I'm currently working on a WinForms system (I know) where there's a lot of Constructor Injection when creating forms, but if those forms/views need to open another form, I find the DI container has been injected too so that we can locate the implementation of the desired view interface at runtime. e.g.
public partial class MyView : Form, IMyView
{
private readonly IDIContainer _container;
public MyView(IDIContainer container)
{
InitializeComponent();
_container = container;
}
public OpenDialogClick(object sender, EventArgs e)
{
var dialog = container.Resolve<IDialogView>();
dialog.ShowDialog(this);
}
}
I'm aware that this is basically using the container as a service locator. I've been repeatedly told that this is considered an anti-pattern so I'd like to avoid this usage.
I could probably inject the view as part of the constructor like this :
public partial class MyView : Form, IMyView
{
private readonly IDialogView _dialog;
public MyView(IDialogView dialog)
{
InitializeComponent();
_dialog = dialog;
}
public OpenDialogClick(object sender, EventArgs e)
{
dialog.ShowDialog(this);
}
}
But what if the dialog view is quite expensive to instantiate?
It's been suggested that we create some kind of form factory which internally uses the DI container, but to me this seems like simply creating a wrapper around another service locator.
I know that at some point, something has to know how to create an IDialogView, so I'm thinking that either it's resolved when the composite root is created (probably not ideal if there are many forms and some or all are expensive to create), or the composite root itself has a way to resolve the dependency. In which case the composite root has to have a service-locator-like dependency? But then how would child forms create dialogs like this? Would they call up to the composite via, say, events, to open dialogs like this?
One particular problem I keep running up against is that the container is almost impossible to mock easily. This is partly what keeps me thinking about the form factory idea, even though it would just be a wrapper around the container. Is that a sensible reason?
Have I thought myself into a knot? Is there a simple way through this? Or do I just cut the knot and find something that works for me?
Or do I just cut the knot and find something that works for me?
Factory class:
public interface IDialogFactory {
IDialogView CreateNew();
}
// Implementation
sealed class DialogFactory: IDialogFactory {
public IDialogView CreateNew() {
return new DialogImpl();
}
}
// or singleton...
sealed class SingleDialogFactory: IDialogFactory {
private IDialogView dialog;
public IDialogView CreateNew() {
if (dialog == null) {
dialog = new DialogImpl();
}
return dialog;
}
}
Your code:
public partial class MyView : Form, IMyView {
private readonly IDialogFactory factory;
public MyView(IDialogFactory factory) {
InitializeComponent();
//assert(factory != null);
this.factory = factory;
}
public OpenDialogClick(object sender, EventArgs e) {
using (var dialog = this.factory.CreateNew()) {
dialog.ShowDialog(this);
}
}
}
Registration with SimpleInjector
container.RegisterSingle<IDialogFactory, DialogFactory>();
or using singleton version
container.RegisterSingle<IDialogFactory, SingleDialogFactory>();
container.RegisterSingle<IMyView, MyView>();
A local factory, satisfied with an implementation that uses the container and set up in the composition root is not a service locator, it is a dependency resolver.
The difference is as follows: the locator is defined and satisfied somewhere near the definition of the container. In a separate project, to use the locator, you need an external reference to the container infrastructure. This causes the project to rely on external dependency (the locator).
On the other hand, the dependency resolver is local to the project. It is used to satisfy dependencies in its close neighbourhood but it doesn't depend on anything external.
The composition root should not be used to resolve actual specific dependencies such as the one you are concerned about. Instead, the compositon root should set up implementations of all these local dependency resolvers that are used throughout the application. The more local resolver, the better - the MVC's constructor factory is a good example. On the other hand, WebAPI's resolver handles quite few of different services and it is still a good resolver - it is local in the webapi infrastructure, it doesn't depend on anything (rather - other webapi services depend on it) and it can be implemented in any possible way and set up in the Composition Root.
Some time ago I wrote a blog entry about it
http://www.wiktorzychla.com/2012/12/di-factories-and-composition-root.html
There you will find your issue discussed and an example of how you set up a factory aka resolver.
You definitely do not want to pass your DI container around your application. Your DI container should only be part of your Composition Root. You could, however, have a factory that uses the DI container within the Composition Root. So if Program.cs is where you are wiring everything up, you could simply define that factory class there.
WinForms was not designed with DI in mind; forms are generated and therefore need default constructors. This may or may not be an issue depending on which DI container you use.
