I have seen a lot of questions about how to edit controls on c# form from a different thread but none make much sense to me. I understand that you can not change any UI from another thread than it's main. To make this work you have to use invoke and from there safely edit the control?
I have a button that starts writing in a file and the moment you press the button the button itself gets disabled so you can not start multiple threads that do exactly the same. When the writing is done I want the button to be available again but I can not get it working on this other thread.
I have this as the Generate_Click event from the form.
private void Generate_Click(object sender, EventArgs e)
{
Generate.Enabled = false;
int x = 512;
int y = 512;
MBrot mbrot = new MBrot(x, y);
PB_Update lb = new PB_Update(0, y, Generator_PB, Generate, mbrot, this);
lb.Start();
}
And this is in PB_Update.cs the ThreadWork() function, when the while loop is done the writing to the file is done and so is the thread so its ended and given a messagebox with "finished" now as last the button needs to be enabled again.
public void ThreadWork()
{
while (true)
{
if (currValue_ >= maxValue_)
break;
ThreadTick();
}
mb_.StopBrot();
t_.Interrupt();
MessageBox.Show("Finished!");
Generate_.Enabled = true;
}
For WinForms you can execute directly on the thread which the control was created on through the Control.BeginInvoke method, you can use Control.Invoke as well but, Control.BeginInvoke is preferred for UI operations.
public void ThreadWork()
{
while (true)
{
if (currValue_ >= maxValue_)
break;
ThreadTick();
}
mb_.StopBrot();
t_.Interrupt();
MessageBox.Show("Finished!");
Generate_.BeginInvoke((Action)delegate()
{
Generate_.Enabled = true;
});
}
Somehow, get a reference to the form that hosts the generate_ button (let's call it myform). Then, at the bottom of your ThreadWork:
myform.Invoke(new Action(() => {
myform.SetGenerateEnabled();
}));
And then inside your form create that method that enables the button appropriately. (I used a method rather than just updating the button directly so that you don't publicly expose the button.)
This executes the commands inside the { ... } on myform's thread, which is a UI thread, because it is UI. At least, that's what I understand. This is how I do all of my UI updating from other threads.
Here's a simple example of a way to kick off an async task that disables a button for 5 seconds and then enables it again. Meanwhile, the rest of the UI is functional.
Note that this async method exists in the same class as your Generate_Click event, and runs on the UI thread. This means that it can enable and disable the button. But the long running task executes on a separate thread, so it doesn't lock the UI.
Hopefully this sample provides you a base to modify for your own code:
private void Generate_Click(object sender, EventArgs e)
{
DisableButton(sender as Button, 5);
}
private async void DisableButton(Button sender, int secondsToDisable)
{
sender.Enabled = false;
// In your code, you would kick off your long-running process here as a task
await Task.Run(()=>Thread.Sleep(TimeSpan.FromSeconds(secondsToDisable)));
sender.Enabled = true;
}
Related
I am trying to implement an indeterminate progress bar into my program. I'm new to threading, but as far as I know one of the best options here is to add an async method, and await the "heavy" function to perform its results. So I wrote this:
public void Window_Loaded(object sender, RoutedEventArgs e)
{
firstLoad();
}
private async void firstLoad()
{
LW.Title = "Loading...";
LW.Show();
filterTextBox.Text = defaultSearch;
await Task.Run(() => InitializeFilter());
}
private void InitializeFilter()
{
//Asynchronous???
Dispatcher.BeginInvoke(new Action(() => {
//... some lines of code that takes some time to run.
dataGrid.ItemContainerGenerator.StatusChanged += new EventHandler(closeLoadingWindow);
}));
private void closeLoadingWindow(object sender, EventArgs e)
{
if (LW != null)
{
LW.closable = true;
LW.Close();
}
}
firstLoad runs when the window is loaded, showing an indeterminate LW loadingWindow, and running the InitializeFilter() method (the heavy one). Finally, when the grid is populated and loaded, an event fires, allowing the LW window to be closed and closing it (if I didn't make it unclosable, a funny user could just close it clicking or using F4, which is not nice).
