I have a series of core services that I want to configure with Castle Windsor, things like Logging, Caching, Email config, etc. Making these services easily configurable by an app.config change would be a great boon (e.g. even just for development/testing it's great to be able to tell the app to route all the email traffic through some other mechanism than the actual mail server).
Two questions:
Many of the classes that need access to these services all inherit from an abstract base class (contains core logic used by all subclasses) so it would seem ideal to inject the core services into this base class somehow so that all the children would inherit the references to the services. Note these subclasses also all implement an Interface so that may be the better path to go down?
I also have a scenario where unrelated objects in other assemblies also need to be able to tap into the core services. These objects are not instantiated by me but by other libraries (I'm implementing the interface of some 3rd party library that then uses my implementation in its framework). If I need access to email or logging or some other core service in this code, how do I get a reference?
I hope that makes sense, thank you.
Regarding your first point, use property injection.
You have two choices for injecting dependencies; via the constructor or via properties. Since you don't want to pass dependencies down the constructor chain, the only other way is via property injection. This has the advantage that if a base class need to add/remove/change a dependency, it doesn't affect everything that inherits from it.
Some folks (myself included) shy away from property injection because it makes dependencies non-obvious and can imply that they are optional. This can make unit testing (you're doing that, right?) difficult because you have to inspect the class to see what dependencies are needed. If they were in the constructor, it'd be obvious.
However, if you can make sane null-object implementations of your services so that they are optional, or the unit-testing implications don't phase you, then this is a good route to go down.
As to your second question, if you can't control how the class gets created, you can't expect Windsor to supply any of its dependencies. At best, you can resolve the dependencies individually (i.e. call container.Resolve<IYourDependency>()) and assign them to the properties of your implementation.
Related
Trying to understand DI.
What is correct way to use services/dependency objects in custom classes?
Do i need to create each class as service and add to dependency objects?
Or should I be using [FromServices] (previously, [Active] before beta4 ) attribute.
or is there is a service object I should be passing to access them?
What trying to understand, is how i properly code my own classes to use the DI like the controllers etc.
[FromServices] is just an MVC concept. It is not available to other parts of the ASP.NET 5 stack.
If you want to pass dependencies down the chain you have a few options:
Pass the service provider. This is quite an anti-pattern because your objects need to depend on the DI container and you are not really inverting the control.
Pass interfaces in constructors. The "pure" DI but you might end up with a parameter nightmare (objects that take 10 arguments in constructor).
Similar to the previous one but group dependencies in factories. More DI aligned and less parameter nightmare but it can create a factory nightmare.
Inject only top large level objects (for example: repositories, entire systems, etc). This approach is a nice tradeoff between dependency nightmare and too much coupling. Of course, the systems that get injected should be independent from each other. Also, each system could have its own DI container inside.
!! Don't confuse DI with Configuration. DI makes sense when you have a dependency on a contract. Configuration useful when you need some information that is specific to the current implementation.
Example: if you have an IRepository then you shouldn't inject the connection string because connection strings are specific to a system that you connect to. There are cases when connection strings don't make sense. For example, an InMemoryRepository will not require a connection string and thus that is not a common dependency for all implementations.
I'm working on a project at the moment and it's going to be primarily library-based.
I want the library to be consumed using dependency injection, but I want the library to be largely agnostic towards the container being used.
I wrote a "bridge" library a while back to make this sort of thing easier, but I wasn't sure if this was actually the right approach? (library: https://github.com/clintkpearson/IoCBridge)
I don't want to reference the DI-technology (Ninject, Windsor etc) directly from my library as then it makes it inflexible for people using it.
There are a few other questions on SO in a similar vein but none of them seem to actually address the problem satisfactorily.
As a side note: I realise I could just make sure the library adheres to the general idiom and uses interfaces & ctor arguments for dependencies, and then just leave it up to the consuming app to register the types in the containers.
The only issue I can see with this (and correct me if I'm wrong) is that this requires the consuming app to actually know which types link to which interfaces, whether some need to be registered as singletons etc... and from a plug-and-play usage perspective that's pretty poor.
It's a bit controversial but I suggest using Poor Man's Injection. I'm not saying it's great but it has some valid use cases(just like Service Locator) under some constraints. It will require a little more maintenance but it will save you from depending another libray for IoC container registration. You should read Mark Seemann's article on the subject.
