So I can't say for sure this is the issue but I'm just about positive it is. I have a recordset of IVR calls to make. I put the data for each one in a concurrent queue and start 5 background workers to start working from the queue. However, after making 2 calls, the calls stop coming until one person hangs up, then it moves on to call number 3,4,5 etc. Are the any issues with this code?
It seems like the background workers are blocking eachother from calling the same method...? Is that possible?
private ConcurrentQueue<DataTable> _ivrCallsQueue = new ConcurrentQueue<DataTable>();
private List<BackgroundWorker> _ivrCallers = new List<BackgroundWorker>();
public overrid void Process()
{
foreach(DataRow row in _tblRecordsToProcess.Rows)
{
_workingActionItem = actionItemDAL.GetActionItemFromId(Convert.ToInt32(row["FNActionItemId"].ToString()));
var workingActionItemsTable = actionItemDAL.GetActionItemParamValues(Convert.ToInt32(row["FNActionItemId"].ToString()));
ivrCallsQueue.Enqueue(workingActionItemsTable);
}
StartCalls();
while (_ivrCallers.Count != 0)
{
testurls = testurls;
}
}
private void StartCalls()
{
int maxLines = 5;
if (_ivrCallsQueue.Count < maxLines)
{
maxLines = _ivrCallsQueue.Count;
}
for (int i = 0; i < maxLines; i++)
{
DataTable workingCall = new DataTable();
_ivrCallsQueue.TryDequeue(out workingCall);
BackgroundWorker ivrCaller = new BackgroundWorker();
_ivrCallers.Add(ivrCaller);
ivrCaller.DoWork += delegate(object sender, DoWorkEventArgs e)
{
RequestIVR(workingCall, Convert.ToInt32(workingCall.Rows[2][0].ToString()));
_ivrCallers.Remove(ivrCaller);
};
ivrCaller.RunWorkerCompleted += (bw_AnalyzeResults);
ivrCaller.RunWorkerAsync();
}
}
private void bw_AnalyzeResults(object sender, RunWorkerCompletedEventArgs e)
{
DataTable workingCall = new DataTable();
if (_ivrCallsQueue.Count != 0)
{
_ivrCallsQueue.TryDequeue(out workingCall);
BackgroundWorker ivrCaller = new BackgroundWorker();
ivrCaller.DoWork += delegate(object completeSender, DoWorkEventArgs completeArgs)
{
RequestIVR(workingCall, Convert.ToInt32(workingCall.Rows[2][0].ToString()));
_ivrCallers.Remove(ivrCaller);
};
ivrCaller.RunWorkerCompleted += (bw_AnalyzeResults);
ivrCaller.RunWorkerAsync();
}
else
{
}
}
private void RequestIVR(DataTable workingTable,int fnActionItemID)
{
var urlRequest = "http://uccx_http_trigger:9080/test?strTestMode=1&strTaskID=" + fnActionItemID;
var webClient = new WebClient { UseDefaultCredentials = true, Proxy = WebRequest.DefaultWebProxy };
DecodeResponseType(GetValueFromElement("Response Code was ", webClient.DownloadString(urlRequest)));
}
This will spawn at most five threads that each attempt to pull the next item from the queue and process it. If the queue is empty the attempt will fail and the thread will simply exit:
private List<System.Threading.Thread> Threads = new List<System.Threading.Thread>();
private ConcurrentQueue<DataTable> _ivrCallsQueue = new ConcurrentQueue<DataTable>();
private void StartCalls()
{
int maxLines = Math.Min(5 , _ivrCallsQueue.Count);
for (int i = 0; i < maxLines; i++ )
{
System.Threading.Thread T = new System.Threading.Thread(delegate()
{
DataTable workingCall;
while (_ivrCallsQueue.TryDequeue(out workingCall))
{
RequestIVR(workingCall, Convert.ToInt32(workingCall.Rows[2][0].ToString()));
}
});
Threads.Add(T);
T.Start();
}
}
The threads will keep running until all the items have been processed.