The system is working properly and everything works as expected regarding time frames, but the loading bar is frozen, not showing progress. The same LW bar works in the MainWindow with a similar set up What am I missing? Thanks in advance!
as far as I know one of the best options here is to add an async method, and await the "heavy" function to perform its results
The best option is to use Task.Run to move the heavy processing to the thread pool, and use await to retrieve its results.
The code as it currently stands uses Task.Run to move to the thread pool and then immediately turns around and uses Dispatcher to move back to the UI thread before doing the heavy processing. Thus, it's blocking the UI thread.
what this particular DataGrid displays is a CollectionView, which is not thread-safe.
Right, you can't update data-bound objects from a thread pool thread.
The best solution is to separate the heavy processing from the UI updates, something like this:
public async void Window_Loaded(object sender, RoutedEventArgs e)
{
await firstLoadAsync();
}
private List<FilterType> InitializeFilter()
{
//... some lines of code that takes some time to run.
}
private async Task firstLoadAsync()
{
LW.Title = "Loading...";
LW.Show();
filterTextBox.Text = defaultSearch;
var filterData = await Task.Run(() => InitializeFilter()); // Get the plain data on a background thread
myCollectionView = new CollectionView(filterData); // Update the UI
if (LW != null)
{
LW.closable = true;
LW.Close();
}
}
do not use your dispatcher. Microsoft had the foresight to use it's magic (SynchronizationContext) to be able to update the UI thread in a method that is being executed in an async context. This is demonstrated in their async/await example found here
while under previous/other circumstances, you would have to either marshal back to the main (UI) thread to update the UI thread, or wait until completed and retrieve the results from objects who share state. Since you are using async/await then you should be fine to not use the dispatcher, and update the UI directly.
I hand-rolled a MVC-style implementation of a game that I want to autoplay. By "autoplay" I mean that the buttons that normally a user would click while playing I want a controller to automatically initiate. That way I can watch the game play itself for quality control reasons. This particular game has a lot of code, so instead of providing it as an example I've created a silly HelloWorld example using the same approach.
Before I provide the example, here is my issue: everything you see below is functional, and "works"; except for one thing: I'm unable to shut-off the autoplay because the UI becomes unresponsive and the button to turn it off won't respond to a click event.
First create a .Net 4.6.1 winforms project in a solution. (.net version probably doesn't matter as long as it is >= 4.5). Create a Form that looks like this:
In the code behind, copy paste this: (change names as needed to compile)
using System;
using System.Threading;
using System.Windows.Forms;
namespace WinformsExample
{
public partial class HelloWorldView : Form
{
private readonly HelloWorldController MyHelloWorldController;
public HelloWorldView()
{
InitializeComponent();
MyHelloWorldController = new HelloWorldController();
}
private void button1_Click(object sender, EventArgs e)
{
MyHelloWorldController.HelloWorldRequested();
if (MyHelloWorldController.IsAutomated)
{
Thread.Sleep(2000);
button1.PerformClick();
}
}
private void HelloWorldView_Load(object sender, EventArgs e)
{
MyHelloWorldController.HelloWorldRequestedEvent += OnHelloWorldRequested;
}
private void OnHelloWorldRequested(HelloWorldParameters parameters)
{
textBox1.Text += parameters.HelloWorldString + Environment.NewLine;
textBox1.Update();
}
private void button2_Click(object sender, EventArgs e)
{
MyHelloWorldController.IsAutomated = !MyHelloWorldController.IsAutomated;
if (MyHelloWorldController.IsAutomated)
{
button2.Text = "hello world - is on";
button2.Update();
button1.PerformClick();
}
else
{
button2.Text = "hello world - is off";
button2.Update();
}
}
}
}
And create a class titled HelloWorldController.cs and copy paste this in to it:
namespace WinformsExample
{
public class HelloWorldParameters
{
public string HelloWorldString { get; set; }
}
public delegate void HelloWorldEventHandler(HelloWorldParameters parameters);
public class HelloWorldController
{
private readonly HelloWorldParameters _parameters;
public event HelloWorldEventHandler HelloWorldRequestedEvent;
public bool IsAutomated { get; set; }
public HelloWorldController()
{
_parameters = new HelloWorldParameters();
}
public void HelloWorldRequested()
{
_parameters.HelloWorldString = "Hello world!!";
if (HelloWorldRequestedEvent != null)
HelloWorldRequestedEvent(_parameters);
}
}
}
...go ahead and rename things if you need to. Now build the program. Click the first button. You will see "hello world". Now click the second button, you will see "hello world" printed every 2 seconds.
