Is it possible to assign the same method to multiple delegates all at once?
public class Hoge
{
public event Action EventA;
public event Action EventB;
public event Action EventC;
public Hoge()
{
EventA += () => FugaMethod();
EventB += () => FugaMethod();
EventC += () => FugaMethod();
}
private void FugaMethod()
{
Console.WriteLine("Hello.");
}
}
I'd like to simplify the assignments of the FugaMethod().
since events can't go as a parameter ... unfortunately ... no
if we are talking about a shitload of events, reflection would be the way to go ... but that i'd not really call "simplification"
edit:
for clarification:
what you can pass as a parameter:
the current list of eventhandlers attached to a static or specific event on a specific object (what you pass in this case is not the event, but a MulticastDelegate)
what you can not pass as a parameter: the event itself ...
you are not able to pass an event in a direct way that would allow to attach another event handler ... for that you would probably want to pass the specific obect instance, the EventInfo describing the event itself, and the new handler(s) ...
regarding "simplification":
what you need to do would be:
-use reflection to obtain the EventInfo objects of the desired events
-for each instance and each EventInfo call EventInfo.AddEventHandler, passing the instance as target and the eventhandler as handler
since you cannot pass the event as a parameter, you cannot extract a simple and typesafe method to get the desired EventInfo objects. you will have to use some selection by name, or other logic that takes the instance type apart by using Type.getEvent or Type.getEvents
so, if you are not handling a shitload of events, like a few hundred, writing it like you did seems to be the preferable way to go ... the reflection approach will be anything but simpler or shorter
There is a way to assign multiple event handlers at once that does not require reflection however itäs not trivial and some programming is necessary. You can use a dictionary to store your events if you want initialize them in a loop.
As a side note: by convention the event keyword should only be used if the delegate is of type EventHandler. It may and probably will confuse others when they try to use it.
Hoge class:
public class Hoge
{
// A dictionary to store your events.
private Dictionary<string, EventHandler> events = new Dictionary<string, EventHandler>()
{
{ "EventA", null },
{ "EventB", null },
{ "EventC", null }
};
// Event add/remove accessors.
public event EventHandler EventA
{
add
{
lock (events)
{
events["EventA"] += (EventHandler)events["EventA"] + value;
}
}
remove
{
lock (events)
{
events["EventA"] += (EventHandler)events["EventA"] - value;
}
}
}
// You can do the same for other events.
public event EventHandler EventB;
public event EventHandler EventC;
public Hoge()
{
// Initialize events in a loop.
foreach (var key in events.Keys.ToList())
{
events[key] += FugaMethod;
}
}
// Raises EventA.
public void RaiseEventA()
{
EventHandler handler;
if (null != (handler = (EventHandler)events["EventA"]))
{
handler(this, EventArgs.Empty);
}
}
// Event handler.
private void FugaMethod(object sender, EventArgs e)
{
Console.WriteLine("Hello.");
}
}
Usage:
class Program
{
static void Main(string[] args)
{
new Hoge().RaiseEventA();
}
}
How to: Use a Dictionary to Store Event Instances (C# Programming Guide)
Handling and Raising Events
Related
I'm struggling to understand why it's okay to attach a 'normal' method as a subscriber to a publisher event, and also a delegate.
For example...
public class Caller
{
public string Name { get; set; }
public event EventHandler<RuedaEventArgs> MakeRuedaCall;
public virtual void OnMakeRuedaCall(RuedaEventArgs args) {
if (MakeRuedaCall != null) {
MakeRuedaCall(this, args);
}
}
}
This is my publisher class where I define and raise the event. I'm also making use of some custom event arguments.
public class Salsera {
public Salsera(Caller caller) {
caller.MakeRuedaCall += MakeMovement;
}
public void MakeMovement(object source, RuedaEventArgs args) {
if (args.CallName == "Vacilala") {
Turn();
}
if (args.CallName == "Patin") {
MoveToOutside();
}
}
private void MoveToOutside() {
Console.WriteLine("Ladies move to the outside....");
}
private void Turn() {
Console.WriteLine("Ladies turn....");
}
}
This is a class where I add a method as a subscriber to the event in the constructor.
Suppose I then have somewhere else...