It looks like bw_AnalyzeResults does pretty much the same thing that StartCalls() does. In other words, when the background worker has finished its work, you immediately enqueue the same work to happen again, recursively forever?
By the looks of it, you want bw_AnalyzeResults to analyze the results returned by calling your web service. That is not what is happening at the moment.
The code below taken from the bw_AnalyzeResults event handler is scheduling a background job and making itself handle the RunWorkerCompleted event. So, presumably the software keeps going around and around executing bw_AnalyzeResults forever until you kill the process?
private void bw_AnalyzeResults(object sender, RunWorkerCompletedEventArgs e)
{
ivrCaller.DoWork += delegate(object completeSender, DoWorkEventArgs completeArgs)
{
RequestIVR(workingCall, Convert.ToInt32(workingCall.Rows[2][0].ToString()));
_ivrCallers.Remove(ivrCaller);
};
ivrCaller.RunWorkerCompleted += (bw_AnalyzeResults);
}
Related
I would like to start a new thread in a for loop, then create a WebBrowser control in each thread, load a page, then do some HTML analysis. I tried to use the DocumentCompleted event, but it's never got hit. The threads seems starting properly, navigation too, but the event never fires. What's wrong with my baby?
public async void Roller2()
{
for (int i = 1; i <= 1000; i++)
{
Thread myThread = new Thread(() => this.Wrapper(i));
myThread.SetApartmentState(ApartmentState.STA);
myThread.Start();
await Task.Delay(1000);
}
}
public void Wrapper(int id)
{
ReadAsync(id);
}
public void ReadAsync(int ids)
{
WebBrowser website = new WebBrowser();
website.AllowNavigation = true;
website.ScriptErrorsSuppressed = true;
website.Navigate("http://www.someurl.com/id/" + ids.ToString());
website.DocumentCompleted += new WebBrowserDocumentCompletedEventHandler(webBrowser_DocumentCompleted);
}
void webBrowser_DocumentCompleted(object sender, WebBrowserDocumentCompletedEventArgs e)
{
//Do some analysis on sender as WebBrowser
}
I am trying to read data from my USB buffer. However when I read data from the buffer I have to perform some operation on this data, and this takes time. In the mean time the external device observes that the buffer is full and stops writing data. I need to overcome this situation. THe processing involves reading the array and some UI operations , so I though I could put the entire operation of reading data into a background thread and read the data once the background thread has completed operation
BackgroundWorker bw = new BackgroundWorker();
// this allows our worker to report progress during work
bw.WorkerReportsProgress = true;
// what to do in the background thread
bw.DoWork += new DoWorkEventHandler(
delegate(object o, DoWorkEventArgs args)
{
BackgroundWorker b = o as BackgroundWorker;
// do some simple processing for 10 seconds
for (int i = 1; i <= 10; i++)
{
// report the progress in percent
b.ReportProgress(i * 10);
Thread.Sleep(1000);
}
//I have to keep reading from the buffer here
});
// what to do when progress changed (update the progress bar for example)
bw.ProgressChanged += new ProgressChangedEventHandler(
delegate(object o, ProgressChangedEventArgs args)
{
label1.Text = string.Format("{0}% Completed", args.ProgressPercentage);
});
// what to do when worker completes its task (notify the user)
bw.RunWorkerCompleted += new RunWorkerCompletedEventHandler(
delegate(object o, RunWorkerCompletedEventArgs args)
{
label1.Text = "Finished!";
//I have to use the data from the buffer here
});
bw.RunWorkerAsync();
But even with this approach I still am not reading the buffer continously since only after the operation on the UI completes can I call the background worker again. Is there any way to continously read the buffer(like into a large 2d array) and keep notifying me when each 1d array of the buffer is full? The main idea is the task in the worker should not be stopped, however I still need to get the data from the worker task(know that it has completed). What would be the best way to achieve this?
