C# nested class properties - c#

In C#, why does a nested class have to instantiate it's parent class, to reference its parent class non-static properties in code?
public class OuterClass
{
public int OuterClassProperty
{
get
{
return 1;
}
}
public class InnerClass
{
public int InnerClassProperty
{
get
{
/* syntax error: cannot access a non-static
* member of outer type via nested type.
*/
return OuterClassProperty;
}
}
}
}
It seems I have to do this instead:
public class OuterClass
{
public int OuterClassProperty
{
get
{
return 1;
}
}
public class InnerClass
{
public int InnerClassProperty
{
get
{
OuterClass ImplementedOuterClass = new OuterClass();
return ImplementedOuterClass.OuterClassProperty;
}
}
}
}
I'm thinking the first code example should be okay, because if InnerClass is instantiated, the parent class would implemented first - along with the parent class properties.
Thanks for the help, I'm trying to learn the in's and out's of C#... and I am not familiar with Java, comparing to Java won't help much...

The behavior you are observing is explicitly spelled out in the C# specification. Snippet of C# 5.0 below:
10.3.8.4 this access
A nested type and its containing type do not have a special relationship with regard to this-access (§7.6.7). Specifically, this within a nested type cannot be used to refer to instance members of the containing type. In cases where a nested type needs access to the instance members of its containing type, access can be provided by providing the this for the instance of the containing type as a constructor argument for the nested type.
The behavior of nested classes in C# is different for other language like Java inner classes in c# and C+ because C# is different language created by different language design team. Exact historical reasons why particular behavior was selected possibly could be found in blogs of members of C# design team, .Net design guidelines book or MSDN articles.

Related

Using “this” with a class name in C#

[Edit] What I wanted to ask was just putting a class name with this, so it wasn't about referencing an outer class member. Sorry for my inappropriate example!
[Edit2] Someone reported this as a duplicate BUT NOT! As I said earlier, I just wanted to know if it's possible to reference MyClass.this and this interchangeably like in Java. This wasn't a practical question at all but just for learning C# language itself. I don't mind removing this if people really think it's a duplicate so let me know.
In Java, you can use this with class names like this:
class OuterClass {
int outerMember = 1;
class InnerClass {
int innerMember = 2;
public void printOuterMember() {
System.out.println(OuterClass.this.outerMember);
System.out.println(outerMember);
}
public void printInnerMember() {
System.out.println(InnerClass.this.innerMember);
System.out.println(this.innerMember);
System.out.println(innerMember);
}
}
}
Sometimes class names are not needed, but sometimes helpful.
So I tried the same thing in C# but it seems it's impossible. Am I right?
C# does not support this, in Java the nested class captures the parent object reference. C# nested classes are more like static nested classes in Java. If you want access to the parent class you will need to pass a reference to it in the nested class constructor.
Nested classes will have access to private fields of the parent class if they have a reference to it, so you can achieve similar results, just the access to the parent class instance is not automatic as it is in Java. So this code works
class Owner
{
private int field;
class Nested
{
public Nested(Owner owner) { this.owner = owner; }
Owner owner;
public int D()
{
return owner.field;
}
}
}

How does c# handle nested (generic) types?