Caller matt = new Caller();
EventHandler<RuedaEventArgs> anonyMouseFunc = (sender, eventArgs) =>
{
switch (eventArgs.CallName) {
case "Patin":
Console.WriteLine("Adding a new subscriber for Patin");
break;
case "Vacilala":
Console.WriteLine("Adding a new subscriber for Vacilala");
break;
}
};
matt.MakeRuedaCall += anonyMouseFunc;
Sorry if this seems like a silly question but why is it that you can subscribe a 'normal' method (assuming it matches the delegate signiture) to an event, and also an anonymous method as a delegate to an event.
i.e. how does public event EventHandler<RuedaEventArgs> MakeRuedaCall; handle both options?
Many thanks,
Sorry if this seems like a silly question but why is it that you can subscribe a 'normal' method (assuming it matches the delegate signiture) to an event, and also an anonymous method as a delegate to an event.
You're subscribing a delegate in both cases. In this case:
caller.MakeRuedaCall += MakeMovement;
... you're using a method group conversion to convert MakeMovement (which is a method group in spec terminology) into a delegate instance. That code is (almost entirely) equivalent to:
caller.MakeRuedaCall += new EventHandler<RuedaEventArgs>(MakeMovement);
Or to think of it another way, it's equivalent to:
EventHandler<RuedaEventArgs> handler = MakeMovement;
caller.MakeRuedaCall += handler;
This ability to create delegates from regular methods isn't just for event handling, of course - you can use it for LINQ and anywhere else you use delegates, too.
This is abit difficult to word, so I am going to rely mostly on code.
BTW if you can word the question in a better light please dont hesitate giving your 2c!
class CustomEventArgs : EventArgs
{
public delegate void CustomEventHandler( Object sender, CustomEventArgs args );
public int data;
public CustomEventArgs (int _data)
{
data = _data;
}
}
This is the event that we will be using in this example.
class EventGenerator
{
public event CustomEventArgs.CustomEventHandler WeOccasion;
public EventGenerator ()
{
Task.Factory.StartNew( () =>
{
var index = 1;
// just loop and generate events every now and then
while (true)
{
Thread.Sleep( 1000 );
WeOccasion( this, new CustomEventArgs (++index));
}
});
}
}
This class just loops through firing off CustomEventHandler events.
class EventActivity
{
// EventActivity has an event of the same type as EventGenerator's
public event CustomEventArgs.CustomEventHandler WeOccasion;
// this is the part I cant seem to get right
public event CustomEventArgs.CustomEventHandler Source ( get; set; }
public bool Active {
set
{
if (value)
{
Source += DoWork;
}
else
{
Source -= DoWork;
}
}
}
private void DoWork( Object sender, CustomEventArgs frame);
}
Here is where I really need help. I want almost a pointer to an event in an another class of type CustomEventHandler that I can later assign event handlers to when I activate the activity.
Here is a usage example wrapped in a class;
class EventAssigner
{
EventGenerator Generator;
EventActivity DoSomeThing1;
EventActivity DoSomeThing2;
public EventAssigner ()
{
// init
Generator = new EventGenerator();
DoSomeThing1 = new EventActivity();
DoSomeThing2 = new EventActivity();
// assign sources
DoSomeThing1.Source = Generator.WeOccasion;
DoSomeThing2.Source = DoSomeThing1.WeOccasion;
// activate the first activity
DoSomeThing1.Active = true;
}
public void Activate2()
{
// activate the second activity
DoSomeThing2.Active = true;
}
public void Deactivate2()
{
// deactivate the second activity
DoSomeThing2.Active = false;
}
}
Obiously this code doesnt work, and I suppose thats what I am asking. Can you get this design pattern to work?
What you're asking to do isn't really possible with .NET events, and probably isn't as desirable as you might think. A bit of background should help explain why:
Properties have a basic pattern with get and set operations. These are invoked by accessing the property (for a get) and an assignment to the property (for a set):
var x = instance.Prop1; // access
instance.Prop1 = x; // assignment
When you access an event from outside the class (i.e. instance.Event) you are given the "public" face, which, like properties, has two operations: add handler and remove handler. These are invoked using the += and -= operators.
instance.Event += this.Handler; // add
instance.Event -= this.Handler; // remove
The important thing to notice that it doesn't have a "get" operation - there is no way to get a reference to the event outside the class; you can only modify the handlers registered.
When you access an event from within a class, you are given the "private" face, which is essentially a special collection of delegates (function pointers) to the registered event handlers. When you invoke the delegate, you're actually asking the framework to iterate through the registered event handlers and invoke those.
if(this.Event != null)
{
this.Event.Invoke(e, args); // raise event
}
This separation of public face and private face is what allows you have a nice simple event keyword which magically gives you an event. It is also what stops you passing a reference to the event around.
