Best way to do two-way request data encryption - c#

I want encrypt request content to preventing send raw data through WebAPI requests, so I have to implement tow way encryption.
Which encryption algorithm is good for encrypt high rate of request in asp.net web api and how to implement it?

One easy way, requiring no coding on your part, is to use HTTPS instead of HTTP.

The 'best' way would largely be a matter of opinion, but the standard design i go for is as follows:
The client (the thing making calls) side gets a client cert with private keys.
The client gets the public key of the server website certificate.
The client gets the public key of the server encryption certificate.
The server (the thing receiving calls) gets the client cert public key.
The server gets the private and public key of the website cert (to be bound in IIS).
The server gets the private key of the server encryption certificate.
In your code, on the server you validate the requests with the presence of exact (thumbprint) and valid (your logic or X509Certificate2 Verify, but beware of CRL/OCSP (if you care about performance, that is)).
On the client, you validate the server website certificate (again, thumbprint plus verification).
Then on the client, as last step before sending a payload, you use the public key of the server encryption cert to PKCS7 envelope a message.
On the server, add a ActionFilterAttribute (to be cleaner) or refactor actions to receive strings (more procedural) and then use the private key of the server encryption cert to unwrap the message.
As the last step in the response, you use the public key of the client cert to PKCS7 envelope a message.
If you're really keen, you can also sign messages with some other certificates but that would really be an obscurity.
This way without getting access to private keys on TWO systems, one can never fully decipher the chat.

Related

Is it okey to extract userId from JWT token [duplicate]

