I'm a 17 year old student currently in software engineering and web development and im having trouble right now with some of my coding. I need to make a project that will alow the user to input a number anywherefrom 0 to 999 and tell whether it is a prime number or not. The code i have so far is....
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
public partial class _Default : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
}
public void primeNumber()
{
int primeNumber1 = int.Parse(Request.Form["Text4"]);
if (primeNumber1 % 1 == 0 & ! (primeNumber1 % 2 == 0 &
primeNumber1 % 3 == 0 &
primeNumber1 % 4 == 0 &
primeNumber1 % 5 == 0 &
primeNumber1 % 6 == 0 &
primeNumber1 % 7 == 0 &
primeNumber1 % 8 == 0 &
primeNumber1 % 9 == 0))
{
Response.Write(" This is a prime number! ");
}
else
{
Response.Write(" This is not a prime Number! ");
}
}
}
... but i cannot get this program to display the correct answer. Any help would be greatly appreciated. Thanks!
You have got the concept of prime numbers wrong. Your code would for example report that 3 is not a prime number, because you check if the number divides evenly in three even if the number entered is three.
The simplest solution would be to loop from 2 and up to primeNumber1 - 1 and check if any of those divides evenly with the number. As you are using a loop, you also need a variable to hold what the result was, as you don't have a single expression that returns the result.
Something like:
bool prime = true;
for (int i = 2; i <= primeNumber1 - 1; i++) {
if (primeNumber1 % i == 0) {
prime = false;
}
}
This is of course the simplest possible solution that solves the problem, for reasonably small numbers. You can for example improve on the solution by exiting out of the loop as soon as you know that it's not a prime number.
You also don't need to loop all the way to primeNumber1 - 1, but only as high as the square root of the number, but you can find out about that if you read up on methods for checking prime numbers.
You need to handle the special cases of 1 and 2 also. By definition 1 is not a prime number, but 2 is.
http://en.wikipedia.org/wiki/Prime_number
bool IsPrime(int number) {
if (number == 1) return false;
if (number == 2) return true;
for (int i = 2; i < number; ++i) {
if (number % i == 0) return false;
}
return true;
}
A little google-fu or a little navel-gazing about prime numbers in general, will lead you to the naive algorithm:
For all n such that 0 < n:
There are two "special case" prime numbers, 1 and 2.
All even numbers > 2 are non-prime, by definition
If you think about the nature of factoring, the largest possible factor you have to consider is the square root of n, since above that point, the factors are reflexive (i.e., the possible factorizations of 100 are 1*100 , 2*50 , 4*25 , 5*20 , 10*10 , 20*5 , 25*4, 50*2 and 100*1 — and the square root of 100 is...10).
That should lead you to an implementation that looks something like this:
static bool IsPrime( int n )
{
if ( n < 1 ) throw new ArgumentOutOfRangeException("n") ;
bool isPrime = true ;
if ( n > 2 )
{
isPrime = ( 0 != n & 0x00000001 ) ; // eliminate all even numbers
if ( isPrime )
{
int limit = (int) Math.Sqrt(n) ;
for ( int i = 3 ; i <= limit && isPrime ; i += 2 )
{
isPrime = ( 0 != n % i ) ;
}
}
}
return isPrime ;
}
Anytime you find yourself in programming repeating a test on a sequential range of numbers you're doing the wrong thing. A better construct for this is a loop. This will give you the range of numbers in an identifier which can then be used to write the repetive code one time. For example I could rewrite this code
primeNumber1 % 2 == 0 &
primeNumber1 % 3 == 0 &
primeNumber1 % 4 == 0 &
primeNumber1 % 5 == 0 &
primeNumber1 % 6 == 0 &
primeNumber1 % 7 == 0 &
primeNumber1 % 8 == 0 &
primeNumber1 % 9 == 0))
As follows
bool anyFactors = false;
for (int i = 2; i <= 9; i++) {
if (primeNumber1 % i != 0) {
anyFactors = true;
break;
}
}
At this point I can now substitute the value allTrue for the original condition you wrote.
if (primeNumber1 % 1 == 0 && !anyFactors)
I can also expand the number of values tested here by substiting a different number for the conditional check of the loop. If I wanted to check 999 values I would instead write
for (int i = 2; i <= 999; i++) {
...