I'm trying to understand how C# views types in the face of nesting.
More specifically I'm trying to understand why some types are not considered assignment compatible or even castable, when there "kind of" only exist one definition of the nested class. Does the compiler / CLR actually generate different types for these, or what rules are at play exactly...
Example code:
public class Foo<T>
{
protected class Private2 : Private1<Foo<T>>
{ }
protected class Private1<T2> where T2 : Foo<T>
{
public sealed class Nested
{
public void Test(T2 foo)
{
foo.Method2(this); //Nope!
var nes = (Private2.Nested)this; //Nope!
}
}
}
public void Method1()
{
var nested = new Private2.Nested();
nested.Test(this);
}
private void Method2(Private2.Nested nested)
{
// something code...
}
}
So even though the nested instance is created as a Private2.Nested it can not be casted to that type. And... well... how do the different Nested types relate to each other given that Nested is in fact sealed? (They can't be inheriting from each other right? But on the other hand their implementation should be 100% identical... am I wrong?)
Primary question: What exactly is the compiler doing when it "compiles" this nested class?? How many unique types (excluding valuetype-related) are actually generated, and if it is all the "same" type, is the restriction artificial (as in wouldn't an unsafe cast actually work)? (What I'm saying is that the IL for all these types comes from the same code definition - so at some level the compiler must know. Are instances of these types not bit-for-bit identical apart from their type-names?)
Secondary question: not what I'm really asking here, mostly for brevity / context: is there some simple change that would make the above work? Am I missing something obvious?
The type Foo<T> must never be directly referenced inside Private1<T2> - only use of T2 is allowed. Foo<T> is just my example stand in for nasty generic classes with 10~20 generic types. It's all just a "workaround" for not being able to alias a generic class with its types:
public class Bar<GoodName, OtherName, Readability, NopeMr, DontThinkSo, Suffering, Dispair>
{
//If only this was real...
using BarT = Bar<GoodName, OtherName, Readability, NopeMr, DontThinkSo, Suffering, Dispair>;
public void Method1(BarT bar) { ... } //so good!!
//goodbye readability... see you never...
public void Method2(Bar<GoodName, OtherName, Readability, NopeMr, DontThinkSo, Suffering, Dispair> whatIsThisVariable) { ... }
}
Purpose: To avoid types of fields and method-parameters that are several screens wide and utterly unreadable! >:(
...As a side note I really wished this could be used as a type inside classes and interfaces, as in Private2 : Private1<this>. Well ok, that wouldn't work because it collides with extension syntax on methods, but something similar, perhaps <this>, <super>, <base> used like Method(<this> arg) or Private2 : Private1<<super>> ... kind of weird maybe.
Consider this types:
public class Base {
public static int Value;
public class Nested { }
}
public class Derived:Base { }
What is Derived.Value and Derived.Nested. Actually, when you refer to inherited static members (nested class considered to be static member) thru derived class, you just reference base class members, so this have exactly same meaning as Base.Value and Base.Nested at compile time. There are no separate static field Derived.Value or separate class Derived.Nested.
public static void Test() {
Derived.Value=10;
Console.WriteLine(Base.Value);
Base.Value=20;
Console.WriteLine(Derived.Value);
Base.Nested bn=new Derived.Nested();
Derived.Nested dn=new Base.Nested();
Console.WriteLine(typeof(Base.Nested).FullName);
Console.WriteLine(typeof(Derived.Nested).FullName);
Console.WriteLine(typeof(Base.Nested)==typeof(Derived.Nested));
}
Original answer:
Foo<A>.Private1<B>.Nested and Foo<C>.Private1<D>.Nested considered to be different types if A!=C or B!=D. They can share same implementation internally, but for assignment compatibility they are different. Foo<T>.Private2.Nested is just alias to Foo<T>.Private1<Foo<T>>.Nested. And even if class Bar:Foo<A>{}, classes Foo<A>.Private1<Foo<A>>.Nested and Foo<A>.Private1<Bar>.Nested still considered to be different types. So Foo<T>.Private1<T2>.Nested can not be converted to Foo<T>.Private1<Foo<T>>.Nested as T2 is not necessary Foo<T>.
You're not thinking with portals. Your inner classes are already generalized on T.
public class Foo<T>
{
private class Private2 : Private1
{ }
private class Private1
{
public sealed class Nested
{
public void Test( Foo<T> foo )
{
foo.Method2( this ); //Yup
var nes = (Private2.Nested)this; //Yup
}
}
}
public void Method1()
{
var nested = new Private2.Nested();
nested.Test( this );
}
private void Method2( Private2.Nested nested )
{
// something code...
}
}
Partial answer to the primary question:
It was bugging me that you can make the code compile by changing Method2 to accept an object and cast it at runtime, because the nested instance is of the correct type (it's instantiated inside Method1). That would seem to work - as long as Foo is sealed - but as soon as someone else can subclass Private1 it is no longer guaranteed to work. (And thus not a solution.) However testing this approach reveals:
Private2.Nested is only a construct of syntax rules - using GetType() on the resulting variable says Private1.Nested and there is no Private2.Nested type.
I think the irksome feeling I was getting from this (and why I concidered sealed to be related) was some kind of confusion on my part when it came to distinguishing between subtype and inheritance. Because the outer classes are inheriting (Private1 and Private2) it feels like inheritance, and thus it feels like it should somehow be castable. But if I understand this correctly they are merely of the same subtype:
There need not be and is in fact no inheritance relation one way or the other (as the sealed clearly hints) because "the inheritance hierarchy is distinct from from the subtype hierarchy", and thus a downright conversion would be needed (since casts are bound to the inheritance hierarchy).