To pass the event into registration methods, you have to pass the object the event is attached to. If you have multiple classes which implement the same event and you want to register them all in the same way, you should have them implement an interface with the event (yes, events can be on interfaces) and write your method to accept the interface as an argument.
If I'm reading you correct, you want the line
DoSomeThing1.Source = Generator.WeOccasion;
to save the pointer to the WeOccasion event, so that you can add the DoWork call to it later, right?
I don't think that is possible with "normal" code, as the event is not a value, but rather like a property. Consider the following analogous code:
myProp = aPerson.Name; // attempt to save the name property for later
myProp = "Fred"; // intent is to set aPerson.Name = "Fred"
If you want this to work I'd suggest using reflection to find the event, and add to it using the EventInfo.AddEventHandler method (http://msdn.microsoft.com/en-us/library/system.reflection.eventinfo.addeventhandler.aspx)
I am sure that I am just not understanding something fundamental about events and/or delegates in C#, but why can't I do the Boolean tests in this code sample:
public class UseSomeEventBase {
public delegate void SomeEventHandler(object sender, EventArgs e);
public event SomeEventHandler SomeEvent;
protected void OnSomeEvent(EventArgs e) {
// CANONICAL WAY TO TEST EVENT. OF COURSE, THIS WORKS.
if (SomeEvent != null) SomeEvent(this, e);
}
}
public class UseSomeEvent : UseSomeEventBase {
public bool IsSomeEventHandlerNull() {
// "LEFT HAND SIDE" COMPILER ERROR
return SomeEvent == null;
}
}
class Program {
static void Main(string[] args) {
var useSomeEvent = new UseSomeEvent();
useSomeEvent.SomeEvent +=new UseSomeEventBase.SomeEventHandler(FuncToHandle);
// "LEFT HAND SIDE" COMPILER ERROR
if (useSomeEvent.SomeEvent == null) {
}
var useSomeEventBase = new UseSomeEventBase();
useSomeEventBase.SomeEvent += new UseSomeEventBase.SomeEventHandler(FuncToHandle);
// "LEFT HAND SIDE" COMPILER ERROR
if (useSomeEventBase.SomeEvent == null) {
}
}
static void FuncToHandle(object sender, EventArgs e) { }
}
An event is really just an "add" operation and a "remove" operation. You can't get the value, you can't set the value, you can't call it - you can just subscribe a handler for the event (add) or unsubscribe one (remove). This is fine - it's encapsulation, plain and simple. It's up to the publisher to implement add/remove appropriately, but unless the publisher chooses to make the details available, subscribers can't modify or access the implementation-specific parts.
Field-like events in C# (where you don't specify the add/remove bits) hide this - they create a variable of a delegate type and an event. The event's add/remove implementations just use the variable to keep track of the subscribers.
Inside the class you refer to the variable (so you can get the currently subscribed delegates, execute them etc) and outside the class you refer to the event itself (so only have add/remove abilities).
The alternative to field-like events is where you explicitly implement the add/remove yourself, e.g.
private EventHandler clickHandler; // Normal private field
public event EventHandler Click
{
add
{
Console.WriteLine("New subscriber");
clickHandler += value;
}
remove
{
Console.WriteLine("Lost a subscriber");
clickHandler -= value;
}
}
See my article on events for more information.
Of course the event publisher can also make more information available - you could write a property like ClickHandlers to return the current multi-cast delegate, or HasClickHandlersto return whether there are any or not. That's not part of the core event model though.
You can easily use a very simple approach here to not repeatedly subscribe to an event.
Either of the 2 approaches below can be used:
Flag approach : _getWarehouseForVendorCompletedSubscribed is a private variable initialized to false.
if (!_getWarehouseForVendorCompletedSubscribed)
{
_serviceClient.GetWarehouseForVendorCompleted += new EventHandler<GetWarehouseForVendorCompletedEventArgs>(_serviceClient_GetWarehouseForVendorCompleted);
_getWarehouseForVendorCompletedSubscribed = true;
}
Unsubscribe Approach :Include an unsubscribe everytime you want to subscribe.