If I get a JWT and I can decode the payload, how is that secure? Couldn't I just grab the token out of the header, decode and change the user information in the payload, and send it back with the same correct encoded secret?
I know they must be secure, but I just would really like to understand the technologies. What am I missing?
JWTs can be either signed, encrypted or both. If a token is signed, but not encrypted, everyone can read its contents, but when you don't know the private key, you can't change it. Otherwise, the receiver will notice that the signature won't match anymore.
Answer to your comment: I'm not sure if I understand your comment the right way. Just to be sure: do you know and understand digital signatures? I'll just briefly explain one variant (HMAC, which is symmetrical, but there are many others).
Let's assume Alice wants to send a JWT to Bob. They both know some shared secret. Mallory doesn't know that secret, but wants to interfere and change the JWT. To prevent that, Alice calculates Hash(payload + secret) and appends this as signature.
When receiving the message, Bob can also calculate Hash(payload + secret) to check whether the signature matches.
If however, Mallory changes something in the content, she isn't able to calculate the matching signature (which would be Hash(newContent + secret)). She doesn't know the secret and has no way of finding it out.
This means if she changes something, the signature won't match anymore, and Bob will simply not accept the JWT anymore.
Let's suppose, I send another person the message {"id":1} and sign it with Hash(content + secret). (+ is just concatenation here). I use the SHA256 Hash function, and the signature I get is: 330e7b0775561c6e95797d4dd306a150046e239986f0a1373230fda0235bda8c. Now it's your turn: play the role of Mallory and try to sign the message {"id":2}. You can't because you don't know which secret I used. If I suppose that the recipient knows the secret, he CAN calculate the signature of any message and check if it's correct.
You can go to jwt.io, paste your token and read the contents. This is jarring for a lot of people initially.
The short answer is that JWT doesn't concern itself with encryption. It cares about validation. That is to say, it can always get the answer for "Have the contents of this token been manipulated"? This means user manipulation of the JWT token is futile because the server will know and disregard the token. The server adds a signature based on the payload when issuing a token to the client. Later on it verifies the payload and matching signature.
The logical question is what is the motivation for not concerning itself with encrypted contents?
The simplest reason is because it assumes this is a solved problem for the most part. If dealing with a client like the web browser for example, you can store the JWT tokens in a cookie that is secure (is not transmitted via HTTP, only via HTTPS) and httpOnly (can't be read by Javascript) and talks to the server over an encrypted channel (HTTPS). Once you know you have a secure channel between the server and client you can securely exchange JWT or whatever else you want.
This keeps thing simple. A simple implementation makes adoption easier but it also lets each layer do what it does best (let HTTPS handle encryption).
JWT isn't meant to store sensitive data. Once the server receives the JWT token and validates it, it is free to lookup the user ID in its own database for additional information for that user (like permissions, postal address, etc). This keeps JWT small in size and avoids inadvertent information leakage because everyone knows not to keep sensitive data in JWT.
It's not too different from how cookies themselves work. Cookies often contain unencrypted payloads. If you are using HTTPS then everything is good. If you aren't then it's advisable to encrypt sensitive cookies themselves. Not doing so will mean that a man-in-the-middle attack is possible--a proxy server or ISP reads the cookies and then replays them later on pretending to be you. For similar reasons, JWT should always be exchanged over a secure layer like HTTPS.
Let's discuss from the very beginning:
JWT is a very modern, simple and secure approach which extends for Json Web Tokens. Json Web Tokens are a stateless solution for authentication. So there is no need to store any session state on the server, which of course is perfect for restful APIs.
Restful APIs should always be stateless, and the most widely used alternative to authentication with JWTs is to just store the user's log-in state on the server using sessions. But then of course does not follow the principle that says that restful APIs should be stateless and that's why solutions like JWT became popular and effective.
So now let's know how authentication actually works with Json Web Tokens. Assuming we already have a registered user in our database. So the user's client starts by making a post request with the username and the password, the application then checks if the user exists and if the password is correct, then the application will generate a unique Json Web Token for only that user.
The token is created using a secret string that is stored on a server. Next, the server then sends that JWT back to the client which will store it either in a cookie or in local storage.
Just like this, the user is authenticated and basically logged into our application without leaving any state on the server.
So the server does in fact not know which user is actually logged in, but of course, the user knows that he's logged in because he has a valid Json Web Token which is a bit like a passport to access protected parts of the application.
So again, just to make sure you got the idea. A user is logged in as soon as he gets back his unique valid Json Web Token which is not saved anywhere on the server. And so this process is therefore completely stateless.
Then, each time a user wants to access a protected route like his user profile data, for example. He sends his Json Web Token along with a request, so it's a bit like showing his passport to get access to that route.
Once the request hits the server, our app will then verify if the Json Web Token is actually valid and if the user is really who he says he is, well then the requested data will be sent to the client and if not, then there will be an error telling the user that he's not allowed to access that resource.
All this communication must happen over https, so secure encrypted Http in order to prevent that anyone can get access to passwords or Json Web Tokens. Only then we have a really secure system.
So a Json Web Token looks like left part of this screenshot which was taken from the JWT debugger at jwt.io. So essentially, it's an encoding string made up of three parts. The header, the payload and the signature Now the header is just some metadata about the token itself and the payload is the data that we can encode into the token, any data really that we want. So the more data we want to encode here the bigger the JWT. Anyway, these two parts are just plain text that will get encoded, but not encrypted.
