I'd like to use the following C#6 code
var joe = new Self();
Console.WriteLine(joe);
... and get the following output:
joe
The following attempt
class Self {
public string Name { get; set; } = nameof(this);
public override string ToString() {
return Name;
}
}
fails as nameof cannot be applied to this. Is it there a workaround for this problem?
EDIT. The scenario I'm working with assures that no two references point to the same Self object.
No, nameof is designed to refer to the compile-time name of the member you're referring to. If you want an object to have a Name property as part of its state, that is independent of how you get to the Name property - as Frédéric Hamidi says, there could be multiple variables (or none) referring to the same object. Basically you need to differentiate between an object and a variable which happens to refer to that object.
However, if you have a constructor to specify the name, you could then use a couple of tricks to make it easier to get the right name:
class Self
{
public string Name { get; }
public Self([CallerMemberName] string name = null)
{
this.Name = name;
}
}
Then:
class Foo
{
private Self me = new Self(); // Equivalent to new Self("me")
public void SomeMethod()
{
// Can't use the default here, as it would be "SomeMethod".
// But we can use nameof...
var joe = new Self(nameof(joe));
}
}
Maybe you can use the following method:
class Self
{
public override string ToString()
{
return this.GetType().Name;
}
}
You can simply use nameof on the variable itself:
Console.WriteLine(nameof(joe));
Here's a working example using the current Roslyn version
The idea for nameof is to make things type safe for specifying program elements during runtime but with compile time type safety checking.
One should atomize what one wants to display. For example in my error messages I include the pertinent information of the class name and the method as such and its checked, so if I change any of the names they are caught as a compile time error:
class Operation
{
public void Execute()
{
try { ... }
catch (Exception ex)
{
Console.Writeline($"{nameof(Operation)}.{nameof(Execute)} has encountered exception:{Environment.NewLine}{Environment.NewLine}{ex.Message}" );
}
}
}
Output
Operation.Excecute has exception:
...
With that said you should override ToString() and report the class name as such
public override string ToString() { return nameof(Self); }
I usually create an internal constant for it when dealing with long class names:
private const string SomeConst = nameof(Self);
Then you can use that in your code:
Console.WriteLine(SomeConst);
Related
Prior to C# 6, the initialization of properties did not use backing fields to initialize default values.
In C#6, it uses the backing fields to initialize with new Auto initialization properties.
I'm curious why prior to C#6 IL uses the property definition to initialize. Is there a specific reason for this? or is it not implemented properly before C#6?
Before C# 6.0
public class PropertyInitialization
{
public string First { get; set; }
public string Last { get; set; }
public PropertyInitialization()
{
this.First = "Adam";
this.Last = "Smith";
}
}
Compiler Generated Code (IL representation)
public class PropertyInitialisation
{
[CompilerGenerated]
private string \u003CFirst\u003Ek__BackingField;
[CompilerGenerated]
private string \u003CLast\u003Ek__BackingField;
public string First
{
get
{
return this.\u003CFirst\u003Ek__BackingField;
}
set
{
this.\u003CFirst\u003Ek__BackingField = value;
}
}
public string Last
{
get
{
return this.\u003CLast\u003Ek__BackingField;
}
set
{
this.\u003CLast\u003Ek__BackingField = value;
}
}
public PropertyInitialisation()
{
base.\u002Ector();
this.First = "Adam";
this.Last = "Smith";
}
}
C#6
public class AutoPropertyInitialization
{
public string First { get; set; } = "Adam";
public string Last { get; set; } = "Smith";
}
Compiler Generated Code (IL representation)
public class AutoPropertyInitialization
{
[CompilerGenerated]
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
private string \u003CFirst\u003Ek__BackingField;
[CompilerGenerated]
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
private string \u003CLast\u003Ek__BackingField;
public string First
{
get
{
return this.\u003CFirst\u003Ek__BackingField;
}
set
{
this.\u003CFirst\u003Ek__BackingField = value;
}
}
public string Last
{
get
{
return this.\u003CLast\u003Ek__BackingField;
}
set
{
this.\u003CLast\u003Ek__BackingField = value;
}
}
public AutoPropertyInitialization()
{
this.\u003CFirst\u003Ek__BackingField = "Adam";
this.\u003CLast\u003Ek__BackingField = "Smith";
base.\u002Ector();
}
}
I'm curious why prior to C#6 IL uses the property definition to initialize. Is there a specific reason for this?
Because setting a value through auto-property initialization and setting the value in a constructor are two different things. They have different behaviours.
Recall that properties are accessor methods which wrap around fields. So this line:
this.First = "Adam";
is equivalent to:
this.set_First("Adam");
You can even see this in Visual Studio! Try writing a method with the signature public string set_First(string value) in your class and watch as the compiler complains about you stepping on it's toes.