I think in this case, the pain of using constructor injection in WinForms is greater than the pain of any pitfalls you may encounter while using a service locator. There's no shame in declaring a static method in your Composition Root (Program.cs) that wraps a call to your DI container to resolve your references.
I know this problem very well. Everything I learned about solution to this (and I learned A LOT) is more or less camouflaging service locator.
Related
I am designing a WPF application with several ViewModels, and I am using Caliburn Micro and MEF. Unfortunately, I am absolutely new to MEF and IoC, and can't solve a problem.
The application is supposed to have a MainView, where several options are enlisted, like: Create a new record, Edit older records, View reports, etc. So, for each of those units, I have different classes for ViewModels like CreateRecordViewModel, EditRecordsViewModel, ViewReportsViewModel, and Usercontrols for Views like CreateRecordView, EditRecordsView, ViewReportsView etc.
Now, the MainViewModel is a Conductor, and I am using code like this:
public class ShellViewModel : Conductor<object>
{
public void ShowCreateRecord()
{
ActivateItem(new CreateRecordViewModel(...Dependencies...));
}
public void ShowEditRecords()
{
ActivateItem(new EditRecordsViewModel(...Dependencies...));
}
...
}
Since the MEF container resides in Bootstrapper, I am a bit lost about how to use Constructor Injection in this MainViewModel. And my second concern is about GC. How can I test if the created ViewModels are properly disposed of?
I know these questions might seem a bit asinine, but I would really appreciate a solution. Should I decorate my Property setters with [Import] instead of going for Constructor Injection?
I am not familiar with MEF myself, but most of the DIs work in a similar idea.
You have to inject the container's (MEF container) into the view models, and resolve the appropriate viewmodels using the container.
You're not supposed to instantiate viewmodels by yourself, instead, in the main vm, inject the container resolving service, via constructor or property injection (again - not so familiar with MEF), then call ActivateItem(_DependencyService.Resolve<CreateRecordViewModel>());.
And BTW, the Main VM itself should also be instantiated by the container, so you obviously don't need to manually inject the container to the main vm.
IoC is just about trusting the container to resolve anything for you, otherwise, its the container registered types that are misregistered:
public class ShellViewModel : Conductor<object>
{
private readonly IMefDependencyContainer _container;
public ShellViewModel(IMefDependencyContainer container) {
_container = container;
}
public void ShowCreateRecord()
{
ActivateItem(_container.Resolve<CreateRecordViewModel>());
}
}
Replace IMefDependencyContainer and Resolve with its names in MEF.
I've recently been dabbling a bit with IOC Containers (LightInject in my case).
I've been reading that you should only need to use the container ONCE, on startup, and no where else. This is what I'm struggling to understand. If I can only reference the container in a bootstrap/startup method, how is it possible to resolve what I need, elswhere in the project, or at runtime if the class depends on user input.
So In my Traditional Windows Forms App, on Form Load Say, I would Bootstrap Lightinject as per the below code. It's only an arbitrary example, it's more the premise I need to get my head around.
I might be missing something here entirely, or just not getting it. But how am i supposed to resolve dependancies, If i can't use/not supposed to reference or use Container.GetInstance/Resolve/{Choose IOC Syntax Here}, and only in the composition root.
For Instance, Say I have two buttons and a TextBox on my form. The first button gets me an ILoader (below code), and the second button loads up a file viewer (ILoader, below code), whose file name is what is entered into the textbox on the winform.
Without An IOC Container I would do the following (let's just assume its put in the click event)
Button 1 Click Event :
ISplitText MyStringFunc = new WhateverImplementsIt();
Button 2 (gets the file reader based on textbox input)
ILoader MyLoader = new FileReaderImplementation(TextBox1.Text);
Using LightInject, I'm surely compelled to do the following:
Button1 Click:
ISplitText Splitter = Container.GetInstance<ISplitText>();
Button 2 Click
var LoaderFunc = Container.GetInstance<Func<string, ILoader>>();
ILoader l2 = LoaderFunc(TextBox1.Text);
Am I Incorrect? In A large project I would have Container.GetInstance, peppered all over the place, in the main form file and elsewhere surely, so how can i only reference the container in ONLY 1 spot, in the form of bootstrap, am i missing a magic piece of the puzzle?
In all the sample apps I have seen it's all done in one simple console app, in the Main function. All these apps follow the format of:
Container = new Container();
Container.Register<IFoo,Foo>();
Container.Register<IBar,Bar();
var Resolved = Container.GetInstance<IFoo>();
Well, I understand all that, and it's extremely simple. It's once you start adding a bit of complexity to the app itself, I'm lost as to how to get the instances without making the Container itself public, or static, or accessible in some way,shape or form and then calling Container.GetInstance in a million places (which apparently, is a big no no). PLEASE HELP!