}
Additionally you don't want to use & in this scenario. That is for bit level and operations. You are looking for the logical and operator &&
Try the code below:
bool isPrimeNubmer(int n)
{
if (n >=0 && n < 4) //1, 2, 3 are prime numbers
return true;
else if (n % 2 == 0) //even numbers are not prime numbers
return false;
else
{
int j = 3;
int k = (n + 1) / 2 ;
while (j <= k)
{
if (n % j == 0)
return false;
j = j + 2;
}
return true;
}
}
This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
How to check if a number is a power of 2
I want to determine if a number is in
1
2
4
8
16
32
64
128
256
512
1024
2048
4096
8192
16384
...
I tried this:
public static void Main(string[] args)
{
int result = 1;
for (int i = 0; i < 15; i++)
{
//Console.WriteLine(result);
Console.WriteLine(result % 2);
result *= 2;
}
}
As you can see it returns
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...
How should I efficiently make the above print to be 0 for all of them including 1?
The following expression should be true if i is in your sequence.
(i & (i-1)) == 0)
http://rextester.com/JRH41036
How about something like this?
bool IsInBinarySequence( int number ){
var numbertocheck = 1;
do{
if( number == numbertocheck ) return true;
numbertocheck *= 2;
}while( numbertocheck <= number );
return false;
}
This has no specific limit on the number to check, but makes sure it stops checking if the number to check grows larger than the actual number we're trying to decide if is in the binary sequence.
Since the first time result is odd, you will get 1, since right after that you multiply it by 2, you will always get 0.
You need to print result if you want to get the list of powers of 2.
Console.WriteLine(result);
A primitive way to do that will be:
public static void Main(string[] args)
{
int result = 1;
int numToCheck = 141234;
boolean found = false;
for (int i = 0; i < 15; i++)
{
if (numToCheck == result) {
found = true;
break;
}
result *= 2;
}
if(found) Console.WriteLine("Awesome");
}
You can determine if a number is a power of 2 (including 2^0) by using the following method:
public bool IsPowerOfTwo(int x) {
return (x > 0) && ((x & (x - 1)) == 0)
}
Over here you can read why and how this works.
It's a bit of a hack, but this works ...
static void Main()
{
for (int i = 0; i < 40; i++)
{
var str = Convert.ToString(i, 2);
var bitCount = str.Count(c => c == '1');
Console.ForegroundColor = bitCount == 1 ? ConsoleColor.White : ConsoleColor.DarkGray;
Console.WriteLine(i + ": " + (bitCount == 1));
}
}
it seems you're actually asking if only one bit in the binary representation of the number is a 1
What you is not a test whether the number is in the sequence BUT it is a generator for such numbers... only the print part is containing some sort of a test...
Try this code for a test:
public static void Main(string[] args)
{
int result = 0;
int numToTest = 0;
if ( int.TryParse (args[0], out numToTest) )
{
result = ((from c in Convert.ToString (numToTest, 2) where c == '1' select c).Count() == 1 ) ? 1 : 0;
}
Console.WriteLine(result);
}
The above code takes a commandline argument and tests it for being in the binary sequence according to the criterion you posted... if so it prints 1, otherwise it prints 0.
Thats correct. 1 0 0 0 0 0 is the correct sequence.
Result is 1 in the first loop. 1 % 2 is 1.
Then result *= 2 gives result the value 2. In the next loop run 2 % 2 = 0. Then result *= 2 is 4. 4%2 is 0. 4 *= 2 is 8. 8 %2 is 0. Since result is always multiplied with 2 it keeps to be in the powers of 2 row and thus als MOD operations with 2 result to 0. So all is fine with that code.
your code will print only Binary sequences. as you are applying MOD 2 . so either you will get 0 or 1 . so it will be print in Binary Sequence.