The way I thought this would work is that by clicking button2 a second time, that it would stop the autoplay. However, the UI is unresponsive and the button click event never happens.
What is going on here that is causing the UI to be unresponsive and how can I fix it so that I get the intended behavior?
*UPDATE - HERE IS THE SOLUTION *
Keep everything the same as above except for HelloWorldView.cs. Remove the call to Thread.Sleep(). Drag and drop a timer from the toolbox to the design surface. You will see an icon on the bottom of the designer surface labeled
timer1
Copy paste the following code in to HelloWorldView.cs. Compile and execute. If everything is correct you should be able to turn on and off the "hello world" display by clicking the button at any time - the UI stays responsive.
using System;
using System.Windows.Forms;
namespace WinformsExample
{
public partial class HelloWorldView : Form
{
private readonly HelloWorldController MyHelloWorldController;
public HelloWorldView()
{
InitializeComponent();
MyHelloWorldController = new HelloWorldController();
}
private void onTimerTick(object sender, EventArgs e)
{
button1.PerformClick();
}
private void OnHelloWorldRequested(HelloWorldParameters parameters)
{
textBox1.Text += parameters.HelloWorldString + Environment.NewLine;
textBox1.Update();
}
private void HelloWorldView_Load(object sender, EventArgs e)
{
MyHelloWorldController.HelloWorldRequestedEvent += OnHelloWorldRequested;
}
private void button1_Click(object sender, EventArgs e)
{
MyHelloWorldController.HelloWorldRequested();
}
private void button2_Click(object sender, EventArgs e)
{
MyHelloWorldController.IsAutomated = !MyHelloWorldController.IsAutomated;
if (MyHelloWorldController.IsAutomated)
{
button2.Text = "hello world - is on";
button2.Update();
timer1.Interval = 2000;
timer1.Tick += onTimerTick;
timer1.Start();
}
else
{
timer1.Stop();
button2.Text = "hello world - is off";
button2.Update();
}
}
}
}
WinForms uses a single message pump thread (called the UI thread). (If you are unfamiliar with the concept you should research Windows messages and Windows message pump).
Thread.Sleep causes the currently executing thread the sleep, or pause, for a time. This sleep/pause is like death to the thread - it is aware of nothing and unable to do anything.
As the currently executing thread in a WinForms app is usually the UI thread - Thread.Sleep will cause the UI to become unresponsive because it is no longer able to pump messages.
An alternative design would be to use a form-based Timer. Place your game playing code in the Timer's Tick event.
What is going on here that is causing the UI to be unresponsive and how can I fix it so that I get the intended behavior?
There are essentially two reasons why your app becomes unresponsive.
1. Thread.Sleep() in UI thread
GUI applications on Windows are generally driven by messages (mouse clicks; keyboard; screen drawing) posted to it which are placed on a queue. The UI thread processes these messages one by one dispatching the message to the appropriate handler. In this way it is known as the Message Pump. If during processing one of these messages too much time elapses, then the UI will appear to freeze. Event handlers should be as fast as possible.
During your click handlers you are using Thread.Sleep(2000); which will prevent the UI thread from updating the UI of your application, in essence simulating an event handler that takes far too long to process an event. It is perhaps no different to say performing a lengthy database or WCF operation on the UI thread, hence why people tend to put such calls on a separate thread or task.