Maybe in your case using the following class would come handy :
public class BackgroundTimer : BackgroundWorker
{
private ManualResetEvent intervalManualReset;
private enum ProcessStatus { Created, Running, JobCompleted, ExceptionOccured };
private ProcessStatus processStatus = new ProcessStatus();
public int Interval { get; set; }
public BackgroundTimer()
{
this.processStatus = ProcessStatus.Created;
this.WorkerSupportsCancellation = true;
this.Interval = 1000;
}
protected override void OnRunWorkerCompleted(RunWorkerCompletedEventArgs e)
{
base.OnRunWorkerCompleted(e);
if (processStatus == ProcessStatus.ExceptionOccured)
// Log : Process stopped;
processStatus = ProcessStatus.JobCompleted;
}
protected override void OnDoWork(DoWorkEventArgs e)
{
while (!this.CancellationPending)
{
try
{
base.OnDoWork(e);
this.Sleep();
}
catch (Exception exception)
{
//Log excepption;
this.processStatus = ProcessStatus.ExceptionOccured;
this.Stop();
}
}
if (e != null)
e.Cancel = true;
}
public void Start()
{
this.processStatus = ProcessStatus.Running;
if (this.IsBusy)
return;
this.intervalManualReset = new ManualResetEvent(false);
this.RunWorkerAsync();
}
public void Stop()
{
this.CancelAsync();
this.WakeUp();
this.Dispose(true);
}
public void WakeUp()
{
if (this.intervalManualReset != null)
this.intervalManualReset.Set();
}
private void Sleep()
{
if (this.intervalManualReset != null)
{
this.intervalManualReset.Reset();
this.intervalManualReset.WaitOne(this.Interval);
}
}
public void Activate()
{
if (!this.IsBusy)
// Log : Process activated.
this.Start();
}
}
EDIT :
Usage :
private void InitializeThread()
{
var timer = new BackgroundTimer();
timer.Interval = 1000; // sleep 1 second between each iteration.
timer.DoWork += timer_DoWork;
timer.Start();
}
void timer_DoWork(object sender, DoWorkEventArgs e)
{
// your desired operation.
}
I hope it helps.
I think the title speaks for itself. Simply I have some threads that run with a random order instead of the order I planned.
This is a sample code:
event strHandler strChanged;
delegate void strHandler(string str);
public Form1()
{
InitializeComponent();
strChanged += new strHandler(updatestr);
}
public void updatestr(string str)
{
Thread th = new Thread(new ParameterizedThreadStart(updatethr));
th.IsBackground = true;
th.Start(str);
}
object obj = new object();
private void updatethr(object str)
{
lock (obj)
{
SystemUtilities.SetControlPropertyThreadSafe(textBox1, "Text", (string)str);
Thread.Sleep(1000);
}
}
private void button1_Click(object sender, EventArgs e)
{
this.Text = write();
}
private string write()
{
string res = "";
strChanged(res);
for (int i = 0; i <= 5; i++)
{
res += i.ToString();
strChanged(res);
}
return res;
}
Note: SystemUtilities.SetControlPropertyThreadSafe(textBox1, "Text", (string)str) is a function (used to avoid cross thread exception) that set textBox1.Text to str.
When you press button1 this.Text will be set instantly to the result of write() function ("012345").
The string returned is res that is build inside write() starting from an empty string and, iteratively, appending numbers from 0 to 5.
When the string is created and for each number added to res, the event strChanged is raised calling updatestr method.
Every time that updatestr is called a thread is created and it starts calling updatethr.
Here textBox1.Text is set to str (that should be progressively "", "0" , "01", "012", "0123", "01234", "012345") and wait a second before exiting the method.
Using lock statement the threads created in updatestr should wait the end of the previous threads before modifying textBox1.Text.
Running this code I obtain sequences of values for textBox1.Text that don't match the expected sequence as if the threads don't start in order with their creation in updatestr.
Why does this happen? How can I fix that? Thanks in advance!
EDIT: If want to try this code you can replace SystemUtilities.SetControlPropertyThreadSafe(textBox1, "Text", (string)str) with System.Windows.Forms.MessageBox.Show(str)
I believe you are looking for a different threading strategy. It appears you need a single thread, to maintain order, that's different from the Form's main thread to finish an operation. By using a BlockingCollection, you can sequentially have a different thread operate on the string.