I recently implemented this approach in a very simple library of mine. Basically you write two constructors for the public classes of the library.
internal SitemapProvider(IActionResultFactory actionResultFactory, IBaseUrlProvider baseUrlProvider)
{
_actionResultFactory = actionResultFactory;
_baseUrlProvider = baseUrlProvider;
}
public SitemapProvider() : this(new ActionResultFactory(), new BaseUrlProvider()) { }
As you can see only the second constructor is public and you fill the dependencies yourself. This also provides encapsulation at assembly level. You can still test this class by adding a InternalsVisibleTo attribute to the assembly and use dependency injection in your library freely. The user can also create instances with new keyword or add this class's interface to their IoC registration.
I don't know if there's a widely adopted IoC container registration library in .NET. I thought about writing one myself but each container has their unique features and it gets more complicated with object life cycles. Also people will be uneasy about depending on another library for this.
A good DI implementation should enable DI on any object, regardless of the latter being DI-agnostic or not.
Prism is a bad example, as the last time I used it (2 years ago) it required objects to be DI-agnostic by enforcing use of the [Injection] attribute. A good non-DI-agnostic example is Spring Framework (extremely popular DI framework for Java, has a .NET port called Spring.NET), which allows enabling DI via so-called context files - these are xml files that describe dependencies. The latter need not be part of your library, leaving it as a completely independent dll file.
The example of Spring can tell you that you should not have any specific configuration, prerequisites or patterns to follow in order to make an object injectable, or allow objects to be injected to it, besides the programming to interfaces paradigm, and allowing programmatic access to suitable constructors and property setters.
This does not mean that any DI framework should support manipulation of plain CLR (.NET) objects, a.k.a. POCO-s. Some frameworks rely only on their specific mechanisms and may not be suitable to use with DI-independent code. Usually, they would require direct dependency on the DI framework to the library, which I think you want to (and probably should) avoid.
I think you have slightly misinterpeted the scope of Dependency Injection. DI is a pattern, a subset of IoC, and IoC containers make DI easy and convenient - they assist with dependency resolution. IoC can be categorised as a superset of several methodologies, of which DI is one part.
You do not need IoC frameworks in order to make Dependency Injection work.
If you really insist on using an IoC container instead of leveraging regular DI (i.e. constructor parameters or mandatory property setting) then you should nominate the container/framework, don't try to be all things to all people by trying to kludge together adapters or bridges. Be cautious about over-engineering. A library by its very definition means it has a limited and well defined set of functionality, therefore it should not need a large amount of dependencies injected.
They'll most likely want to implement their own versions of some of the interfaces
You don't need an IoC framework to achieve this. If your constructors have their parameters defined as interfaces then in effect you've already achieved DI - the dependency is injected at construction time and you know nothing about the actual concrete implementation of it. Let the calling code worry about the nitty gritty details of which implementation of that interface it wants to pass in.
I am creating a library that integrates our product with another 3rd party product.
The design being used involves an interface that abstracts the core operations i'd like to integrate to our product, such that when a new 3rd party API is released, we would transparently switch to using it instead of the old one without modifying existing code.
To this end, the actual code that will return a concrete instance of the object interacting with 3rd party API needs to make a decision on to "which implementation to select".
For the simple needs, i assume an entry in the configuration file would suffice to say the fully qualified implementing class name.
Should i use an IoC container in this case, or should i use a Factory Method pattern and code it myself? (use reflection to instantiate the object, etc).
What are the pros and cons for this? Am i missing anything?
Quoting Mark Seemann:
Applications should depend on containers. Frameworks should not.
An IoC container sounds like overkill for your problem. If you have only one dependency to inject, doing it via the config file should be just fine.
Any IoC container is never overkill. You WILL eventually expand on this app if it's successful, or at the least used regularly and you will get requests to add more.
I'm a Castle user, and it's darn easy to add Castle with NuGet then just create a new WindsorContainer() in the startup and register your interfaces and class.
It's like asking if TDD is overkill to make a simple app. You should always (if you can) TDD the app, and use interfaces over concrete in your classes. IoC is too easy to setup now that you're only adding a few lines of code, so why not? it will be much harder later on if you didn't originally use an IoC container and you have intefaces and newed up classes all over your project to organize them all back into an IoC container.
I'm a newbie to Dependency Injection. I have never used and never even undestood what it is exatcly all about, but after my last attack on this topic I found out that is a way of uncoupling an object and its dependencies, once they are not responsible for instantiating the concrete versions of its dependencies anymore, as now the container will do it for us and deliver the ready object in our hands.
Now the point is; "when should I use it?", ALWAYS??? Actually, as I'm a newbie and have never even seen a project that uses this pattern I can't undestand how I should apply it to my domain objects!!! It seems to me that I will nevermore instantiate my objects and the container will always do it for me, but then comes some doubts...