_serviceClient.GetWarehouseForVendorCompleted -= new
EventHandler<GetWarehouseForVendorCompletedEventArgs>
(_serviceClient_GetWarehouseForVendorCompleted);
_serviceClient.GetWarehouseForVendorCompleted += new
EventHandler<GetWarehouseForVendorCompletedEventArgs>
(_serviceClient_GetWarehouseForVendorCompleted);
Here the answer:
using System;
delegate void MyEventHandler();
class MyEvent
{
string s;
public event MyEventHandler SomeEvent;
// This is called to raise the event.
public void OnSomeEvent()
{
if (SomeEvent != null)
{
SomeEvent();
}
}
public string IsNull
{
get
{
if (SomeEvent != null)
return s = "The EventHandlerList is not NULL";
else return s = "The EventHandlerList is NULL"; ;
}
}
}
class EventDemo
{
// An event handler.
static void Handler()
{
Console.WriteLine("Event occurred");
}
static void Main()
{
MyEvent evt = new MyEvent();
// Add Handler() to the event list.
evt.SomeEvent += Handler;
// Raise the event.
//evt.OnSomeEvent();
evt.SomeEvent -= Handler;
Console.WriteLine(evt.IsNull);
Console.ReadKey();
}
}
Here's a slightly different question
What value is there in testing an externally defined event for null?
As an external consumer of an event you can only do 2 operations
Add a handler
Remove a handler
The null or non-nullness of the event has no bearing on these 2 actions. Why do you want to run a test which provides no perceivable value?
It's a rule in place when using the 'event' keyword. When you create an event, you are restricting outside class interaction with the delegate to a "subscribe / unsubscribe" relationship, this includes cases of inheritance. Remember an event is essentially a property, but for method calls, it isn't really an object itself, so really it looks more like this:
public event SomeEventHandler SomeEvent
{
add
{
//Add method call to delegate
}
remove
{
//Remove method call to delegate
}
}
You'd have to do that from the base class. That's the exact reason that you did this:
protected void OnSomeEvent(EventArgs e) {
// CANONICAL WAY TO TEST EVENT. OF COURSE, THIS WORKS.
if (SomeEvent != null) SomeEvent(this, e);
}
You can't access events from a derived class. Also, you should make that method virtual, so that it can be overridden in a derived class.
Publisher of the event implicitly overload only += and -= operations, and other operations are not implemented in the publisher because of the obvious reasons as explained above, such as don't want to give control to subscriber to change events.
If we want to validate if a particular event is subscribed in the subscriber class, better publisher will set a flag in its class when event is subscriber and clear the flag when it is unsubscriber.
If subscriber can access the flag of publisher, very easily identifiable whether the particular event is subscriber or not by checking the flag value.
I am looking to pass an event to a helper function. This function will attach a method to the event. However, I am having trouble properly passing the event. I have tried passing a EventHandler<TEventArgs>. It compiles, but events are not attached (but are still added; it seems a copy of the event handler is made).
For example, if I have this:
public event EventHandler<EventArgs> MyEvent;
And the helper function:
public static void MyHelperFunction<TEventArgs>(EventHandler<TEventArgs> eventToAttachTo)
{
eventToAttachTo += (sender, e) => { Console.WriteLine("Hello world"); };
}
And the caller:
MyHelperFunction(MyEvent);
MyEvent(null, new EventArgs()); // Does nothing.
The reason why this does not work is += when applied to a delegate creates a new delegate which is the combination of the old and the new. It does not modify the existing delegate.
In order to get this to work you will have to pass the delegate by reference.
public static void Helper(ref EventHandler<EventArgs> e)
{
e+= (x,y) => {};
}
The reason this works outside of the method is because the LHS is still the actual field. So += will create a new delegate and assign back to the member field.
Just came up with this little helper. If it is your self-created Event you could use a wrapper like this. You can use your += operators to attach handlers as normal but can pass the wrapper around and even raise the event from elsewhere.
public class GenericEvent<T> where T:EventArgs
{
public event EventHandler<T> Source = delegate { };
public void Raise(object sender, T arg = default(T))
{
Source(sender, arg);
}
public void Raise(T arg = default(T))
{
Source(this, arg);
}
public void AddHandler(EventHandler<T> handler)
{
Source += handler;
}
public void RemoveHandler(EventHandler<T> handler)
{
Source -= handler;
}
public static GenericEvent<T> operator +(GenericEvent<T> genericEvent, EventHandler<T> handler)
{
genericEvent.AddHandler(handler);
return genericEvent;
}
}
Create the event like:
public GenericEvent<EventArgs> MyEvent = new GenericEvent<EventArgs>();
Attach handlers:
MyEvent += (s,e) => {};
Raise event:
MyEvent.Raise();
Just guessing: Have you tried passing it as ref?