Recommend you remove the Thread.Sleep and replace it with a timer as others have indicated.
2. Infinite Recursive Loop on button1 handler
When you click button2 for the first time, the click handler for button2 is invoked where automation is enabled. You then simulate button1 being clicked via button1.PerformClick();.
During the call to button1.PerformClick, the click handler for button1 button1_Click() is invoked. It is there that you sleep for 2 seconds (which isn't healthy for the UI) but the secondary problem is that you immediately call button1.PerformClick(); from inside the button1 click handler, in essence setting up an infinite recursive loop.
If you were to remove the Thread.Sleep(2000) your app will eventually lead to a StackOverflowException. Your code as it stands now (even with the sleep) will still overflow, it's just that it will take much longer to become apparent.
Again, consider replacing it with a timer.
3. Exclusivity
It's important to note that ignoring the stack fault for a moment, the design is such that your app can't do anything else whilst this infinite loop is running. So if your game had other buttons to click; scores to display; sound effects to play; all from the point of view of the button2 handler, most likely it will never happen because it is too busy exclusively processing button1.
Conclusion
Keep UI responsive: Avoid Thread.Sleep() in your code
Avoid recursion: Don't use PerformClick() for a button whilst you are inside the click handler for said button
Your "Thread.Sleep()" call puts the UI thread to sleep. Use a Timer instead. Then terminate the Timer on the second press. (You could also do this with Tasks, if you want to use another thread you need to make the 2 threads communicate in someway so that the UI thread is the only one actually updating the UI)
Desktop applications have a so called UI thread. It's basically an infinite loop which keeps checking if something happened, such as a mouse click, and redraws the window if needed. Coding in WinAPI you would need to write this loop yourself, WinForms and other UI frameworks hide it away. But your click handler is called from inside this loop. So if your code takes too much time - like, because you call Thread.Sleep inside - the loop will not continue and will not be able to process anything that is happening to the application. This why long-running processes need to take place on a separate thread.
As others have said, you are blocking the UI thread with the Thread.Sleep and recursive button1.PerformClick(); call. You have to let the UI run as freely as possible and let it go idle quickly.
So, just for the fun of it I have rewritten your code to do just that. I've also implemented it with Microsoft's Reactive Extensions (Rx) - just NuGet "Rx-WinForms" to get the bits. Rx allows you to do some very funky things that you can't easily do with events.
Here's your form now:
public partial class HelloWorldView : Form
{
private readonly HelloWorldController MyHelloWorldController =
new HelloWorldController("Hello world!!", TimeSpan.FromSeconds(1.0));
public HelloWorldView()
{
InitializeComponent();
}
private void Form1_Load(object sender, EventArgs e)
{
MyHelloWorldController.Messages
.ObserveOn(this)
.Subscribe(message =>
{
textBox1.Text += message + Environment.NewLine;
});
MyHelloWorldController.IsAutomateds
.ObserveOn(this)
.Subscribe(isAutomated =>
{
button2.Text = "hello world - is " + (isAutomated ? "on" : "off");
});
}
private void button1_Click(object sender, EventArgs e)
{
MyHelloWorldController.Trigger();
}
private void button2_Click(object sender, EventArgs e)
{
MyHelloWorldController.IsAutomated = !MyHelloWorldController.IsAutomated;
}
}
You'll notice that I've simplified down the UI. It really does as little as possible to update itself and to notify the HelloWorldController of its actions.
The worst part of the code are the two .Subscribe calls in Form1_Load. These are simply looking at the two observables (Rx's version of events if you like) and makes sure the events are run on the UI thread with the .ObserveOn(this) call, and then they subscribe to values produced from the HelloWorldController.
The UI is simply updating itself from the controller and telling the controller what it is doing. There is virtually no logic being performed in the UI. This is how it should be with any MVC-style coding.
Now the HelloWorldController is where the fun is.