1) What about oobjects that part of its dependencies comes from the UI, for example;
public class User(String name, IValidator validator)
Say that I get the user name from the UI, so how will the conatiner know it and still delliver this object for me?
2) Theres other situation I'm facing; if a dependency is now an object that is already instantiated, say... a SINGLETON object, for example . I saw theres settings regarding out the scope of life of the dependency beign injected (im talking about Spring.NET, eg; http request scope)... BUT, request and other web related things are on my presentation layer, so how could I link both my presentation layer and my domain layer without breaking any design rule (as my domain should be totally unaware of where its is being consumed, not to have layer dependency, etc)
Im eager to hear from you all. Thanks very much.
In general, once you go IoC, you tend to want to register EVERYTHING with IoC and have the container spit out fully-hydrated objects. However, you bring up some valid points.
Perhaps a definition of "dependency" is in order; at its broadest, a dependency is simply a set of functionality (interface) that a given class requires a concrete implementation of in order for the class to work correctly. Thus, most non-trivial programs are full of dependencies. To promote ease of maintenance, loose coupling of all dependencies is generally preferred. However, even when loosely coupled, you don't need to automate instantiation of dependencies if those objects require specialized information that you don't want to pollute your IoC registry with. The goal is to loosely couple usage, not necessarily creation.
Concerning point 1, some IoC frameworks don't do well with being given external parameters. However, you can usually register a delegate as a factory method. That delegate may belong to an object like a Controller that is given external information by the UI. Logins are a perfect example: Create an object, say a LoginController, and register it with IoC as your ILoginController. You'll reference that controller on your Login page, it will be injected when the Login page is instantiated, and the login page will pass it the credentials entered. The Controller will then perform authentication, and will have a method GetAuthenticatedUser() that produces a User object. You can register this method with IoC as a Factory for Users, and whenever a User is needed, the factory delegate will either be evaluated, or passed wholesale to the dependent method which will call it when it really needs the User.
On point 2, setting up a single instance of an object is a strength of the IoC pattern. Instead of creating a true singleton, with a private instance constructor, static instance and static constructor to produce an instance, you simply register the class with IoC and tell it to only instantiate it once and use that one instance for all requests. The strength is the flexibility; if you later want there to be more than one instance, you just change the registration. You won't break any design pattern rules either way; the view will always have a Controller injected, whether that Controller is the same for all pages or a new instance per request.
1) this contructor is probably not the right one to use, may be you are injecting the validator in the wrong place/way.
2)Neighter View nor Model and nor Controller should be aware of there is an IoC, it should lie in the background architecture ( where MVC components are actually instantiated )
You should use IoC when you feel the architecture can became complex and has to be mantained by many people. If you are writing an enterprise application, or a UI you think to extend with plugins, you probably need it, if you are writing a command line utility, probably not.
You should use dependency injection whenever you want any of the following benefits:
The ability to replace modules easily
The ability to reuse modules between parts of the application, or different applications
When you want to do parallel development, so that components of a system can be developed in isolation and in parallel because they depend on abstractions
When you want easier maintenance of a system because of loose coupling
When you want testability (a specialisation of replacing modules). This is one of the biggest reasons for using DI
To answer your other questions:
1) You can configure many IoC containers so that certain constructor parameters can be specified, whilst others are resolved by the container. However, you may need to think about refactoring that piece of code, as a UserFactory may be more appropriate which takes the validator dependency, and has a NewUser method which takes a user name and returns a new user (either instantiating it directly or resolving from the container).
2) Each application you build will have a composition root, where your container is configured, and the root object is resolved. Each app will therefore have its own IoC configuration, so there is an expected link between the application type and the configuration settings. Any common abstraction registrations can be placed in configuration code which can be shared amongst all applications.
I use dependency injection through parameters and constructors extensively. I understand the principle to this degree and am happy with it. On my large projects, I end up with too many dependencies being injected (anything hitting double figures feels to big - I like the term 'macaroni code').
As such, I have been considering IOC containers. I have read a few articles on them and so far I have failed to see the benefit. I can see how it assists in sending groups of related objects or in getting the same type over and over again. I'm not sure how they would help me in my projects where I may have over a hundred classes implementing the same interface, and where I use all of them in varying orders.
So, can anybody point me at some good articles that not only describe the concepts of IOC containers (preferably without hyping one in particular), but also show in detail how they benefit me in this type of project and how they fit into the scope of a large architecture?