And just like methods, these can be overridden in child classes. Check out this code:
public class PropertyInitialization
{
public virtual string First { get; set; }
public PropertyInitialization()
{
this.First = "Adam";
}
}
public class ZopertyInitalization : PropertyInitialization
{
public override string First
{
get { return base.First; }
set
{
Console.WriteLine($"Child property hit with the value: '{0}'");
base.First = value;
}
}
}
In this example, the line this.First = "Adam" will call the setter in the child class. Because you're calling a method, remember? If the compiler were to interpret this method call as a direct call to the backing field, it wouldn't end up calling the child setter. The act of compiling your code would change the behaviour of your program. Not good!
Auto-properties are different. Lets change the first example by using an auto-property initializer:
public class PropertyInitialization
{
public virtual string First { get; set; } = "Adam";
}
public class ZopertyInitalization : PropertyInitialization
{
public override string First
{
get { return base.First; }
set
{
Console.WriteLine($"Child property hit with the value: '{0}'");
base.First = value;
}
}
}
With this code, the setter method in the child class will not be called. This is intentional. An auto-property initializer is designed to set the backing field directly. They look and behave like field initializers, which is why we can even use them on properties without setters, like this:
public string First { get; } = "Adam";
There's no setter method here! We would have to directly access the backing field to do this. Auto-properties allow programmers to create immutable values while still being able to benefit from nice syntax.
Keep in mind that values set as default for properties are not being set in the constructor (your code shows that: assigments, then constructor).
Now, the C# spec says that autoinitialization values are set before the constructor. This makes sense: When these values are set again in the constructor, they are overridden.
Now - before the constructor is called - there are no getter and setter methods initialized. How should they be used?
Thats why the (by then uninitialized backing-fields) are being initialized directly.
As hvd mentioned, there would also be a problem with virtual calls, but that they aren't even initialized is the main reason.
It still behaves the same way as before if you assign values in the constructor:
Example with property that is autoinitialized and changed in the ctor
Why isn't this being optimized out?
See my question about this topic:
But shouldn't it optimize that out?
It probably could, but only if that class doesn't inherit from another
class that uses that value in its constructor, it knows that it's an
auto-property and the setter doesn't do anything else.
That would be a lot of (dangerous) assumptions. The compiler needs to
check a lot of things before making an optimization like that.
Side note:
I assume you use some tool for seeing the compiler generated c# code - it's not entirely accurate. There's no accurate expression for the IL code that is being generated for a constructor - the ctor is not a method in IL, its something different. For the sake of understanding we can assume it is the same tho.
http://tryroslyn.azurewebsites.net/ as example has this comment:
// This is not valid C#, but it represents the IL correctly.
One way you can get the code as shown is that you have your C# 5 code like this:
public class Test : Base
{
public Test()
{
A = "test";
}
public string A { get; set; }
}
This will produce (IL) code like this:
public Test..ctor()
{
Base..ctor();
A = "test";
}
Your C# 6 code will look like this:
public class Test : Base
{
public Test()
{
}
public string A { get; set; } = "test";
}
Which produces (IL) code like this:
public Test..ctor()
{
<A>k__BackingField = "test";
Base..ctor();
}
Note that if you initialize your property specifically in the constructor, and have a getter/setter property, in C# 6 it will still look like the first piece of code in my answer above, whereas if you have a getter-only field it will look like this:
public Test..ctor()
{
Base..ctor();
<A>k__BackingField = "test";
}
So it is quite clear, your C# 5 code looked like the first piece of code above, and your C# 6 code looked like the second piece of code.
So to answer your question: Why does C# 5 and C# 6 behave differently in terms of how it compiles automatic property initialization? The reason is because you cannot do automatic property initialization in C# 5 or prior, and different code compiles differently.
The only time it makes a difference is if the property setter has more effects than simply setting the value. For auto-implemented properties, the only time that can happen is if they are virtual and overridden. In that case, calling the derived class method before the base class constructor has run is a very bad idea. C# goes through a lot of trouble to make sure you do not accidentally end up with references to not yet fully initialised objects. So it has to set the field directly to prevent that.
I'm assuming your C# 5.0 code looked like this:
class C
{
public C()
{
First = "Adam";
}
public string First { get; private set; }
}
And then in C# 6.0, the only change you made is to make First a get-only autoproperty:
class C
{
public C()
{
First = "Adam";
}
public string First { get; }
}
In the C# 5.0 case, First is a property with a setter and your use it in the constructor, so the generated IL reflects that.
In the C# 6.0 version, First does not have a setter, so the constructor has to access the backing field directly.
Both cases make perfect sense to me.
I have created two properties with same name but the data type is different.
I am getting this error:
The type 'Fields' already contains a definition for 'Subject'
Is it possible to overcome this issue?
public String Subject
{
get { return this.subject; }
set { this.subject = value; }
}
public AppSettings Subject
{
get {
return this.subjectObj; }
set {
this.subjectObj = value; }
}
No, it's not possible. You would not be able to tell these properties apart when using them. How would you know which property is set in this case?
someInstance.Subject = null;
The official documentation on class members states:
The name of a constant, field, property, event, or type must differ
from the names of all other members declared in the same class.