Cheers,
Chud
PS - I am not concerned about "abstracting the container" itself. so would prefer to only focus on increasing my understanding of the above.
public class BootStrapIOC
{
public ServiceContainer Container;
public BootStrapIOC(ServiceContainer container)
{
Container = container;
}
public void Start()
{
Container.Register<ISplitText, StringUtil>();
Container.Register<string, ILoader>((factory, value) => new FileViewByFileName(value));
}
}
//HUH? How can i NOT use the container??, in this case in the button_click
ILoader Loader = Container.GetInstance<Func<string, ILoader>>();
ILoader l2 = Loader(TextBox1.Text);
ISplitText Splitter = Container.GetInstance<ISplitText>();
EDIT #1
OK, so, after re-reading the comments and looking at a few more examples on the interweb, I think I may finally understand it. The issue was (I think) is that i wasn't thinking "higher level" enough. I was trying to resolve my dependancies in my winforms application, AFTER the form had already been constructed,and in the form itself. When in reality, it's too late by then. I wasn't viewing the "form itself" as just another object, which needed it's dependencies injected into it.
So I bootstrap now in my Program.cs:
static class Program
{
private static ServiceContainer Container;
/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main()
{
Container = new ServiceContainer();
Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
BootStrapIOC Strap = new BootStrapIOC(Container);
Strap.Start();
//This magic line resolves EVERYTHING for me required by the Form
var form = Container.GetInstance<Form1>();
Application.Run(form);
//Application.Run(new Form1());
}
}
My question now is, Is my line of thinking now correct in terms of winforms. It seems to make more sense, changing my approach to "higher up" the chain and resolving from Program.cs??
Secondly, And I'm not sure if this calls for a new question altogether, please advise as I am an SO noob.
How would I setup a factory to return the correct instance of an object? One of the original comments indicated that that would be a usage in this scenario. Let's use a contrived example.
Where I needed an object, but don't know which object until run time/user input.
My Idea:
BootStrap
Container.Register();
Factory Interface and Implementation:
Let's put some optional parameters in also, as I want to know if this is the correct/best way to do it?
public interface IFileViewerFactory
{
ILoader GetFileViewer(string FileName, string Directory = null, bool CreatingDirectory = false);
}
public class FileViewerFactory:IFileViewerFactory
{
public FileViewerFactory() { }
public ILoader GetFileViewer(string FileName, string Directory = null, bool CreatingDirectory = false)
{
if (CreatingDirectory == false)
{
if (Directory == null)
return new FileViewByFileName(FileName);
else
return new FileViewByDirectoryName(Directory, FileName);
}
else
return new FileViewByDirectoryNameCreateDirectoryOptional(Directory, FileName, CreatingDirectory);
}
}
Form:
public IFileViewerFactory FileViewerFactory { get; set; }
Button Click:
ILoader FileLoader = FileViewerFactory.GetFileViewer(TxtBoxFileName.Text);
Or:
ILoader FileLoader = FileViewerFacotry.GetFileViewer(TxtBoxFileName.Text,TxtBoxDirectory.Text);
So to finish off, my questions are:
Is my new way of "higher level" thinking, and bootstrapping from Program.cs now correct
How Can I handle optional parameters in LightInject
Is How I have setup my factory the correct way to do it?
Let's forget about the Fugliness of the factory and just try to work on the mechanics of the questions :)
I know it's a bit late to answer a question that is over a year old but let me try.
The issue here is that you don't want your container to go out anywhere else than your Composition Root. In a complex solution consisting of mutliple assembiles, this means the container itself is only referenced by the topmost assembly (where the Composition Root is).
But the application stack is usually complex, you possibly have multiple assembiles and still, your depencencies should be resolves across the application.
Historically, one of the possible approaches was the Service Locator pattern. The locator goes down to the very bottom of the stack and from there, it offers a service that resolves dependencies. Thus, it's available anywhere up the stack.
This approach has two drawbacks, first is that your container is referenced at the very bottom of the stack and even if you circuvment this you still have your locator referenced everywhere. The latter could be painful in a large app as you possibly have some standalone assembiles that you don't want to be forced to reference your locator (or anything else).
The ultimate solution is called the Local Factory (aka Dependency Resolver) and it takes care of creating just few of its dependand services. The trick is then to have multiple local factories across your app.