I would rewrite the code this way:
event strHandler strChanged;
delegate void strHandler(string str);
public Form1()
{
InitializeComponent();
Thread th = new Thread(new ThreadStart(updatethr));
th.IsBackground = true;
th.Start();
strChanged += new strHandler(updatestr);
}
BlockingCollection<string> bc = new BlockingCollection<string>();
public void updatestr(string str)
{
bc.Add(str);
}
private void updatethr()
{
while(true)
{
string str = bc.Take();
SystemUtilities.SetControlPropertyThreadSafe(textBox1, "Text", (string)str);
// Not sure why you need this here, other than simulating a long operation.
// Thread.Sleep(1000);
}
}
private void button1_Click(object sender, EventArgs e)
{
this.Text = write();
}
private string write()
{
string res = "";
strChanged(res);
for (int i = 0; i <= 5; i++)
{
res += i.ToString();
strChanged(res);
}
return res;
}
I found a few examples on the internet but I'm having a hard time trying to run my async call inside a background worker. I'm working in WP8. What's missing?
Edit: The purpose of this is to update the values I'm reading from time to time. Let's say 1s.
Here is my async code, it just gets and stores some data in providers []:
public void getAllProvidersMethod()
{
try
{
sc.getAllProvidersCompleted += new EventHandler<ServiceReference1.getAllProvidersCompletedEventArgs>(callback);
sc.getAllProvidersAsync();
}
catch (System.Exception e)
{
MessageBox.Show(e.ToString());
}
}
public void callback(object sender, ServiceReference1.getAllProvidersCompletedEventArgs e)
{
try
{
providers = new String[e.Result.Length];
for (int i = 0; i < e.Result.Length; i++)
{
providers[i] = e.Result[i].ToString();
}
}
catch (System.Exception d)
{
MessageBox.Show(d.ToString());
}
}
This is my background worker:
private void networkWorker()
{
var obj = App.Current as App;
BackgroundWorker bw = new BackgroundWorker();
bw.DoWork += new DoWorkEventHandler(
delegate(object o, DoWorkEventArgs args)
{
BackgroundWorker b = o as BackgroundWorker;
getAllProvidersMethod();
});
bw.RunWorkerCompleted += new RunWorkerCompletedEventHandler(
delegate(object o, RunWorkerCompletedEventArgs args)
{
MessageBox.Show(" ");
});
bw.RunWorkerAsync();
}
Ok I managed to get it working!
For anyone that wants to run some async code automatically from time to time, forget about backgroundworkers, what you are looking for is a Timer.
Thank you Servy for the Timer hint.
Let's say I want to call asyncCall for each 5 seconds.
It's very simple. First define how long is your wait time between calls (how long you want it to wait before calling the same code again).
System.Windows.Threading.DispatcherTimer dt = new System.Windows.Threading.DispatcherTimer();
dt.Interval = new TimeSpan(0, 0, 0, 0, 5000); // HERE - for example 5000 is 5 seconds
dt.Tick += new EventHandler(dt_Tick);
dt.Start();
And then all you need is to write the code you want to repeat inside this method:
void dt_Tick(object sender, EventArgs e)
{
asyncCall();
}
In this case for each 5 seconds it will call asyncCall.
I'm stuck trying to update a progressbar from other threads ran in a different class. To explain what I do I think a picture will be better. I want to update the progressbar in the //HERE point :
I've tried using a delegate, tried with ReportProgress and I think i've basically tried to use everything google reported in the first 100 results, without success. I'm still learning WPF and this might be silly way to proceed, i'm looking for a quick and dirty way to get the work done but feel free to tell me what I should redesign for a cleaner application.
EDIT : More code.