Why would you mask a base class member?

I have just learned how to mask a base class member (using new) but am missing the point as to why I would want to do that. Does masking provide us with a certain level of protection as is the case in using encapsulation? Please advise.
You will very rarely use "new" to mask a base class member.
It's mainly used for the cases where the derived class had the member first, and then it was added to the base class --- the same name for a different purpose. The new is there to that you acknowledge that you know you are using it differently. When a base member is added in C++, it just silently merges the existing method into the inheritance chain. In C#, you will have to choose between new and override, to show you know what is happening.
It's not just used for masking. It actually breaks the inheritance chain, so if you call the base class method, the method in the derived class will not be called (just the one in the base class).
You're essentially creating a new method that has nothing to do with the base class method. Hence the "new" keyword.
Keeping that in mind the "new" keyword can be used if you want to define a method with the same signature as a base type method, but having a different return type.
The only valid safe examples that I've come across is being more specific with return types or providing a set accessor on a property. I'm not saying those are the only ones, but that's all I've found.
For example, suppose you have a very simple base that looks like this:
public abstract class Base
{
public string Name { get; protected set; }
public Base(string name)
{ Name = name; }
}
You could have a derived that looks more like this:
public class Derived : Base
{
public new string Name
{
get { return base.Name; }
set { base.Name = value; }
}
public Derived(string name) : base(name)
{ }
}
Assuming business rules allows this one specific Derived to have a changeable name, I believe this is acceptable. The problem with new is that it changes behavior depending on what type the instance is viewed as. For example, if I were to say:
Derived d = new Derived("Foo");
d.Name = "Bar";
Base b = d;
b.Name = "Baz"; // <-- No set available.
In this trivial example, we're fine. We are overriding the behavior with new, but not in a breaking way. Changing return types requires a bit more finesse. Namely, if you use new to change a return type on a derived type, you shouldn't allow that type to be set by the base. Check out this example:
public class Base
{
public Base(Base child)
{ Child = child; }
public Base Child { get; private set; }
}
public class Derived
{
public Derived(Derived child) : base(child)
{ }
public new Derived Child
{ get { return (Derived)base.Child; } }
}
If I could set Child on the Base class, I could have a casting problem in the Derived class. Another example:
Derived d = new Derived(someDerivedInstance);
Base b = d;
var c = b.Child; // c is of type Base
var e = d.Child; // e is of type Derived
I can't break any business rules by treating all of my Derived classes as Bases, it's just convenient to not type check and cast.
I have just learned how to mask a base class member (using new)
FYI this feature is usually called "hiding" rather than "masking". I think of "masking" as clearing bits in a bit array.
am missing the point as to why I would want to do that.
Normally you don't want to. For some reasons to use and not use this feature, see my article on the subject from 2008:
http://blogs.msdn.com/b/ericlippert/archive/2008/05/21/method-hiding-apologia.aspx
Does masking provide us with a certain level of protection as is the case in using encapsulation?
No, it does not.
What you are referring to is called Name Hiding. It is mostly a convenience feature. If you are inheriting from a class for which you do not control the source using new will let you change the behavior of a method even if it wasn't declared as virtual (or completely change the signature if it is virtual). The new keyword simply suppresses a compiler warning. You are basically informing the compiler that you are intentionally hiding the method from a parent class.
Delphi had the reintroduce keyword for the same reason.
What does this buy you other than a suppressed warning? Not a whole lot. You can't access the new method from a parent class. You can access it from an interface if your child class directly implements the interface (as apposed to inheriting it from its parent class). You can still call the parent class' member from the child. Any additional descendants of your class will inherit the new member rather than the one in the parent.
This is actually called member hiding. There are a couple of common scenarios where this can be appropriately used.
It allows you to work around versioning issues in which either the base or derived class author unwittingly creates a member name that collides with an existing identifier.
It can be used to simulate covariance on return types.
Regarding the first point...it is possible that an author of a base class could later add a member with the same name as an exisiting member in a derived class. The base class author may not have an knowledge of the derived classes and thus there is no expectation that she should avoid name collisions. C# supports the independent evolution of class hierarchies using the hiding mechanisms.
Regarding the second point...you may want a class to implement an interface that dictates a certain method signature and so you are locked into returning instances of a certain type only while at the same time you have subclassed that type and would really like for callers to see the concrete type instead. Consider this example.
public interface IFoo { }
public class ConcreteFoo { }
public abstract class Base
{
private IFoo m_Foo;
public Base(IFoo x) { m_Foo = x; }
public IFoo Foo { get { return m_Foo; } }
}
public class Derived
{
public Derived(ConcreteFoo x) : base(x) { }
public new ConcreteFoo Foo { get { return (ConcreteFoo)base.Foo; } }
}