A typical setup is like this. Suppose there's an assembly, call it A, that the client will use to obtain an instance of IServiceA. The assembly contains only the two:
interface (obligation) of the service - IServiceA
the local factory clients will use to obtain instances of the service
And that's all, no other references, no containers. There's even no implementation at this point yet. The trick here is to make the factory open for the actual provider - in a sense that the factory doesn't even yet know how to create instances - it's the Composition Root that will tell it.
// Assembly A
public interface IServiceA
{
...
}
public class ServiceAFactory
{
private static Func<IServiceA> _provider;
public static void SetProvider( Func<IServiceA> provider )
{
_provider = provider;
}
public IServiceA Create()
{
return _provider();
}
}
the provider here has a functional contract but it could also be expressed as an interface
And that's all, although there's no implementation in the factory at the moment, the client code is suddenly very stable:
// client code to obtain IServiceA
var serviceA = new ServiceAFactory().Create();
Note again how self-contained this assembly A is. It has no other references, still, it offers a clean way to obtain instances of your service. Other assemblies can reference this assembly with no other additional references.
Then comes the Composition Root.
At the very top of your stack, your main assembly references the assembly A and some other assembly, let's call it AImpl that contains a possible implementation of the service interface.
technically the implementation of the service could be in the very same assembly the interface is but it only makes things easier
The Composition Root creates the provider of the factory by delegating a factory method down the stack, to the assembly A
// Composition Root in the top level module
// Both assemblies
// * A that contains IServiceA
// * AImpl that contains an implementation, ServiceAImpl
// are referenced here
public void CompositionRoot()
{
ServiceAFactory.SetProvider( () =>
{
return new ServiceAImpl();
} );
}
From now on, the provider is set up and all the client code down the stack that uses the factory, can succesfully obtain instances.
The Composition Root provides all other implementations of other local factories, as well. There are multiple setups then in the Composition Root:
SomeLocalFactoryFromAssemblyA.SetProvider( ... );
AnotherLocalFactoryFromAssemblyB.SetProvider( .... );
...
Where is your container then?
Well, the container is just one possible implementation of the provider. It only helps rather than spoils. Note however that you don't even have to use it, it's a choice rather than obligation.
public void CompositionRoot()
{
var container = new MyFavouriteContainer();
container.Register<IServiceA, ServiceAImpl>(); // create my registrations
ServiceAFactory.SetProvider( () =>
{
// this advanced provider uses the container
// this means the implementation, the ServiceAImpl,
// can have possible further dependencies that will be
// resolved by the container
container.Resolve<IServiceA>();
} );
}
This is the most clean setup I am aware of. It has all desired features:
it separates concerns in a clean way
the client doesn't really need any other dependencies than the service contract and the factory
the client doesn't even know there is or will be a container, in fact the client doesn't care
in a test environment, providers can easily be setup without any container, to provide static mocks of your services
the Composition Root is a real composer here - it's the only place in your code where the three: interfaces, implementations and the container, meet together
I am using Simple Injector with a ASP.NET MVC project. I added the SimpleInjector.Integration.Web.Mvc nuget package. This adds SimpleInjectorInitializer class in App_Start folder and initializes the DI. The code looks something like
public static void Initialize()
{
// Did you know the container can diagnose your configuration?
// Go to: https://simpleinjector.org/diagnostics
var container = new Container();
//Container configuration code
DependencyResolver.SetResolver(
new SimpleInjectorDependencyResolver(container));
}
This configures the DI for the MVC controller correctly.
My question is, if I want to get the instance of the container in any of the controller\class to resolve some dependency manually how can I do it.
I have earlier worked on AutoFac and it has a dependency interface IComponentContext which can be injected into any class that needs to do any resolution manually.
Update:
Here is a scenario. My controller uses a service who initialization depends upon the input parameter passed in the controller method and hence the dependency cannot be instantiated during construction time.
I understand that this is somewhat an anti pattern for DI, but it is requirement at few places and hence injecting the DI container is next best thing. Simple Injector samples should use of static variable to share the container which i want to avoid and also it is not possible by the way SimpleInjectorInitializer works.
Except for any code that is part of the startup path of the application, no code should depend directly on the container (or a container abstraction, container facade, etc). This pattern is called Service Locator and Mark Seemann has a good explanation why this is a bad idea.
So components (such as Controllers) should not depend on the container directly, since this hides the used dependencies and makes classes harder to test. Furthermore your code starts to depend on an external framework (making it harder to change) or depending on an abstraction it doesn't need to know about.