public static void MyHelperFunction<TEventArgs>(ref EventHandler<TEventArgs> eventToAttachTo)
MyHelperFunction(ref MyEvent);
It's not exactly nice, but you can use reflection to do this.
public EventMonitor(object eventObject, string eventName)
{
_eventObject = eventObject;
_waitEvent = eventObject.GetType().GetEvent(eventName);
_handler = new EventHandler(SetEvent);
_waitEvent.AddEventHandler(eventObject, _handler);
}
Where eventObject is the object containing the event, and eventName is the name of the event.
SetEvent is your event handler.
I also have a dispose method like this:
public void Dispose()
{
_waitEvent.RemoveEventHandler(_eventObject, _handler);
}
I have a solution where I have an two interfaces. The first interface has methods for binding certain events, while the other interface has event methods that can be bound to those events.
The first interface's bind methods takes the second interface as parameter, which makes it possible to bind the events to the event methods of any class that implements the second interface.
Is that understandable, or would you prefer some code? :)
As many have pointed out, passing an event to a method is either not possible or not simple.
Please clarify, but I suspect your intended usage will look something like:
void Register()
{
var super = new SuperHandler();
//not valid syntax:
super.HandleEvent(MyEvent1);
super.HandleEvent(MyEvent2);
super.HandleEvent(MyEvent3);
super.HandleEvent(MyEvent4);
}
You can accomplish this simply by making your intended generic event handlers accessible publicly (or internally, if you desire):
public static class GenericHandler
{
public static void HandleAnyEvent(object sender, EventArgs e)
{
//handle
}
}
public class SomeClass
{
void RegisterEvents()
{
var r = new EventRaiser();
r.ImportantThingHappened += GenericHandler.HandleAnyEvent;
}
}
In this example my catch-all handler is in a static class, but you can just as well use a non-static class. Also, I see that in your example you have made the method generic (TEventArgs). Because all EventHandler derivatives (such as CancelEventHandler) match the base EventHandler, you do not need to involve generics (nor would it be helpful).
If the registration logic is complex or you must keep the EventHandler private, consider using Interface Events. This may not meet your intended goal of reducing the amount of code, but it will allow you to create a class that can predictably handle all of the events of a specific type.
interface IRaiseEvents
{
event EventHandler ConnectionCreated;
event EventHandler ConnectionLost;
}
public class SuperHandler
{
void RegisterEvents(IRaiseEvents raiser)
{
raiser.ConnectionCreated += (sender, args) => Console.WriteLine("Connected.");
raiser.ConnectionLost += (sender, args) => Console.WriteLine("Disconnected.");
}
}
Pass something like Action e = e => myevent += e;
And call from method with the handler? It has the benefit of working with .NET classes.
I'm using C#, .NET 3.5. I understand how to utilize events, how to declare them in my class, how to hook them from somewhere else, etc. A contrived example:
public class MyList
{
private List<string> m_Strings = new List<string>();
public EventHandler<EventArgs> ElementAddedEvent;
public void Add(string value)
{
m_Strings.Add(value);
if (ElementAddedEvent != null)
ElementAddedEvent(value, EventArgs.Empty);
}
}
[TestClass]
public class TestMyList
{
private bool m_Fired = false;
[TestMethod]
public void TestEvents()
{
MyList tmp = new MyList();
tmp.ElementAddedEvent += new EventHandler<EventArgs>(Fired);
tmp.Add("test");
Assert.IsTrue(m_Fired);
}
private void Fired(object sender, EventArgs args)
{
m_Fired = true;
}
}
However, what I do not understand, is when one declares an event handler
public EventHandler<EventArgs> ElementAddedEvent;
It's never initialized - so what, exactly, is ElementAddedEvent? What does it point to? The following won't work, because the EventHandler is never initialized:
[TestClass]
public class TestMyList
{
private bool m_Fired = false;
[TestMethod]
public void TestEvents()
{
EventHandler<EventArgs> somethingHappend;
somethingHappend += new EventHandler<EventArgs>(Fired);
somethingHappend(this, EventArgs.Empty);
Assert.IsTrue(m_Fired);
}
private void Fired(object sender, EventArgs args)
{
m_Fired = true;
}
}
I notice that there is an EventHandler.CreateDelegate(...), but all the method signatures suggest this is only used for attaching Delegates to an already existing EventHandler through the typical ElementAddedEvent += new EventHandler(MyMethod).