I would hope to see some non-language specific stuff but my preferred language if necessary is C#.
Inversion of Control is primarily about dependency management and providing testable code. From a classic approach, if a class has a dependency, the natural tendency is to give the class that has the dependency direct control over managing its dependencies. This usually means the class that has the dependency will 'new' up its dependencies within a constructor or on demand in its methods.
Inversion of Control is just that...it inverts what creates dependencies, externalizing that process and injecting them into the class that has the dependency. Usually, the entity that creates the dependencies is what we call an IoC container, which is responsible for not only creating and injecting dependencies, but also managing their lifetimes, determining their lifestyle (more on this in a sec), and also offering a variety of other capabilities. (This is based on Castle MicroKernel/Windsor, which is my IoC container of choice...its solidly written, very functional, and extensible. Other IoC containers exist that are simpler if you have simpler needs, like Ninject, Microsoft Unity, and Spring.NET.)
Consider that you have an internal application that can be used either in a local context or a remote context. Depending on some detectable factors, your application may need to load up "local" implementations of your services, and in other cases it may need to load up "remote" implementations of your services. If you follow the classic approach, and create your dependencies directly within the class that has those dependencies, then that class will be forced to break two very important rules about software development: Separation of Concerns and Single Responsibility. You cross boundaries of concern because your class is now concerned about both its intrinsic purpose, as well as the concern of determining which dependencies it should create and how. The class is also now responsible for many things, rather than a single thing, and has many reasons to change: its intrinsic purpose changes, the creation process for its dependencies changes, the way it finds remote dependencies changes, what dependencies its dependencies may need, etc.
By inverting your dependency management, you can improve your system architecture and maintain SoC and SR (or, possibly, achieve it when you were previously unable to due to dependencies.) Since an external entity, the IoC container, now controls how your dependencies are created and injected, you can also gain additional capabilities. The container can manage the life cycles of your dependencies, creating and destroying them in more flexible ways that can improve efficiency. You also gain the ability to manage the life styles of your objects. If you have a type of dependency that is created, used, and returned on a very frequent basis, but which have little or no state (say, factories), you can give them a pooled lifestyle, which will tell the container to automatically create an object pool for that particular dependency type. Many lifestyles exist, and a container like Castle Windsor will usually give you the ability to create your own.
The better IoC containers, like Castle Windsor, also provide a lot of extendability. By default, Windsor allows you to create instances of local types. Its possible to create Facilities that extend Windsor's type creation capabilities to dynamically create web service proxies and WCF service hosts on the fly, at runtime, eliminating the need to create them manually or statically with tools like svcutil (this is something I did myself just recently.) Many facilities exist to bring IoC support existing frameworks, like NHibernate, ActiveRecord, etc.
Finally, IoC enforces a style of coding that ensures unit testable code. One of the key factors in making code unit testable is externalizing dependency management. Without the ability to provide alternative (mocked, stubbed, etc.) dependencies, testing a single "unit" of code in isolation is a very difficult task, leaving integration testing the only alternative style of automated testing. Since IoC requires that your classes accept dependencies via injection (by constructor, property, or method), each class is usually, if not always, reduced to a single responsibility of properly separated concern, and fully mockable dependencies.
IoC = better architecture, greater cohesion, improved separation of concerns, classes that are easier to reduce to a single responsibility, easily configurable and interchangeable dependencies (often without requiring a recompilation of your code), flexible dependency life styles and life time management, and unit testable code. IoC is kind of a lifestyle...a philosophy, an approach to solving common problems and meeting critical best practices like SoC and SR.
Even (or rather, particularly) with hundreds of different implementations of a single interface, IoC has a lot to offer. It might take a while to get your head fully wrapped around it, but once you fully understand what IoC is and what it can do for you, you'll never want to do things any other way (except perhaps embedded systems development...)
If you have over a hundred of classes implementing a common interface, an IoC won't help very much, you need a factory.
That way, you may do the following:
public interface IMyInterface{
//...
}
public class Factory{
public static IMyInterface GetObject(string param){
// param is a parameter that will help the Factory decide what object to return
// (that is only an example, there may not be any parameter at all)
}
}
//...
// You do not depend on a particular implementation here
IMyInterface obj = Factory.GetObject("some param");
Inside the factory, you may use an IoC Container to retrieve the objects if you like, but you'll have to register each one of the classes that implement the given interface and associate them to some keys (and use those keys as parameters in GetObject() method).