My controller uses a service who initialization depends upon the input
parameter passed in the controller method and hence the dependency
cannot be instantiated during construction time
There's a general pattern for this problem: the abstract factory design pattern. The factory pattern allows you to delay the creation of types and allows you to pass in extra runtime parameters for the construction of a certain type. When you do this, your controller doesn't have to depend on Container and it prevents you from having to pass in a constructed container in your unit tests (DI frameworks should in general not be used in your unit test projects).
Do note however that letting your components require runtime data during creation is a code smell. Prevent doing that.
You might think that by doing this we are just moving the problem to the factory implementation. Although we are moving the dependency on the container into the factory implementation, we are in fact solving the problem because the factory implementation will be part of the application's Composition Root, which allows the application code itself oblivious to any DI framework.
So this is how I advice you to structure your code:
// Definition of the factory in the UI or BL layer
public interface ISomeServiceFactory
{
ISomeService Create(int inputParameter);
}
// Controller depending on that factory:
public class MyController : Controller
{
private readonly ISomeServiceFactory factory;
public MyController(ISomeServiceFactory factory)
{
this.factory = factory;
}
public ActionResult Index(int value)
{
// here we use that factory
var service = this.factory.Create(value);
}
}
In your composition root (the start up path) we define the factory implementation and the registration for it:
private class SomeServiceFactory : ISomeServiceFactory
{
private readonly Container container;
// Here we depend on Container, which is fine, since
// we're inside the composition root. The rest of the
// application knows nothing about a DI framework.
public SomeServiceFactory(Container container)
{
this.container = container;
}
public ISomeService Create(int inputParameter)
{
// Do what ever we need to do here. For instance:
if (inputParameter == 0)
return this.container.GetInstance<Service1>();
else
return this.container.GetInstance<Service2>();
}
}
public static void Initialize()
{
var container = new Container();
container.RegisterSingle<ISomeServiceFactory, SomeServiceFactory>();
}
Upon creation, the Container registers itself (using the call RegisterSingle<Container>(this)) so you can always inject the container into any component. That's similar to injecting the IComponentContext when working with Autofac. But the same holds for Autofac, Simple Injector, and any other container: you don't want to inject your container into components that are located outside the composition root (and there hardly ever is a reason for it).
I apologise for the length, and I know there are some answers on this but I searched a lot and haven't found the right solution,
so please bear with me.
I am trying to create a framework for legacy applications to use DI in ASP.NET webforms. I will probably use Castle Windsor
as the framework.
These legacy applications will use in part an MVP pattern in some places.
A presenter would look something like this:
class Presenter1
{
public Presenter1(IView1 view,
IRepository<User> userRepository)
{
}
}
Now the ASP.NET Page would look something like this:
public partial class MyPage1 : System.Web.UI.Page, IView1
{
private Presenter1 _presenter;
}
Before using DI I would instantiate the Presenter as follows in the OnInit of the page:
protected override void OnInit(EventArgs e)
{
base.OnInit(e);
_presenter = new Presenter1(this, new UserRepository(new SqlDataContext()));
}
So now I want to use DI.
First I must create a handler factory to override the construction of my page.
I found THIS really good answer to help:
How to use Dependency Injection with ASP.NET Web Forms
Now I can easily set up my containers in my composition root as Mark Seeman suggest to use the Global.asax
(This means though to create a static container that must be thread safe and sealed not to be able to add further registrations)
Now I can go and declare the constructor injection on the page
public MyPage1() : base()
{
}
public MyPage1(Presenter1 presenter) : this()
{
this._presenter = presenter;
}
Now we run into the first problem, I have a circular dependency.
Presenter1 depends on IView1, But the page depends on the presenter.
I know what some will say now that the design is probably incorrect when you have circular dependencies.
First I dont think the Presenter design is incorrect, by it taking a dependency in the constructor to the View, and I can say this
by looking at plenty of MVP implementations.
Some may suggest changing the Page to a design where Presenter1 becomes a property and then using Property injection
public partial class MyPage1 : System.Web.UI.Page, IView1
{
[Dependency]
public Presenter1 Presenter
{
get; set;
}
}
Some may even suggest removing the dependency to presenter completely and then simply Wiring up via a bunch of events, But this is
not the design I wanted and frankly dont see why I need to make this change to accomodate it.