I'm not sure if what I am trying to do will help... but ultimately I'd like to come up with an abstract parent DataContext in LINQ whose children can register which table Types they want "observed" so I can have events such as BeforeUpdate and AfterUpdate, but specific to types. Something like this:
public class BaseDataContext : DataContext
{
private static Dictionary<Type, Dictionary<ChangeAction, EventHandler>> m_ObservedTypes = new Dictionary<Type, Dictionary<ChangeAction, EventHandler>>();
public static void Observe(Type type)
{
if (m_ObservedTypes.ContainsKey(type) == false)
{
m_ObservedTypes.Add(type, new Dictionary<ChangeAction, EventHandler>());
EventHandler eventHandler = EventHandler.CreateDelegate(typeof(EventHandler), null, null) as EventHandler;
m_ObservedTypes[type].Add(ChangeAction.Insert, eventHandler);
eventHandler = EventHandler.CreateDelegate(typeof(EventHandler), null, null) as EventHandler;
m_ObservedTypes[type].Add(ChangeAction.Update, eventHandler);
eventHandler = EventHandler.CreateDelegate(typeof(EventHandler), null, null) as EventHandler;
m_ObservedTypes[type].Add(ChangeAction.Delete, eventHandler);
}
}
public static Dictionary<Type, Dictionary<ChangeAction, EventHandler>> Events
{
get { return m_ObservedTypes; }
}
}
public class MyClass
{
public MyClass()
{
BaseDataContext.Events[typeof(User)][ChangeAction.Update] += new EventHandler(OnUserUpdate);
}
public void OnUserUpdated(object sender, EventArgs args)
{
// do something
}
}
Thinking about this made me realize I don't really understand what's happening under the hod with events - and I would like to understand :)
I've written this up in a fair amount of detail in an article, but here's the summary, assuming you're reasonably happy with delegates themselves:
An event is just an "add" method and a "remove" method, in the same way that a property is really just a "get" method and a "set" method. (In fact, the CLI allows a "raise/fire" method as well, but C# never generates this.) Metadata describes the event with references to the methods.
When you declare a field-like event (like your ElementAddedEvent) the compiler generates the methods and a private field (of the same type as the delegate). Within the class, when you refer to ElementAddedEvent you're referring to the field. Outside the class, you're referring to the field.
When anyone subscribes to an event (with the += operator) that calls the add method. When they unsubscribe (with the -= operator) that calls the remove.
For field-like events, there's some synchronization but otherwise the add/remove just call Delegate.Combine/Remove to change the value of the auto-generated field. Both of these operations assign to the backing field - remember that delegates are immutable. In other words, the autogenerated code is very much like this:
// Backing field
// The underscores just make it simpler to see what's going on here.
// In the rest of your source code for this class, if you refer to
// ElementAddedEvent, you're really referring to this field.
private EventHandler<EventArgs> __ElementAddedEvent;
// Actual event
public EventHandler<EventArgs> ElementAddedEvent
{
add
{
lock(this)
{
// Equivalent to __ElementAddedEvent += value;
__ElementAddedEvent = Delegate.Combine(__ElementAddedEvent, value);
}
}
remove
{
lock(this)
{
// Equivalent to __ElementAddedEvent -= value;
__ElementAddedEvent = Delegate.Remove(__ElementAddedEvent, value);
}
}
}
The initial value of the generated field in your case is null - and it will always become null again if all subscribers are removed, as that is the behaviour of Delegate.Remove.
If you want a "no-op" handler to subscribe to your event, so as to avoid the nullity check, you can do:
public EventHandler<EventArgs> ElementAddedEvent = delegate {};
The delegate {} is just an anonymous method which doesn't care about its parameters and does nothing.
If there's anything that's still unclear, please ask and I'll try to help!
Under the hood, events are just delegates with special calling conventions. (For example, you don't have to check for nullity before raising an event.)
In pseudocode, Event.Invoke() breaks down like this:
If Event Has Listeners
Call each listener synchronously on this thread in arbitrary order.
Since events are multicast, they will have zero or more listeners, held in a collection. The CLR will loop through them, calling each in an arbitrary order.
One big caveat to remember is that event handlers execute in the same thread as the event is raised in. It's a common mental error to think of them as spawning a new thread. They do not.