It starts off pretty simply:
private string _message;
private TimeSpan _automatedPeriod;
public HelloWorldController(string Message, TimeSpan automatedPeriod)
{
_message = Message;
_automatedPeriod = automatedPeriod;
}
This is basically the information about what message to send to the UI and how often when the controller is automating the values.
It then tracks whether it is automated or not:
private bool _isAutomated = false;
Now it contains the Rx observables - these are like the events you were using.
private Subject<string> _messages = new Subject<string>();
public IObservable<string> Messages { get { return _messages.AsObservable(); } }
private Subject<bool> _isAutomateds = new Subject<bool>();
public IObservable<bool> IsAutomateds { get { return _isAutomateds.AsObservable(); } }
private SerialDisposable _serialSubscription = new SerialDisposable();
In Rx an IObservable<T> is something I can subscribe to to get a series of values - just like an event. The Subject<T> is something that I can manually push values into, but it also can be an IObservable<T> that can be subscribed to. It's the pair of these that lets me raise events. Think of the Subject<string> to be the equivalent of the HelloWorldRequested method in your code and the IObservable<string> to be the equivalent of the HelloWorldRequestedEvent event.
If I call _messages.OnNext("Hello") then any subscribers to IObservable<string> Messages would get a "Hello" sent to them. Just like an event.
IsAutomated looks like this:
public bool IsAutomated
{
get { return _isAutomated; }
set
{
_isAutomated = value;
_isAutomateds.OnNext(value);
if (_isAutomated)
{
this.Trigger();
}
}
}
So it does its job of updating its own internal state, but it also calls _isAutomateds.OnNext(value) to push out the updates to any subscribers of IObservable<bool> IsAutomateds. It also works out if it needs to trigger the controller to produce messages with the this.Trigger() call.
Finally the Trigger method looks like this:
public void Trigger()
{
if (_isAutomated)
{
_serialSubscription.Disposable =
Observable
.Interval(_automatedPeriod)
.StartWith(0)
.TakeUntil(_isAutomateds.Where(x => x == false))
.Subscribe(n => _messages.OnNext(_message));
}
else
{
_messages.OnNext(_message);
}
}
The easy part of this is when the _isAutomated is false then it simply sends one message out via the _messages.OnNext(_message) call.
When _isAutomated is true it uses some of the coolness of Rx to set up effectively a timer to produce values every TimeSpan _automatedPeriod. From your code you wanted every 2 seconds so the TimeSpan would be TimeSpan.FromSeconds(2.0).
Observable.Interval(_automatedPeriod) defines a timer that begins producing values after the first period of time and then every period of time between.
So the .StartWith(0) says that it should immediately produce a value when it is subscribed to.
The .TakeUntil(_isAutomateds.Where(x => x == false)) is the best part here - it says that it will take the values from the the Observable.Interval(_automatedPeriod).StartWith(0) and stop when it gets a value from _isAutomateds.Where(x => x == false) - in other words when the IsAutomated is set to false.
The .Subscribe(n => _messages.OnNext(_message)); simply pushes a value to the _messages subject so that all subscribers of IObservable<string> Messages gets their messages.
Just put all of the HelloWorldController I've given you in public class HelloWorldController { ... } and you're good to go.
The works I think like it should and shows how lightweight the UI code can be.
I hope you find this worth playing with.
You'll need to add these using's to the top of your code to get all of the code to compile:
using System.Reactive.Disposables;
using System.Reactive.Linq;
using System.Reactive.Subjects;
I have a Windows Form, inside I have a Button and a Panel.
On button click I'm adding a control to the panel... as many as I want. This process is using Task Factory. Example:
private void ButtonClick()
{
// This line needs to happen on the UI thread...
TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext();
Task.Factory.StartNew(() =>
{
CustomControl.PersonResult newControl = new CustomControl.PersonResult();
this.panel1.Controls.Add(newControl);
}, CancellationToken.None, TaskCreationOptions.None, uiScheduler);
}
My PersonResult.cs control has the following layout:
The control has a picturebox and 3 lables.
Now, when a new PersonResult control is added to the form, I want to perform other background worker in order to get an image from the internet and place it in the picturebox.