So anyone will be able to decode them and to read them, we cannot store any sensitive data in here. But that's not a problem at all because in the third part, so in the signature, is where things really get interesting. The signature is created using the header, the payload, and the secret that is saved on the server.
And this whole process is then called signing the Json Web Token. The signing algorithm takes the header, the payload, and the secret to create a unique signature. So only this data plus the secret can create this signature, all right?
Then together with the header and the payload, these signature forms the JWT,
which then gets sent to the client.
Once the server receives a JWT to grant access to a protected route, it needs to verify it in order to determine if the user really is who he claims to be. In other words, it will verify if no one changed the header and the payload data of the token. So again, this verification step will check if no third party actually altered either the header or the payload of the Json Web Token.
So, how does this verification actually work? Well, it is actually quite straightforward. Once the JWT is received, the verification will take its header and payload, and together with the secret that is still saved on the server, basically create a test signature.
But the original signature that was generated when the JWT was first created is still in the token, right? And that's the key to this verification. Because now all we have to do is to compare the test signature with the original signature.
And if the test signature is the same as the original signature, then it means that the payload and the header have not been modified.
Because if they had been modified, then the test signature would have to be different. Therefore in this case where there has been no alteration of the data, we can then authenticate the user. And of course, if the two signatures
are actually different, well, then it means that someone tampered with the data.
Usually by trying to change the payload. But that third party manipulating the payload does of course not have access to the secret, so they cannot sign the JWT.
So the original signature will never correspond to the manipulated data.
And therefore, the verification will always fail in this case. And that's the key to making this whole system work. It's the magic that makes JWT so simple,
but also extremely powerful.
The contents in a json web token (JWT) are not inherently secure, but there is a built-in feature for verifying token authenticity. A JWT is three hashes separated by periods. The third is the signature. In a public/private key system, the issuer signs the token signature with a private key which can only be verified by its corresponding public key.
It is important to understand the distinction between issuer and verifier. The recipient of the token is responsible for verifying it.
There are two critical steps in using JWT securely in a web application: 1) send them over an encrypted channel, and 2) verify the signature immediately upon receiving it. The asymmetric nature of public key cryptography makes JWT signature verification possible. A public key verifies a JWT was signed by its matching private key. No other combination of keys can do this verification, thus preventing impersonation attempts. Follow these two steps and we can guarantee with mathematical certainty the authenticity of a JWT.
More reading: How does a public key verify a signature?
I would explain this with an example.
Say I borrowed $10 from you, then I gave you an IOU with my signature on it. I will pay you back whenever you or someone else bring this IOU back to me, I will check the signature to make sure that is mine.
I can't make sure you don't show the content of this IOU to anyone or even give it to a third person, all I care is that this IOU is signed by me, when someone shows this IOU to me and ask me to pay it.
The way how JWT works is quite the same, the server can only make sure that the token received was issued by itself.
You need other measures to make it secure, like encryption in transfer with HTTPS, making sure that the local storage storing the token is secured, setting up origins.
Ref - JWT Structure and Security
It is important to note that JWT are used for authorization and not authentication.
So a JWT will be created for you only after you have been authenticated by the server by may be specifying the credentials. Once JWT has been created for all future interactions with server JWT can be used. So JWT tells that server that this user has been authenticated, let him access the particular resource if he has the role.
Information in the payload of the JWT is visible to everyone. There can be a "Man in the Middle" attack and the contents of the JWT can be changed. So we should not pass any sensitive information like passwords in the payload. We can encrypt the payload data if we want to make it more secure. If Payload is tampered with server will recognize it.
So suppose a user has been authenticated and provided with a JWT. Generated JWT has a claim specifying role of Admin. Also the Signature is generated with
This JWT is now tampered with and suppose the
role is changed to Super Admin
Then when the server receives this token it will again generate the signature using the secret key(which only the server has) and the payload. It will not match the signature
in the JWT. So the server will know that the JWT has been tampered with.
Only JWT's privateKey, which is on your server will decrypt the encrypted JWT. Those who know the privateKey will be able to decrypt the encrypted JWT.
Hide the privateKey in a secure location in your server and never tell anyone the privateKey.
I am not a cryptography specialist and hence (I hope) my answer can help somebody who is neither.
There are two possible ways of using cryptography in programming:
Signing / verifying
Encryption / decryption
We use Signing when we want to ensure that data comes from a trusted source.
We use Encryption when we want to protect the data.
Signing / verifying uses asymmetrical algorithms i.e. we sign with one key (private) and the data receiver uses the other (public) key to verify.
A symmetric algorithm uses the same key to encrypt and decrypt data.
The encryption can be done using both symmetric and asymmetric algorithms.
relatively simple article on subject
The above is common knowledge below is my opinion.
When JWT is used for simple client-to-server identification there is no need for signing or asymmetric encryption. JWT can be encrypted with AES which is fast and supersecure. If the server can decrypt it, it means the server is the one who encrypted it.
Summary: non-encrypted JWT is not secure. Symmetric encryption can be used instead of signing in case no third party is involved.