Anyway regardless of the suggestion, another problem exists:
When the Handler factory gets a page request only a type is available (NOT THE VIEW INTERFACE):
Type pageType = page.GetType().BaseType;
now using this type you can resolve the Page via IoC and its dependencies:
container.Resolve(pageType)
This will then know that there is a property called Presenter1 and be able to inject it.
But Presenter1 needs IView1, but we never resolved IView1 through the container, so the container won't know
to provide the concrete instance the handler factory just created as it was created outside of container.
So we need to hack our handler factory and replace the view interface:
So where the handler factory resolves the page:
private void InjectDependencies(object page)
{
Type pageType = page.GetType().BaseType;
// hack
foreach (var intf in pageType.GetInterfaces())
{
if (typeof(IView).IsAssignableFrom(intf))
{
_container.Bind(intf, () => page);
}
}
// injectDependencies to page...
}
This poses another problem, most containers like Castle Windsor will not allow you to reregister this interface
to the instance it is pointing to now. Also with the container being registered in the Global.asax, it is not thread-safe to
do as the container should be read only at this point.
The other solution is to create a function to rebuild the container on each web request, and then check to see
if the container contains the component IView if not set the instance. But this seems wasteful and goes against suggested use.
The other solution is to create a special Factory called
IPresenterFactory and put the dependency in the page constructor:
public MyPage1(IPresenter1Factory factory) : this()
{
this._presenter = factory.Create(this);
}
The problem is that you now need to create a factory for each presenter and then make a call to the container
to resolve other dependencies:
class Presenter1Factory : IPresenter1Factory
{
public Presenter1Factory(Container container)
{
this._container = container;
}
public Presenter1 Create(IView1 view)
{
return new Presenter1(view, _container.Resolve<IUserRepository>,...)
}
}
This design also seems cumbersome and over complicated, does any one have ideas for a more elegant solution?
Perhaps I misunderstand your problems, but the solution seems fairly simple to me: promote the IView to a property on the Presenter1:
class Presenter1
{
public Presenter1(IRepository<User> userRepository)
{
}
public IView1 View { get; set; }
}
This way you can set the presenter on the view like this:
public Presenter1 Presenter { get; set; }
public MyPage1()
{
ObjectFactory.BuildUp(this);
this.Presenter.View = this;
}
Or without property injection, you can do it as follows:
private Presenter1 _presenter;
public MyPage1()
{
this._presenter = ObjectFactory.Resolve<Presenter1>();
this._presenter.View = this;
}
Constructor injection in Page classes and user controls will never really work. You can get it to work in full trust (as this article shows), but it will fail in partial trust. So you will have to call the container for this.
All DI containers are thread-safe, as long as you don't manually add registrations yourself after the initialization phase and with some containers even that is thread-safe (some containers even forbid registering types after initialization). There would never be a need to do this (except for unregistered type resolution, which most containers support). With Castle however, you need to register all concrete types upfront, which means it needs to know about your Presenter1, before you resolve it. Either register this, change this behavior, or move to a container that allows resolving concrete types by default.
I've recently started using Unity for dependency injections in .net.
I was under the impression that a Unity Container would most likely be a singleton or static member of a class. I saw another developer using it in a request handler that will receive a lot of traffic.
Is there some magic happening that keeps the cost low for creating a new Unity Container every time, or should this code be re-factored to only create the Unity container once?
This code is part of the implementing class of a .svc Service.
public string DoSomeWork(Request request)
{
var container = new UnityContainer().LoadConfiguration("MyContainer");
var handler = container.Resolve<RequestHandler>();
return handler.Handle(request);
}
Not 100% sure with Unity, but with most IoC containers, the creation of the container and especially the loading of container configuration is a reasonably expensive operation.
I have to question why this developer is utilizing the container in this manner however. Ideally the IoC container shouldn't even be a static or singleton object - it should be instantiated only to resolve the top level object of your dependency tree, and the rest of the objects in your application should be constructed automatically through dependency injection. In the case of your example, the class containing that method ideally would have the RequestHandler (ideally an interface of this) injected into it through the constructor so that class does not need to know about the IoC container.
This is not the right way to use an IOC container - basically your are using it as a service locator, but this will cause dependencies to the IOC container to be sprinkled all over the code base.
What you should do is have one central spot in your codebase where all dependencies are resolved and then use dependency injection (DI) to propagate the resolved concrete classes down the chain, i.e via constructor injection. So your class really should look something like this:
public class Foo
{
private readonly IRequestHandler _handler;
public Foo(IRequestHandler handler)
{
_handler = handler;
}
public string DoSomeWork(Request request)
{
return _handler.Handle(request);
}
}