In ExecutorWindow.xaml.cs :
public void RunExecutor()
{
// CREATE BACKGROUNDWORKER FOR EXECUTOR
execBackground.DoWork += new DoWorkEventHandler(execBackground_DoWork);
execBackground.RunWorkerCompleted += new RunWorkerCompletedEventHandler(execBackground_RunWorkerCompleted);
execBackground.ProgressChanged += new ProgressChangedEventHandler(execBackground_ProgressChanged);
execBackground.WorkerReportsProgress = true;
execBackground.WorkerSupportsCancellation = true;
// RUN BACKGROUNDWORKER
execBackground.RunWorkerAsync();
}
private void execBackground_DoWork(object sender, DoWorkEventArgs e)
{
myExecutor = new Executor(arg1, arg2);
myExecutor.Run();
}
private void execBackground_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
MessageBox.Show("RunWorkerCompleted execBackground");
}
private void execBackground_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
ExecutorProgressBar.Value += 1;
}
// TESTING
private void updateProgressBar(int i)
{
ExecutorProgressBar.Value += i;
}
public delegate void callback_updateProgressBar(int i);
In Executor.cs :
public void Run()
{
string[] options = new string[2];
int i = 0;
while (LeftToRun > 0)
{
if (CurrentRunningThreads < MaxThreadsRunning)
{
BackgroundWorker myThread = new BackgroundWorker();
myThread.DoWork += new DoWorkEventHandler(backgroundWorkerRemoteProcess_DoWork);
myThread.RunWorkerCompleted += new RunWorkerCompletedEventHandler(backgroundWorkerRemoteProcess_RunWorkerCompleted);
myThread.ProgressChanged += new ProgressChangedEventHandler(backgroundWorkerRemoteProcess_ProgressChanged);
myThread.WorkerReportsProgress = true;
myThread.WorkerSupportsCancellation = true;
myThread.RunWorkerAsync(new string[2] {opt1, opt2});
// HERE ?
CurrentRunningThreads++;
i++;
LeftToRun--;
}
}
while (CurrentRunningThreads > 0) { }
logfile.Close();
MessageBox.Show("All Tasks finished");
}
private void backgroundWorkerRemoteProcess_DoWork(object sender, DoWorkEventArgs e)
{
BackgroundWorker myBackgroundWorker = sender as BackgroundWorker;
string[] options = (string[])e.Argument;
string machine = options[0];
string script = options[1];
// UPDATE HERE PROGRESSBAR ?
RemoteProcess myRemoteProcess = new RemoteProcess(machine, script);
string output = myRemoteProcess.TrueExec();
// UPDATE HERE PROGRESSBAR ?
this.logfile.WriteLine(output);
}
private void backgroundWorkerRemoteProcess_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
CurrentRunningThreads--;
}
private void backgroundWorkerRemoteProcess_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
//myExecWindow.ExecutorProgressBar.Value = e.ProgressPercentage; // TESTING
//ExecutorWindow.callback_updateProgressBar(1); // TESTING
}
EDIT 2 : I got it! Simple in fact, but i guess I've been looking too close to find out.
In my ExecutorWindow class :
private void execBackground_DoWork(object sender, DoWorkEventArgs e)
{
myExecutor = new Executor(arg1, arg2);
myExecutor.Run(sender);
}
private void execBackground_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
ExecutorProgressBar.Value += 1;
}
And in my Executor class :
private BackgroundWorker myExecutorWindow;
[...]
public void Run(object sender)
{
myExecutorWindow = sender as BackgroundWorker;
string[] options = new string[2];
int i = 0;
while (LeftToRun > 0)
{
if (CurrentRunningThreads < MaxThreadsRunning)
{
BackgroundWorker myThread = new BackgroundWorker();
myThread.DoWork += new DoWorkEventHandler(backgroundWorkerRemoteProcess_DoWork);
myThread.RunWorkerCompleted += new RunWorkerCompletedEventHandler(backgroundWorkerRemoteProcess_RunWorkerCompleted);
myThread.ProgressChanged += new ProgressChangedEventHandler(backgroundWorkerRemoteProcess_ProgressChanged);
myThread.WorkerReportsProgress = true;
myThread.WorkerSupportsCancellation = true;
myThread.RunWorkerAsync(new string[2] {opt1, opt2});
CurrentRunningThreads++;
i++;
LeftToRun--;
}
}
[...]
private void backgroundWorkerRemoteProcess_DoWork(object sender, DoWorkEventArgs e)
{
BackgroundWorker myBackgroundWorker = sender as BackgroundWorker;
myBackgroundWorker.ReportProgress(1);
// PROCESSING MY STUFF HERE
myBackgroundWorker.ReportProgress(1);
}
private void backgroundWorkerRemoteProcess_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
myExecutorWindow.ReportProgress(1);
}
Thank you !