An IoC is particularly useful when you have to retrieve objects that implement different interfaces:
IMyInteface myObject = Container.GetObject<IMyInterface>();
IMyOtherInterface myOtherObject Container.GetObject<IMyOtherInterface>();
ISomeOtherInterface someOtherObject = Container.GetObject<ISomeOtherInterface>();
See? Only one object to get several different type objects and no keys (the intefaces themselves are the keys). If you need an object to get several different object, but all implementing the same interface, an IoC won't help you very much.
In the past few weeks, I've taken the plunge from dependency-injection only to full-on inversion of control with Castle, so I understand where your question is coming from.
Some reasons why I wouldn't want to use an IOC container:
It's a small project that isn't going to grow that much. If there's a 1:1 relationship between constructors and calls to those constructors, using an IOC container isn't going to reduce the amount of code I have to write. You're not violating "don't repeat yourself" until you're finding yourself copying and pasting the exact same "var myObject = new MyClass(someInjectedDependency)" for a second time.
I may have to adapt existing code to facilitate being loaded into IOC containers. This probably isn't necessary until you get into some of the cooler Aspect-oriented programming features, but if you've forgotten to make a method virtual, sealed off that method's class, and it doesn't implement an interface, and you're uncomfortable making those changes because of existing dependencies, then making the switch isn't quite as appealing.
It adds an additional external dependency to my project -- and to my team. I can convince the rest of my team that structuring their code to allow DI is swell, but I'm currently the only one that knows how to work with Castle. On smaller, less complicated projects, this isn't going to be an issue. For the larger projects (that, ironically, would reap the most benefit from IOC containers), if I can't evangelize using an IOC container well enough, going maverick on my team isn't going to help anybody.
Some of the reasons why I wouldn't want to go back to plain DI:
I can add or take away logging to any number of my classes, without adding any sort of trace or logging statement. Having the ability for my classes to become interwoven with additional functionality without changing those classes, is extremely powerful. For example:
Logging: http://ayende.com/Blog/archive/2008/07/31/Logging--the-AOP-way.aspx
Transactions: http://www.codeproject.com/KB/architecture/introducingcastle.aspx (skip down to the Transaction section)
Castle, at least, is so helpful when wiring up classes to dependencies, that it would be painful to go back.
For example, missing a dependency with Castle:
"Can't create component 'MyClass' as
it has dependencies to be satisfied.
Service is waiting for the following
dependencies:
Services:
- IMyService which was not registered."
Missing a dependency without Castle:
Object reference is not set to an
instance of an object
Dead Last: The ability to swap injected services at runtime, by editing an Xml File. My perception is that this is the most tauted feature, but I see it as merely icing on the cake. I'd rather wire up all my services in code, but I'm sure I'll run into a headache in the future where my mind will be changed on this.
I will admit that -- being a newbie to IOC and Castle -- I'm probably only scratching the surface, but so far, I genuinely like what I see. I feel like the last few projects I've built with it are genuinely capable of reacting to the unpredictable changes that arise from day to day at my company, a feeling I've never quite had before.
Try these:
http://www.martinfowler.com/articles/injection.html
http://msdn.microsoft.com/en-us/library/aa973811.aspx
I have no links but can provide you with an example:
You have a web controller that needs to call a service which has a data access layer.
Now, I take it in your code you are constructing these objects your self at compile time. You are using a decent design pattern, but if you ever need to change the implementation of say the dao, you have to go into you code and remove the code that sets this dependency up, recompile / test/ deploy. But if you were to use a IOC container you would just change the class in the configuration and restart the application.
Jeremy Frey misses one of the biggest reasons for using an IOC container: it makes your code easier to mock and test.
Encouraging the use of interfaces has lots of other nice benefits: better layering, easier to dynamically generate proxies for things like declarative transactions, aspect-oriented programming and remoting.
If you think IOC is only good for replacing calls to "new", you don't get it.
IoC containers usually do the dependency injections which in some projects are not a big deal , but some of the frameworks that provide IoC containers offer other services that make it worth to use them.
Castle for example has a complete list of services besides an IoC container.Dynamic proxies ,Transaction management and NHibernate facilities are some of them.
Then I think you should consider IoC contianers as a part of an application framework.
Here's why I use an IoC container:
1.Writing unit tests will be easier .Actually you write different configurations to do different things
2.Adding different plugins for different scenarios(for different customers for example)
3.Intercepting classes to add different aspects to our code.
4.Since we are using NHibernate ,Transaction management and NHibernate facilites of Castle are very helpful in developing and maintaining our code .
It's like every technical aspects of our application is handled using an application framework and we have time to think about what customers really want.