Boolean result = false;
Int32 numberToTest = 64;
Int32 limit = 15;
for (int i = 0; i < limit && !result; i++)
{
if (Math.Pow(2, i).Equals(numberToTest))
{
result = true;
}
}
Console.WriteLine(String.Format("Number {0} {1} a power of 2.", numberToTest, result ? "is" : "is not"));
In C#, what's the best way to get the 1st digit in an int? The method I came up with is to turn the int into a string, find the 1st char of the string, then turn it back to an int.
int start = Convert.ToInt32(curr.ToString().Substring(0, 1));
While this does the job, it feels like there is probably a good, simple, math-based solution to such a problem. String manipulation feels clunky.
Edit: irrespective of speed differences, mystring[0] instead of Substring() is still just string manipulation
Benchmarks
Firstly, you must decide on what you mean by "best" solution, of course that takes into account the efficiency of the algorithm, its readability/maintainability, and the likelihood of bugs creeping up in the future. Careful unit tests can generally avoid those problems, however.
I ran each of these examples 10 million times, and the results value is the number of ElapsedTicks that have passed.
Without further ado, from slowest to quickest, the algorithms are:
Converting to a string, take first character
int firstDigit = (int)(Value.ToString()[0]) - 48;
Results:
12,552,893 ticks
Using a logarithm
int firstDigit = (int)(Value / Math.Pow(10, (int)Math.Floor(Math.Log10(Value))));
Results:
9,165,089 ticks
Looping
while (number >= 10)
number /= 10;
Results:
6,001,570 ticks
Conditionals
int firstdigit;
if (Value < 10)
firstdigit = Value;
else if (Value < 100)
firstdigit = Value / 10;
else if (Value < 1000)
firstdigit = Value / 100;
else if (Value < 10000)
firstdigit = Value / 1000;
else if (Value < 100000)
firstdigit = Value / 10000;
else if (Value < 1000000)
firstdigit = Value / 100000;
else if (Value < 10000000)
firstdigit = Value / 1000000;
else if (Value < 100000000)
firstdigit = Value / 10000000;
else if (Value < 1000000000)
firstdigit = Value / 100000000;
else
firstdigit = Value / 1000000000;
Results:
1,421,659 ticks
Unrolled & optimized loop
if (i >= 100000000) i /= 100000000;
if (i >= 10000) i /= 10000;
if (i >= 100) i /= 100;
if (i >= 10) i /= 10;
Results:
1,399,788 ticks
Note:
each test calls Random.Next() to get the next int
Here's how
int i = Math.Abs(386792);
while(i >= 10)
i /= 10;
and i will contain what you need
Try this
public int GetFirstDigit(int number) {
if ( number < 10 ) {
return number;
}
return GetFirstDigit ( (number - (number % 10)) / 10);
}
EDIT
Several people have requested the loop version
public static int GetFirstDigitLoop(int number)
{
while (number >= 10)
{
number = (number - (number % 10)) / 10;
}
return number;
}
The best I can come up with is:
int numberOfDigits = Convert.ToInt32(Math.Floor( Math.Log10( value ) ) );
int firstDigit = value / Math.Pow( 10, numberOfDigits );
variation on Anton's answer:
// cut down the number of divisions (assuming i is positive & 32 bits)
if (i >= 100000000) i /= 100000000;
if (i >= 10000) i /= 10000;
if (i >= 100) i /= 100;
if (i >= 10) i /= 10;
int myNumber = 8383;
char firstDigit = myNumber.ToString()[0];
// char = '8'
Had the same idea as Lennaert
int start = number == 0 ? 0 : number / (int) Math.Pow(10,Math.Floor(Math.Log10(Math.Abs(number))));
This also works with negative numbers.
If you think Keltex's answer is ugly, try this one, it's REALLY ugly, and even faster.
It does unrolled binary search to determine the length.