How do I get the Public Key from Data Protection API and share it?

I was reading a fine article on Data Protection API here.
With such in mind, I am thinking of encrypting the payload and require the Public Key to be shared among clients. I have the RSA type Public key generated from OpenSSL in the form of *.pem. Client's with the use of my public key will encrypt their request and send it to us using an HTTPS GET/POST. For such, I need to extract the Public key from Data Protection API and ironically no article mentions how to get it.
I also note that there is an expiry tag applied to keys, and how Data-protection-API handle keys that are expired? Can the client request another?

Jwt payload not encrypted [duplicate]

If I get a JWT and I can decode the payload, how is that secure? Couldn't I just grab the token out of the header, decode and change the user information in the payload, and send it back with the same correct encoded secret?
I know they must be secure, but I just would really like to understand the technologies. What am I missing?
JWTs can be either signed, encrypted or both. If a token is signed, but not encrypted, everyone can read its contents, but when you don't know the private key, you can't change it. Otherwise, the receiver will notice that the signature won't match anymore.
Answer to your comment: I'm not sure if I understand your comment the right way. Just to be sure: do you know and understand digital signatures? I'll just briefly explain one variant (HMAC, which is symmetrical, but there are many others).
Let's assume Alice wants to send a JWT to Bob. They both know some shared secret. Mallory doesn't know that secret, but wants to interfere and change the JWT. To prevent that, Alice calculates Hash(payload + secret) and appends this as signature.
When receiving the message, Bob can also calculate Hash(payload + secret) to check whether the signature matches.
If however, Mallory changes something in the content, she isn't able to calculate the matching signature (which would be Hash(newContent + secret)). She doesn't know the secret and has no way of finding it out.
This means if she changes something, the signature won't match anymore, and Bob will simply not accept the JWT anymore.
Let's suppose, I send another person the message {"id":1} and sign it with Hash(content + secret). (+ is just concatenation here). I use the SHA256 Hash function, and the signature I get is: 330e7b0775561c6e95797d4dd306a150046e239986f0a1373230fda0235bda8c. Now it's your turn: play the role of Mallory and try to sign the message {"id":2}. You can't because you don't know which secret I used. If I suppose that the recipient knows the secret, he CAN calculate the signature of any message and check if it's correct.
You can go to jwt.io, paste your token and read the contents. This is jarring for a lot of people initially.
The short answer is that JWT doesn't concern itself with encryption. It cares about validation. That is to say, it can always get the answer for "Have the contents of this token been manipulated"? This means user manipulation of the JWT token is futile because the server will know and disregard the token. The server adds a signature based on the payload when issuing a token to the client. Later on it verifies the payload and matching signature.
The logical question is what is the motivation for not concerning itself with encrypted contents?
The simplest reason is because it assumes this is a solved problem for the most part. If dealing with a client like the web browser for example, you can store the JWT tokens in a cookie that is secure (is not transmitted via HTTP, only via HTTPS) and httpOnly (can't be read by Javascript) and talks to the server over an encrypted channel (HTTPS). Once you know you have a secure channel between the server and client you can securely exchange JWT or whatever else you want.
This keeps thing simple. A simple implementation makes adoption easier but it also lets each layer do what it does best (let HTTPS handle encryption).
JWT isn't meant to store sensitive data. Once the server receives the JWT token and validates it, it is free to lookup the user ID in its own database for additional information for that user (like permissions, postal address, etc). This keeps JWT small in size and avoids inadvertent information leakage because everyone knows not to keep sensitive data in JWT.
It's not too different from how cookies themselves work. Cookies often contain unencrypted payloads. If you are using HTTPS then everything is good. If you aren't then it's advisable to encrypt sensitive cookies themselves. Not doing so will mean that a man-in-the-middle attack is possible--a proxy server or ISP reads the cookies and then replays them later on pretending to be you. For similar reasons, JWT should always be exchanged over a secure layer like HTTPS.
Let's discuss from the very beginning:
JWT is a very modern, simple and secure approach which extends for Json Web Tokens. Json Web Tokens are a stateless solution for authentication. So there is no need to store any session state on the server, which of course is perfect for restful APIs.
Restful APIs should always be stateless, and the most widely used alternative to authentication with JWTs is to just store the user's log-in state on the server using sessions. But then of course does not follow the principle that says that restful APIs should be stateless and that's why solutions like JWT became popular and effective.
So now let's know how authentication actually works with Json Web Tokens. Assuming we already have a registered user in our database. So the user's client starts by making a post request with the username and the password, the application then checks if the user exists and if the password is correct, then the application will generate a unique Json Web Token for only that user.
The token is created using a secret string that is stored on a server. Next, the server then sends that JWT back to the client which will store it either in a cookie or in local storage.
Just like this, the user is authenticated and basically logged into our application without leaving any state on the server.
So the server does in fact not know which user is actually logged in, but of course, the user knows that he's logged in because he has a valid Json Web Token which is a bit like a passport to access protected parts of the application.
So again, just to make sure you got the idea. A user is logged in as soon as he gets back his unique valid Json Web Token which is not saved anywhere on the server. And so this process is therefore completely stateless.
Then, each time a user wants to access a protected route like his user profile data, for example. He sends his Json Web Token along with a request, so it's a bit like showing his passport to get access to that route.
Once the request hits the server, our app will then verify if the Json Web Token is actually valid and if the user is really who he says he is, well then the requested data will be sent to the client and if not, then there will be an error telling the user that he's not allowed to access that resource.
All this communication must happen over https, so secure encrypted Http in order to prevent that anyone can get access to passwords or Json Web Tokens. Only then we have a really secure system.
So a Json Web Token looks like left part of this screenshot which was taken from the JWT debugger at jwt.io. So essentially, it's an encoding string made up of three parts. The header, the payload and the signature Now the header is just some metadata about the token itself and the payload is the data that we can encode into the token, any data really that we want. So the more data we want to encode here the bigger the JWT. Anyway, these two parts are just plain text that will get encoded, but not encrypted.
So anyone will be able to decode them and to read them, we cannot store any sensitive data in here. But that's not a problem at all because in the third part, so in the signature, is where things really get interesting. The signature is created using the header, the payload, and the secret that is saved on the server.
And this whole process is then called signing the Json Web Token. The signing algorithm takes the header, the payload, and the secret to create a unique signature. So only this data plus the secret can create this signature, all right?
Then together with the header and the payload, these signature forms the JWT,
which then gets sent to the client.
Once the server receives a JWT to grant access to a protected route, it needs to verify it in order to determine if the user really is who he claims to be. In other words, it will verify if no one changed the header and the payload data of the token. So again, this verification step will check if no third party actually altered either the header or the payload of the Json Web Token.
So, how does this verification actually work? Well, it is actually quite straightforward. Once the JWT is received, the verification will take its header and payload, and together with the secret that is still saved on the server, basically create a test signature.
But the original signature that was generated when the JWT was first created is still in the token, right? And that's the key to this verification. Because now all we have to do is to compare the test signature with the original signature.
And if the test signature is the same as the original signature, then it means that the payload and the header have not been modified.
Because if they had been modified, then the test signature would have to be different. Therefore in this case where there has been no alteration of the data, we can then authenticate the user. And of course, if the two signatures