You can run any method on the UI thread with this very basic sample
this.Dispatcher.Invoke(DispatcherPriority.Normal, new Action(delegate()
{
this.progressBar.Value= 20; // Do all the ui thread updates here
}));
Running commands inside the Dispatcher.Invoke(...), you can actually interact with the UI from any worker thread, where otherwise you would get an exception.
If you really need to have the ultimate control on the background threads & main (UI) thread updates, here is a fantastic tutorial on that: http://blog.decarufel.net/2009/03/good-practice-to-use-dispatcher-in-wpf.html
You should be able to use the Dispatcher.Invoke method
e.g.
Dispatcher.Invoke(
new System.Action(() => myProgressBar.Value = newValue)
);
I got it! Simple in fact, but i guess I've been looking too close to find out.
In my ExecutorWindow class :
private void execBackground_DoWork(object sender, DoWorkEventArgs e)
{
myExecutor = new Executor(arg1, arg2);
myExecutor.Run(sender);
}
private void execBackground_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
ExecutorProgressBar.Value += 1;
}
And in my Executor class :
private BackgroundWorker myExecutorWindow;
[...]
public void Run(object sender)
{
myExecutorWindow = sender as BackgroundWorker;
string[] options = new string[2];
int i = 0;
while (LeftToRun > 0)
{
if (CurrentRunningThreads < MaxThreadsRunning)
{
BackgroundWorker myThread = new BackgroundWorker();
myThread.DoWork += new DoWorkEventHandler(backgroundWorkerRemoteProcess_DoWork);
myThread.RunWorkerCompleted += new RunWorkerCompletedEventHandler(backgroundWorkerRemoteProcess_RunWorkerCompleted);
myThread.ProgressChanged += new ProgressChangedEventHandler(backgroundWorkerRemoteProcess_ProgressChanged);
myThread.WorkerReportsProgress = true;
myThread.WorkerSupportsCancellation = true;
myThread.RunWorkerAsync(new string[2] {opt1, opt2});
CurrentRunningThreads++;
i++;
LeftToRun--;
}
}
[...]
private void backgroundWorkerRemoteProcess_DoWork(object sender, DoWorkEventArgs e)
{
BackgroundWorker myBackgroundWorker = sender as BackgroundWorker;
myBackgroundWorker.ReportProgress(1);
// PROCESSING MY STUFF HERE
myBackgroundWorker.ReportProgress(1);
}
private void backgroundWorkerRemoteProcess_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
myExecutorWindow.ReportProgress(1);
}
I found a really simple solution to create a thread to run any block of code as well as handle Invocation back to the main thread to change the control's properties. It works out of the box with .NET 4.5 and the lambda call on the Dispatcher could be adapted to work with earlier versions of .NET. The main benefit is it's just so blissfully simple and perfect when you just need a quick thread for some really basic bit of code.
So presuming you have a progress bar somewhere on your dialog in scope do this:
progBar.Minimum = 0;
progBar.Maximum = theMaxValue;
progBar.Value = 0;
Dispatcher disp = Dispatcher.CurrentDispatcher;
new Thread(() => {
// Code executing in other thread
while (progBar.Value < theMaxValue)
{
// Your application logic here
// Invoke Main Thread UI updates
disp.Invoke(
() =>
{
progBar.Value++;
}
);
}
}).Start();
You also need to ensure you have a reference to WindowsBase.dll
If you want a more reusable snippet of code running as the thread start you could use a method as the delegate but I find the inline lambda so easy for simple tasks and you don't need to deal with events as with the Background Worker approaches.