... leading code along the same lines
/* i<10000 */
if (i >= 100){
if (i >= 1000){
return i/1000;
}
else /* i<1000 */{
return i/100;
}
}
else /* i<100*/ {
if (i >= 10){
return i/10;
}
else /* i<10 */{
return i;
}
}
P.S. MartinStettner had the same idea.
Very simple (and probably quite fast because it only involves comparisons and one division):
if(i<10)
firstdigit = i;
else if (i<100)
firstdigit = i/10;
else if (i<1000)
firstdigit = i/100;
else if (i<10000)
firstdigit = i/1000;
else if (i<100000)
firstdigit = i/10000;
else (etc... all the way up to 1000000000)
An obvious, but slow, mathematical approach is:
int firstDigit = (int)(i / Math.Pow(10, (int)Math.Log10(i))));
int temp = i;
while (temp >= 10)
{
temp /= 10;
}
Result in temp
I know it's not C#, but it's surprising curious that in python the "get the first char of the string representation of the number" is the faster!
EDIT: no, I made a mistake, I forgot to construct again the int, sorry. The unrolled version it's the fastest.
$ cat first_digit.py
def loop(n):
while n >= 10:
n /= 10
return n
def unrolled(n):
while n >= 100000000: # yea... unlimited size int supported :)
n /= 100000000
if n >= 10000:
n /= 10000
if n >= 100:
n /= 100
if n >= 10:
n /= 10
return n
def string(n):
return int(str(n)[0])
$ python -mtimeit -s 'from first_digit import loop as test' \
'for n in xrange(0, 100000000, 1000): test(n)'
10 loops, best of 3: 275 msec per loop
$ python -mtimeit -s 'from first_digit import unrolled as test' \
'for n in xrange(0, 100000000, 1000): test(n)'
10 loops, best of 3: 149 msec per loop
$ python -mtimeit -s 'from first_digit import string as test' \
'for n in xrange(0, 100000000, 1000): test(n)'
10 loops, best of 3: 284 msec per loop
$
I just stumbled upon this old question and felt inclined to propose another suggestion since none of the other answers so far returns the correct result for all possible input values and it can still be made faster:
public static int GetFirstDigit( int i )
{
if( i < 0 && ( i = -i ) < 0 ) return 2;
return ( i < 100 ) ? ( i < 1 ) ? 0 : ( i < 10 )
? i : i / 10 : ( i < 1000000 ) ? ( i < 10000 )
? ( i < 1000 ) ? i / 100 : i / 1000 : ( i < 100000 )
? i / 10000 : i / 100000 : ( i < 100000000 )
? ( i < 10000000 ) ? i / 1000000 : i / 10000000
: ( i < 1000000000 ) ? i / 100000000 : i / 1000000000;
}
This works for all signed integer values inclusive -2147483648 which is the smallest signed integer and doesn't have a positive counterpart. Math.Abs( -2147483648 ) triggers a System.OverflowException and - -2147483648 computes to -2147483648.
The implementation can be seen as a combination of the advantages of the two fastest implementations so far. It uses a binary search and avoids superfluous divisions. A quick benchmark with the index of a loop with 100,000,000 iterations shows that it is twice as fast as the currently fastest implementation.
It finishes after 2,829,581 ticks.
For comparison I also measured a corrected variant of the currently fastest implementation which took 5,664,627 ticks.
public static int GetFirstDigitX( int i )
{
if( i < 0 && ( i = -i ) < 0 ) return 2;
if( i >= 100000000 ) i /= 100000000;
if( i >= 10000 ) i /= 10000;
if( i >= 100 ) i /= 100;
if( i >= 10 ) i /= 10;
return i;
}
The accepted answer with the same correction needed 16,561,929 ticks for this test on my computer.
public static int GetFirstDigitY( int i )
{
if( i < 0 && ( i = -i ) < 0 ) return 2;
while( i >= 10 )
i /= 10;
return i;
}
Simple functions like these can easily be proven for correctness since iterating all possible integer values takes not much more than a few seconds on current hardware. This means that it is less important to implement them in a exceptionally readable fashion as there simply won't ever be the need to fix a bug inside them later on.