are actually different, well, then it means that someone tampered with the data.
Usually by trying to change the payload. But that third party manipulating the payload does of course not have access to the secret, so they cannot sign the JWT.
So the original signature will never correspond to the manipulated data.
And therefore, the verification will always fail in this case. And that's the key to making this whole system work. It's the magic that makes JWT so simple,
but also extremely powerful.
The contents in a json web token (JWT) are not inherently secure, but there is a built-in feature for verifying token authenticity. A JWT is three hashes separated by periods. The third is the signature. In a public/private key system, the issuer signs the token signature with a private key which can only be verified by its corresponding public key.
It is important to understand the distinction between issuer and verifier. The recipient of the token is responsible for verifying it.
There are two critical steps in using JWT securely in a web application: 1) send them over an encrypted channel, and 2) verify the signature immediately upon receiving it. The asymmetric nature of public key cryptography makes JWT signature verification possible. A public key verifies a JWT was signed by its matching private key. No other combination of keys can do this verification, thus preventing impersonation attempts. Follow these two steps and we can guarantee with mathematical certainty the authenticity of a JWT.
More reading: How does a public key verify a signature?
I would explain this with an example.
Say I borrowed $10 from you, then I gave you an IOU with my signature on it. I will pay you back whenever you or someone else bring this IOU back to me, I will check the signature to make sure that is mine.
I can't make sure you don't show the content of this IOU to anyone or even give it to a third person, all I care is that this IOU is signed by me, when someone shows this IOU to me and ask me to pay it.
The way how JWT works is quite the same, the server can only make sure that the token received was issued by itself.
You need other measures to make it secure, like encryption in transfer with HTTPS, making sure that the local storage storing the token is secured, setting up origins.
Ref - JWT Structure and Security
It is important to note that JWT are used for authorization and not authentication.
So a JWT will be created for you only after you have been authenticated by the server by may be specifying the credentials. Once JWT has been created for all future interactions with server JWT can be used. So JWT tells that server that this user has been authenticated, let him access the particular resource if he has the role.
Information in the payload of the JWT is visible to everyone. There can be a "Man in the Middle" attack and the contents of the JWT can be changed. So we should not pass any sensitive information like passwords in the payload. We can encrypt the payload data if we want to make it more secure. If Payload is tampered with server will recognize it.
So suppose a user has been authenticated and provided with a JWT. Generated JWT has a claim specifying role of Admin. Also the Signature is generated with
This JWT is now tampered with and suppose the
role is changed to Super Admin
Then when the server receives this token it will again generate the signature using the secret key(which only the server has) and the payload. It will not match the signature
in the JWT. So the server will know that the JWT has been tampered with.
Only JWT's privateKey, which is on your server will decrypt the encrypted JWT. Those who know the privateKey will be able to decrypt the encrypted JWT.
Hide the privateKey in a secure location in your server and never tell anyone the privateKey.
I am not a cryptography specialist and hence (I hope) my answer can help somebody who is neither.
There are two possible ways of using cryptography in programming:
Signing / verifying
Encryption / decryption
We use Signing when we want to ensure that data comes from a trusted source.
We use Encryption when we want to protect the data.
Signing / verifying uses asymmetrical algorithms i.e. we sign with one key (private) and the data receiver uses the other (public) key to verify.
A symmetric algorithm uses the same key to encrypt and decrypt data.
The encryption can be done using both symmetric and asymmetric algorithms.
relatively simple article on subject
The above is common knowledge below is my opinion.
When JWT is used for simple client-to-server identification there is no need for signing or asymmetric encryption. JWT can be encrypted with AES which is fast and supersecure. If the server can decrypt it, it means the server is the one who encrypted it.
Summary: non-encrypted JWT is not secure. Symmetric encryption can be used instead of signing in case no third party is involved.