So, the scenario is:
I press the button many times and immediately I will see the customcontrol added to the panel, but the picturebox of every control will be empty, but then images will start appearing as soon as the worker loads the image from internet and place it on the picturebox.
Any clue on how do implement this?
Thanks a lot
Any time you touch a control you must do so from the UI thread. You can do the actual downloading of the picture and other long-running tasks from your thread/task. From your thread you use Control.Invoke to invoke a delegate on the UI thread.
This MSDN article has a good example of using Control.Invoke with simple variables like strings and such:
http://msdn.microsoft.com/en-us/library/a1hetckb(v=vs.100).aspx
But often a helper class is used so you can pass more complex data between your delegates without resorting to big nasty object arrays.
Here's some sample code I did up:
private void button1_Click(object sender, EventArgs e) {
Task.Factory.StartNew(() =>
{
DataClass dataClass = new DataClass(this.textBox1);
Thread.Sleep(5000); // simulate long running task
dataClass.TextToPass = "set some text";
dataClass.updateTargetControl();
});
}
private class DataClass {
delegate void updateTextBoxOnUiThreadDelegate();
private TextBox _targetControl= null;
private updateTextBoxOnUiThreadDelegate _updateDelegate;
internal DataClass(TextBox targetControl) {
_updateDelegate = new updateTextBoxOnUiThreadDelegate(updateOnUiThread);
_targetControl = targetControl;
}
internal string TextToPass = "";
internal void updateTargetControl() {
_targetControl.Invoke(_updateDelegate);
}
private void updateOnUiThread() {
_targetControl.Text = this.TextToPass;
}
}
Something along the lines:
You don't have to add controls asynchronously. Add them in the GUI thread and every time create a new worker thread supplying it with the delegate from your control which will be called asynchronously (using BeginInvoke?) when the worker finished loading the image.
I am not quite sure I understand why you've wrapped a UI operation in its own Task.. when it isn't chained to an async Task.
Anyway.. PictureBoxes have a LoadAsync method. Why make this harder than it needs to be?
private void ButtonClick()
{
CustomControl.PersonResult newControl = new CustomControl.PersonResult();
this.panel1.Controls.Add(newControl);
newControl.PictureBox.WaitOnLoad = false;
newControl.PictureBox.LoadAsync("http://url-here.com/image.jpg");
}
When a user clicks on Run, the application runs through a lot of code to generate a model and display it in a Chart. The Run takes about 1-2 minutes to run. I also have a Cancel button that gets enabled after the Run button is clicked. I am working with DotSpatial, so my buttons are on a plugin panel in a ribbon UI. The click event on the Run and Cancel start in the plugin, which calls the back-end class's code Run and Click.
When the user hits cancel after the run starts, there is a delay, but the cancel method is invokes and executes, but the run never stops and we eventually see the chart display. So, I'm thinking I need a separate thread for the Run. I'm fairly new to programming, and never worked with Threading. I've looked into it and added the below code, but my thread method isn't running. Here's my code:
The Run button is clicked:
This is at the top:
//check to see if RunModel thread needs to stop or continue
private volatile bool stopRun = false;
private Thread runThread;
Then this is the method that's called from the click event:
public void btnRun_testingThread(object sender, EventArgs e)
{
//create a new thread to run the RunModel
if (runThread == null)
{
//we don't want to stop this thread
stopRun = false;
runThread = new Thread(RunModel);
runThread.Start(); <--this isn't doing anything
}
So, I would think that when the code gets to the runThread.Start(), it would jump into my RunModel method and start running through the code. But it doesn't. Additionally, I'll want to cancel out of this thread (once I have it working correctly), so I have this, which gets called from the cancel click method:
private void StopRunThread()
{
if (runThread != null)
{
//we want to stop the thread
stopRun = true;
//gracefully pause until the thread exits
runThread.Join();
runThread = null;
}
}
Then the this is the RunModel() where I'm checking occasionally to see if the stopRun bool has changed.
public void RunModel()
{
...some code.....