Did some tests with one of my co-workers here, and found out most of the solutions don't work for numbers under 0.
public int GetFirstDigit(int number)
{
number = Math.Abs(number); <- makes sure you really get the digit!
if (number < 10)
{
return number;
}
return GetFirstDigit((number - (number % 10)) / 10);
}
Using all the examples below to get this code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics;
namespace Benfords
{
class Program
{
static int FirstDigit1(int value)
{
return Convert.ToInt32(value.ToString().Substring(0, 1));
}
static int FirstDigit2(int value)
{
while (value >= 10) value /= 10;
return value;
}
static int FirstDigit3(int value)
{
return (int)(value.ToString()[0]) - 48;
}
static int FirstDigit4(int value)
{
return (int)(value / Math.Pow(10, (int)Math.Floor(Math.Log10(value))));
}
static int FirstDigit5(int value)
{
if (value < 10) return value;
if (value < 100) return value / 10;
if (value < 1000) return value / 100;
if (value < 10000) return value / 1000;
if (value < 100000) return value / 10000;
if (value < 1000000) return value / 100000;
if (value < 10000000) return value / 1000000;
if (value < 100000000) return value / 10000000;
if (value < 1000000000) return value / 100000000;
return value / 1000000000;
}
static int FirstDigit6(int value)
{
if (value >= 100000000) value /= 100000000;
if (value >= 10000) value /= 10000;
if (value >= 100) value /= 100;
if (value >= 10) value /= 10;
return value;
}
const int mcTests = 1000000;
static void Main(string[] args)
{
Stopwatch lswWatch = new Stopwatch();
Random lrRandom = new Random();
int liCounter;
lswWatch.Start();
for (liCounter = 0; liCounter < mcTests; liCounter++)
FirstDigit1(lrRandom.Next());
lswWatch.Stop();
Console.WriteLine("Test {0} = {1} ticks", 1, lswWatch.ElapsedTicks);
lswWatch.Reset();
lswWatch.Start();
for (liCounter = 0; liCounter < mcTests; liCounter++)
FirstDigit2(lrRandom.Next());
lswWatch.Stop();
Console.WriteLine("Test {0} = {1} ticks", 2, lswWatch.ElapsedTicks);
lswWatch.Reset();
lswWatch.Start();
for (liCounter = 0; liCounter < mcTests; liCounter++)
FirstDigit3(lrRandom.Next());
lswWatch.Stop();
Console.WriteLine("Test {0} = {1} ticks", 3, lswWatch.ElapsedTicks);
lswWatch.Reset();
lswWatch.Start();
for (liCounter = 0; liCounter < mcTests; liCounter++)
FirstDigit4(lrRandom.Next());
lswWatch.Stop();
Console.WriteLine("Test {0} = {1} ticks", 4, lswWatch.ElapsedTicks);
lswWatch.Reset();
lswWatch.Start();
for (liCounter = 0; liCounter < mcTests; liCounter++)
FirstDigit5(lrRandom.Next());
lswWatch.Stop();
Console.WriteLine("Test {0} = {1} ticks", 5, lswWatch.ElapsedTicks);
lswWatch.Reset();
lswWatch.Start();
for (liCounter = 0; liCounter < mcTests; liCounter++)
FirstDigit6(lrRandom.Next());
lswWatch.Stop();
Console.WriteLine("Test {0} = {1} ticks", 6, lswWatch.ElapsedTicks);
Console.ReadLine();
}
}
}
I get these results on an AMD Ahtlon 64 X2 Dual Core 4200+ (2.2 GHz):
Test 1 = 2352048 ticks
Test 2 = 614550 ticks
Test 3 = 1354784 ticks
Test 4 = 844519 ticks
Test 5 = 150021 ticks
Test 6 = 192303 ticks
But get these on a AMD FX 8350 Eight Core (4.00 GHz)
Test 1 = 3917354 ticks
Test 2 = 811727 ticks
Test 3 = 2187388 ticks
Test 4 = 1790292 ticks
Test 5 = 241150 ticks
Test 6 = 227738 ticks
So whether or not method 5 or 6 is faster depends on the CPU, I can only surmise this is because the branch prediction in the command processor of the CPU is smarter on the new processor, but I'm not really sure.