C# Lack of Static Inheritance - What Should I Do?

Alright, so as you probably know, static inheritance is impossible in C#. I understand that, however I'm stuck with the development of my program.
I will try to make it as simple as possible. Lets say our code needs to manage objects that are presenting aircrafts in some airport. The requirements are as follows:
There are members and methods that are shared for all aircrafts
There are many types of aircrafts, each type may have its own extra methods and members. There can be many instances for each aircraft type.
Every aircraft type must have a friendly name for this type, and more details about this type. For example a class named F16 will have a static member FriendlyName with the value of "Lockheed Martin F-16 Fighting Falcon".
Other programmers should be able to add more aircrafts, although they must be enforced to create the same static details about the types of the aircrafts.
In some GUI, there should be a way to let the user see the list of available types (with the details such as FriendlyName) and add or remove instances of the aircrafts, saved, lets say, to some XML file.
So, basically, if I could enforce inherited classes to implement static members and methods, I would enforce the aircraft types to have static members such as FriendlyName. Sadly I cannot do that.
So, what would be the best design for this scenario?
One answer is to decorate each class with attributes (metadata):
[Description("Lockheed Martin F-16 Fighting Falcon")]
public class F16 : Aircraft
{
// ...
}
This is using the DescriptionAttribute already in System.ComponentModel.
You can get the metadata like this:
Type t = typeof(F16);
DescriptionAttribute attr = (DescriptionAttribute)Attribute.GetCustomAttribute(t,
typeof(DescriptionAttribute));
string description = (attr != null) ? attr.Description : t.Name;
This will get you the description text from a reference to the F16 class.
Why do you need these properties to be static?
public class Aircraft
{
protected string AircraftName { get; protected set; }
}
public class F16 : Aircraft
{
public F16()
{
AircraftName="F16 Falcon";
}
}
Don't use static methods. use instance methods instead.
Also the top abstract may expose an abstract method that will return the aircraft specific name.
public abstract class Aircraft
{
public abstract string Name { get; }
public abstract string FriendlyName { get; }
}
This is a case where you may benefit from a Factory pattern. Instead of importing specific types of Aircraft, provide a standard IAircraftFactory interface that defines what every Aircraft Factory needs to do for you. This is where you can return descriptions, UI information, etc. The Aircraft Factory is then responsible for creating the particular Aircraft. Because your clients must create a custom Factory in order to expose their Aircraft, they are forced to implement the interface and reminded (via its members) that they have a contract to fulfill.
Something like:
public interface IAircraft
{
//Aircraft instance details...
}
public interface IAircraftFactory
{
//Can include parameters if needed...
IAircraft BuildAircraft();
//And other useful meta-data...
string GetDescription();
}
//In some other Client-provided DLL...
public class MyAircraftFactory : IAircraftFactory
{
IAircraft BuildAircraft()
{
return new MyAircraft();
}
//...
}
Use an enumeration for the friendly names, and create an instance member of that type for the friendly name. Require the initialization of this member during construction.
#Aaronaught hit the nail on the head with the plugin-like architecture comment.
What I did the last time I encountered this, was to have a "Descriptor" type that was not terribly expensive to create, and keep the meta data in an instance field.
public class F16Descriptor : AircraftDescriptor
{
public override string Name { get { return "Lockheed Martin F-16 Fighting Falcon"; } }
public override Type AircraftType { get { return typeof(F16); } }
}
public class F16 : AircraftBase
{
...
}
An interesting way to solve this problem is to recognize that aircraft types are also an important concept in the design and create them as separate classes, whose instances act as types of aircrafts. This is known as the type object pattern (pdf), and it allows for very flexible designs.