//check to see if cancel was clicked
if (stopRun)
{
....clean up code....
return;
}
....some more code....
//check to see if cancel was clicked
if (stopRun)
{
....clean up code....
return;
}
}
And the cancel button click method:
public void btnCancel_Click(Object sender, EventArgs e)
{
stopRun = true;
StopRunThread();
//the model run has been canceled
....some code.....
}
Any help on getting the thread.start to actually run the Run method? Then do I need to constantly check the volatile bool in the run in order to clean everything up if it's being stopped? Thanks!
I think you'd be best looking at the BackgroundWorker - this essentially runs separately but can watch out for cancellation commands. Make sure you add 'WorkerSupportCancellation' when you initialise it:
BackgroundWorker backgroundWorker1 = new BackgroundWorker();
backgroundWorker1.DoWork += new DoWorkEventHandler(backgroundWorker1_DoWork); // This does the job ...
backgroundWorker1.WorkerSupportsCancellation = true; // This allows cancellation.
Then on click you can start your process:
public void btnRun_testingThread(object sender, EventArgs e)
{
backgroundWorker1.RunWorkerAsync();
}
Your cancel button can issue a cancellation request:
public void btnCancel_Click(Object sender, EventArgs e)
{
backgroundWorker1.CancelAsync();
}
Then your worker can monitor for this as it's doing it's work ...
void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{
for (int i = 0; i < 100; i++)
{
if (backgroundWorker1.CancellationPending)
{
break;
}
else
{
// Do whatever you're doing.
}
}
e.Result = backgroundWorker1.CancellationPending ? null : orders;
}
You can enhance this further by adding progress bars etc., but that gets a bit more complicated so I won't go into it here.
Considering new info provided in commend I believe you just missed a start of the RunModel() method in debugger because of wrong assumption regarding thread.Start() method behaviour.
Please see a note from MSDN, Thread.Start Method
Once a thread is in the ThreadState.Running state, the operating
system can schedule it for execution. The thread begins executing
at the first line of the method represented by the ThreadStart or
ParameterizedThreadStart delegate supplied to the thread constructor.
Small demonstration that thread start takes some time bits, for me it starts in 38-40 milliseconds:
Stopwatch watch = new Stopwatch();
Thread thread = new Thread((ThreadStart)watch.Stop);
thread.Start();
watch.Start();
Thread.Sleep(5000);
double startedAfter = watch.ElapsedMilliseconds;
Since .NET Framework 4.0 consider using TPL Tasks rather than threads explicitly, some pros:
You can easily synchronize with UI thread by passing in a Task UI Thread synchronization context
You can easily stop a Taks using CancellationToken
Suppose I have some code which is running in the UI thread, which spawns a new thread to do work in the background, and then goes on to do UI work. When the background work is done, BeginInvoke is called from the new thread. If the UI work is still going on, will the callback given to BeginInvoke interrupt the UI work, or will it wait?
Code example - add a button called button1 to a form and add button1_Click to its click event, and then add this to the form:
bool continueWork = true;
private void button1_Click(object sender, EventArgs e)
{
Thread workThread = new Thread(performBackgroundWork);
workThread.IsBackground = true;
workThread.SetApartmentState(ApartmentState.STA);
workThread.Start();
for (long i = 0; i < long.MaxValue; i++)
{
if (!continueWork)
break;
button1.Text = i.ToString();
}
}
private void performBackgroundWork()
{
Thread.Sleep(1);
button1.BeginInvoke(new MethodInvoker(stopUIWork));
}
private void stopUIWork()
{
continueWork = false;
}
What is button1's text after it is clicked?
BeginInvoke adds the delegate to a queue (the message queue to be exact). So the answer is no, they won't get interrupted. Your button click handler is in fact executed due to a message in the message queue as well.
EDIT: Sorry, I forgot to answer your second question, but you can probably figure that out by yourself. The button text will be long.MaxValue - 1. You would probably want to execute stopUIWork without using BeginInvoke.