I dont have any Intel CPUs, maybe someone could test it for us?
Check this one too:
int get1digit(Int64 myVal)
{
string q12 = myVal.ToString()[0].ToString();
int i = int.Parse(q12);
return i;
}
Also good if you want multiple numbers:
int get3digit(Int64 myVal) //Int64 or whatever numerical data you have
{
char mg1 = myVal.ToString()[0];
char mg2 = myVal.ToString()[1];
char mg3 = myVal.ToString()[2];
char[] chars = { mg1, mg2, mg3 };
string q12= new string(chars);
int i = int.Parse(q12);
return i;
}
while (i > 10)
{
i = (Int32)Math.Floor((Decimal)i / 10);
}
// i is now the first int
Non iterative formula:
public static int GetHighestDigit(int num)
{
if (num <= 0)
return 0;
return (int)((double)num / Math.Pow(10f, Math.Floor(Math.Log10(num))));
}
Just to give you an alternative, you could repeatedly divide the integer by 10, and then rollback one value once you reach zero. Since string operations are generally slow, this may be faster than string manipulation, but is by no means elegant.
Something like this:
while(curr>=10)
curr /= 10;
start = getFirstDigit(start);
public int getFirstDigit(final int start){
int number = Math.abs(start);
while(number > 10){
number /= 10;
}
return number;
}
or
public int getFirstDigit(final int start){
return getFirstDigit(Math.abs(start), true);
}
private int getFirstDigit(final int start, final boolean recurse){
if(start < 10){
return start;
}
return getFirstDigit(start / 10, recurse);
}
int start = curr;
while (start >= 10)
start /= 10;
This is more efficient than a ToString() approach which internally must implement a similar loop and has to construct (and parse) a string object on the way ...
Very easy method to get the Last digit:
int myInt = 1821;
int lastDigit = myInt - ((myInt/10)*10); // 1821 - 1820 = 1
int i = 4567789;
int digit1 = int.Parse(i.ToString()[0].ToString());
This is what I usually do ,please refer my function below :
This function can extract first number occurance from any string you can modify and use this function according to your usage
public static int GetFirstNumber(this string strInsput)
{
int number = 0;
string strNumber = "";
bool bIsContNo = true;
bool bNoOccued = false;
try
{
var arry = strInsput.ToCharArray(0, strInsput.Length - 1);
foreach (char item in arry)
{
if (char.IsNumber(item))
{
strNumber = strNumber + item.ToString();
bIsContNo = true;
bNoOccued = true;
}
else
{
bIsContNo = false;
}
if (bNoOccued && !bIsContNo)
{
break;
}
}
number = Convert.ToInt32(strNumber);
}
catch (Exception ex)
{
return 0;
}
return number;
}
public static int GetFirstDigit(int n, bool removeSign = true)
{
if (removeSign)
return n <= -10 || n >= 10 ? Math.Abs(n) % 10 : Math.Abs(n);
else
return n <= -10 || n >= 10 ? n % 10 : n;
}
//Your code goes here
int[] test = new int[] { -1574, -221, 1246, -4, 8, 38546};
foreach(int n in test)
Console.WriteLine(string.Format("{0} : {1}", n, GetFirstDigit(n)));
Output:
-1574 : 4
-221 : 1
1246 : 6
-4 : 4
8 : 8
38546 : 6
Here is a simpler way that does not involve looping
int number = 1234
int firstDigit = Math.Floor(number/(Math.Pow(10, number.ToString().length - 1))
That would give us 1234/Math.Pow(10, 4 - 1) = 1234/1000 = 1