Private inner classes in C# - why aren't they used more often?

I am relatively new to C# and each time I begin to work on a C# project (I only worked on nearly mature projects in C#) I wonder why there are no inner classes?
Maybe I don't understand their goal. To me, inner classes -- at least private inner classes -- look a lot like "inner procedures" in Pascal / Modula-2 / Ada : they allow to break down a main class in smaller parts in order to ease the understanding.
Example : here is what is see most of the time :
public class ClassA
{
public MethodA()
{
<some code>
myObjectClassB.DoSomething(); // ClassB is only used by ClassA
<some code>
}
}
public class ClassB
{
public DoSomething()
{
}
}
Since ClassB will be used (at least for a while) only by ClassA, my guess is that this code would be better expressed as follow :
public class ClassA
{
public MethodA()
{
<some code>
myObjectClassB.DoSomething(); // Class B is only usable by ClassA
<some code>
}
private class ClassB
{
public DoSomething()
{
}
}
}
I would be glad to hear from you on this subject - Am I right?
Nested classes (probably best to avoid the word "inner" as nested classes in C# are somewhat different to inner classes in Java) can indeed be very useful.
One pattern which hasn't been mentioned is the "better enum" pattern - which can be even more flexible than the one in Java:
public abstract class MyCleverEnum
{
public static readonly MyCleverEnum First = new FirstCleverEnum();
public static readonly MyCleverEnum Second = new SecondCleverEnum();
// Can only be called by this type *and nested types*
private MyCleverEnum()
{
}
public abstract void SomeMethod();
public abstract void AnotherMethod();
private class FirstCleverEnum : MyCleverEnum
{
public override void SomeMethod()
{
// First-specific behaviour here
}
public override void AnotherMethod()
{
// First-specific behaviour here
}
}
private class SecondCleverEnum : MyCleverEnum
{
public override void SomeMethod()
{
// Second-specific behaviour here
}
public override void AnotherMethod()
{
// Second-specific behaviour here
}
}
}
We could do with some language support to do some of this automatically - and there are lots of options I haven't shown here, like not actually using a nested class for all of the values, or using the same nested class for multiple values, but giving them different constructor parameters. But basically, the fact that the nested class can call the private constructor gives a lot of power.
The Framework Design Guidelines has the best rules for using nested classes that I have found to date.
Here's a brief summary list:
Do use nested types when the relationship between type and nested type is such the member-accessibility semantics are desired.
Do NOT use public nested types as a logical group construct
Avoid using publicly exposed nested types.
Do NOT use nested types if the type is likely to be referenced outside of the containing type.
Do NOT use nested types if they need to be instantiated by client code.
Do NOT define a nested type as a member of an interface.
You should limit the responsibilities of each class so that each one stays simple, testable and reusable. Private inner classes go against that. They contribute to the complexity of the outer class, they are not testable and they are not reusable.
For me personally I only create private inner classes if I need to create in-process collections of an object that may require methods on them.
Otherwise, it could cause confusion for other developers working on the project to actually find these classes, as they are not very clear as to where they are.

Categories

Resources