LocalAlloc(0, groupLength);
if (groupInfo == NULL)
{
dwRet = ::GetLastError();
goto closedown;
}
// try to get the info
if (!::GetTokenInformation(hProcessToken, TokenGroups,
groupInfo, groupLength, &groupLength))
{
// if buffer was too small, allocate to proper size, otherwise error
if (::GetLastError() != ERROR_INSUFFICIENT_BUFFER)
{
dwRet = ::GetLastError();
goto closedown;
}
::LocalFree(groupInfo);
groupInfo = (PTOKEN_GROUPS)::LocalAlloc(0, groupLength);
if (groupInfo == NULL)
{
dwRet = ::GetLastError();
goto closedown;
}
if (!GetTokenInformation(hProcessToken, TokenGroups,
groupInfo, groupLength, &groupLength))
{
dwRet = ::GetLastError();
goto closedown;
}
}
//
// We now know the groups associated with this token. We want
// to look to see if the interactive group is active in the
// token, and if so, we know that this is an interactive process.
//
// We also look for the "service" SID, and if it's present,
// we know we're a service.
//
// The service SID will be present iff the service is running in a
// user account (and was invoked by the service controller).
//
// create comparison sids
if (!AllocateAndInitializeSid(&siaNt,
1,
SECURITY_INTERACTIVE_RID,
0, 0, 0, 0, 0, 0, 0,
&pInteractiveSid))
{
dwRet = ::GetLastError();
goto closedown;
}
if (!AllocateAndInitializeSid(&siaNt,
1,
SECURITY_SERVICE_RID,
0, 0, 0, 0, 0, 0, 0,
&pServiceSid))
{
dwRet = ::GetLastError();
goto closedown;
}
// try to match sids
for (ndx = 0; ndx < groupInfo->GroupCount ; ndx += 1)
{
SID_AND_ATTRIBUTES sanda = groupInfo->Groups[ndx];
PSID pSid = sanda.Sid;
//
// Check to see if the group we're looking at is one of
// the two groups we're interested in.
//
if (::EqualSid(pSid, pInteractiveSid))
{
//
// This process has the Interactive SID in its
// token. This means that the process is running as
// a console process
//
m_isInteractive = TRUE;
m_isService = FALSE;
break;
}
else if (::EqualSid(pSid, pServiceSid))
{
//
// This process has the Service SID in its
// token. This means that the process is running as
// a service running in a user account ( not local system ).
//
m_isService = TRUE;
m_isInteractive = FALSE;
break;
}
}
if ( !( m_isService || m_isInteractive ) )
{
//
// Neither Interactive or Service was present in the current
// users token, This implies that the process is running as
// a service, most likely running as LocalSystem.
//
m_isService = TRUE;
}
closedown:
if ( pServiceSid )
::FreeSid( pServiceSid );
if ( pInteractiveSid )
::FreeSid( pInteractiveSid );
if ( groupInfo )
::LocalFree( groupInfo );
if ( hProcessToken )
::CloseHandle( hProcessToken );
if (dwRet == NO_ERROR)
{
if (m_isService)
return(m_isInteractive ? ENVTYPE_SERVICE_WITH_INTERACTION : ENVTYPE_SERVICE_WITHOUT_INTERACTION);
return(ENVTYPE_STANDARD);
}
else
return(ENVTYPE_UNKNOWN);
}
Seems I am bit late to the party, but interesting difference when run as a service is that at start current folder points to system directory (C:\windows\system32 by default). Its hardly unlikely user app will start from the system folder in any real life situation.
So, I use following trick (c#):
protected static bool IsRunAsService()
{
string CurDir = Directory.GetCurrentDirectory();
if (CurDir.Equals(Environment.SystemDirectory, StringComparison.CurrentCultureIgnoreCase))
{
return true;
}
return (false);
}
For future extension, additional check make be done for System.Environment.UserInteractive == false (but I do not know how it correlates with 'Allow service to interact with desktop' service settings).
You may also check window session by System.Diagnostics.Process.GetCurrentProcess().SessionId == 0 (I do not know how it correlates with 'Allow service to interact with desktop' service settings as well).
If you write portable code (say, with .NetCore) you may also check Environment.OSVersion.Platform to ensure that you are on windows first.