How to sign data in .NET Core 3

Question
Is there a way to cryptographically sign data (RSA or anything that is considered to be cryptographically secure) and verify that signature so that the signing is done in one HTTP request to an endpoint and verification is done in another HTTP request with another endpoint?
Background
I'm trying to implement signed URLs. The idea is to protect files or other resources that are usually served via GET (images, PDFs, etc...) by providing signed URL (URLs with a cryptographically signed payload at the end of the URL) which is then validated when requested.
So you might have something like an API returning:
{
"image": "http://api.example.com?key=..."
}
where ... is the signed payload (which usually contains the user ID, the expiration time and some kind of identifier for the resource).
Then when the browser calls for http://api.example.com?key=..., what's in the ... is verified which then either grants access to the image or not.
What have I tried
I read about RSACryptoServiceProvider, which seems to automatically generate the private key with which stuff is encrypted, but I've also read that it's not thread safe, therefore registering RSACryptoServiceProvider as a singleton is not an option.
I'm guessing registering it as scoped or transient would not work when you want the same private key for two different requests (URL generation and file streaming).

SmartCard security, how do you authenticate the certificate as not fake?

I'm trying to develop an ASP.net site that reads the clientCertificate to ensure a smart card was used to access the website (trying to do away with username/password login).
The process I have in my mind is:
User registers an account and C# records user's clientCertificate (public).
The user can then log in the next time with that same clientCertificate, and they are now an authenticated user if hash valid.
I will use the code below to ensure authenticity of certificate. The browser should deal with private keys and ensure the certificate was NOT faked.
Based on Subject+certificate combination, C# assigns them their role-access.
The following code can be used for authenticity of certificate right?
X509Certificate x509Cert = new X509Certificate(Request.ClientCertificate.Certificate);
SHA1 sha = new SHA1CryptoServiceProvider();
byte[] hashvalue = sha.ComputeHash(Request.ClientCertificate.Certificate);
byte[] x509Hash = x509Cert.GetCertHash();
// compare x509Hash WITH hashvalue to ensure they are a match.
// If not, possibly faked certificate, not a real smartcard???
Is this how SmartCard authentication process should work???
If you just need to authenticate users with client certificates you should do this in IIS. You do not need to add any code at all to your application:
Specify Whether to Use Client Certificates (IIS 7)
Unless you need to link client certificates with database accounts or perform an additional validation step. But still for client certificate authentication I would stick with IIS settings.
Update:
In case you need to manipulate the client certificate you can do:
X509Certificate2 x509Cert2 = new X509Certificate2(Page.Request.ClientCertificate.Certificate);
And then access its properties such as:
x509Cert2.Subject
However, leave the validation piece up to IIS. If the client presents a bad certificate your asp.net code will not even execute since IIS will reject it
See this thread, sir. You do not need to verify authenticity explicitly in your code. IIS will do it for you.
Does IIS do the SSL certificate check or do I have to verify it?
IIS even tries to check revocation lists (however, this is often disabled if the CRL is large). An OCSP responder should be used to validate in cases where the CRL is very large or latency in checking it is high http://www.axway.com/products-solutions/email-identity-security/identity-security/va-suite.
Client-certificate authentication is done during the SSL/TLS handshake.
It is usually done using a Public Key Infrastructure, whereby the server has a (fixed) list of trusted CA certificates which it uses to verify the client certificate (in the same way as clients to it for the server). Once the certificate is presented to your application after this stage, you will know that:
the client has the private key for that certificate (guaranteed by the Certificate Verify message in the TLS handhsake (the SSL/TLS stack will verify this for you, no need to implement anything);
the client has the identity described in the certificate, because you will have verified it against your trusted CA.
The verification against a trusted CA requires the user to be registered with that CA in advance. You can't just authenticate any certificate if it hasn't been issued by a CA you trust. (Mapping the certificate's subject to a local user ID is another matter: you could do this upon first connection if needed: have your own database or directory service to map the Subject DN to another kind of user ID in your application, for example.)
User registers an account and C# records user's clientCertificate
(public). The user can then log in the next time with that same
clientCertificate, and they are now an authenticated user if hash
valid.
It sounds like you want to allow any certificate to be presented and use it for the initial registration, without necessarily resorting to a commonly trusted CA.
This is possible in principle, and I've done this to explore alternatives to PKI in Java.
To do this, you need to let any certificate through as far as the SSL/TLS handshake is concerned, and verify the certificate itself later. (You do need to use some form of verification.) You are still guaranteed with this that the client has the private key for the public key certificate it has presented.
Doing this requires two steps:
You need to be able to advertise the fact that you're going to accept any certificate, by sending an empty list of certification authorities in the Certificate Request TLS message (explicitly allowed by TLS 1.1).
Configure the SSL/TLS stack to trust any certificate (once again, when you do this, do not forget to implement your own verification system within your application, otherwise anything will really get through).
In .Net, while it should be possible to address the second point using a remote certificate validation callback, I have never found a way to alter the first point (this was also asked in this question).
In Java, the JSSE's X509TrustManager allows you to address both points.

Categories

Resources