Possible solution:
Your naming suggests that you may want to create another class Subject with at least two properties. (Without more context, I can't say if this is appropriate.)
public class Subject
{
public string Name { get; set; }
public AppSettings Settings { get; set; }
}
This new class could be used in the original class:
public OriginalClass
{
public Subject subject { get; set; }
}
No, you can't overcome that. Imagine you're doing this line:
object myValue = MyClassInstance.Subject;
How would it know how to tell them apart? It's better to give them a more appropriate name:
public String Subject
{
get { return this.subject; }
set { this.subject = value; }
}
public AppSettings Settings
{
get { return this.subjectObj; }
set { this.subjectObj = value; }
}
No you cannot create that. The C# 4 spec, section 10.2:and the standards does not allow you do that
The names of constants, fields, properties, events, or types must
differ from the names of all other members declared in the same class.
On a side note you can refer this thread: Is there a way to use a property with same name but is of different type in derived class?
Most of the answers seem to put forth the reasoning that polymorphism is not allowed in Properties due to something like:
How would you resolve this:
MyObject.MyProperty = null;
Well that's essentially the same as:
MyObject.set_Property(null);
Where set_Property is a method like:
void set_Property(String name) { ... }
void set_Property(AppSettings settings) { ... }
This is legal in C#
So MyObject.MyProperty = null; can be resolved as:
MyObject.set_MyPropert(null);
The compiler will report an Error in the line where the call is made, since it could use both overloads.
But MyObject.set_MyProperty(string.Empty);
is legal all together.
The reason why C# disallows polymorphism on Properties is the same as why it disallows different return types of functions with the same name.
Illigeal:
String get_Property() { return ...; }
AppSettings get_Property() { return ...; }
Now if you do var value = get_Property(); the compiler can not decide which overload to use.
So in principle set only properties could be overloaded. The problem arises when you introduce a getter.
I guess for convenience and consistency reasons the standard disallows polymorphism on properties entirely.
Also because in the language context Properties are not really considered as methods.
Is it possible to get value without creating an instance ?
I have this class:
public class MyClass
{
public string Name{ get{ return "David"; } }
public MyClass()
{
}
}
Now I need get the value "David", without creating instance of MyClass.
Real answer: no. It's an instance property, so you can only call it on an instance. You should either create an instance, or make the property static as shown in other answers.
See MSDN for more information about the difference between static and instance members.
Tongue-in-cheek but still correct answer:
Is it possible to get value without creating an instance ?
Yes, but only via some really horrible code which creates some IL passing in null as this (which you don't use in your property), using a DynamicMethod. Sample code:
// Jon Skeet explicitly disclaims any association with this horrible code.
// THIS CODE IS FOR FUN ONLY. USING IT WILL INCUR WAILING AND GNASHING OF TEETH.
using System;
using System.Reflection.Emit;
public class MyClass
{
public string Name { get{ return "David"; } }
}
class Test
{
static void Main()
{
var method = typeof(MyClass).GetProperty("Name").GetGetMethod();
var dynamicMethod = new DynamicMethod("Ugly", typeof(string),
Type.EmptyTypes);
var generator = dynamicMethod.GetILGenerator();
generator.Emit(OpCodes.Ldnull);
generator.Emit(OpCodes.Call, method);
generator.Emit(OpCodes.Ret);
var ugly = (Func<string>) dynamicMethod.CreateDelegate(
typeof(Func<string>));
Console.WriteLine(ugly());
}
}
Please don't do this. Ever. It's ghastly. It should be trampled on, cut up into little bits, set on fire, then cut up again. Fun though, isn't it? ;)
This works because it's using call instead of callvirt. Normally the C# compiler would use a callvirt call even if it's not calling a virtual member because that gets null reference checking "for free" (as far as the IL stream is concerned). A non-virtual call like this doesn't check for nullity first, it just invokes the member. If you checked this within the property call, you'd find it's null.
EDIT: As noted by Chris Sinclair, you can do it more simply using an open delegate instance:
var method = typeof(MyClass).GetProperty("Name").GetGetMethod();
var openDelegate = (Func<MyClass, string>) Delegate.CreateDelegate
(typeof(Func<MyClass, string>), method);
Console.WriteLine(openDelegate(null));
(But again, please don't!)
You can make that property static
public static string Name{ get{ return "David"; } }
Usage:
MyClass.Name;
You requirements do seem strange, but I think you're looking for some kind of metadata. You can use an attribute to achieve this:
public class NameAttribute : Attribute {
public string Name { get; private set; }
public NameAttribute(string name) {
Name = name;
}
}
[Name("George")]
public class Dad {
public string Name {
get {
return NameGetter.For(this.GetType());
}
}
}
[Name("Frank")]
public class Son : Dad {
}
public static class NameGetter {
public static string For<T>() {
return For(typeof(T));
}
public static string For(Type type) {
// add error checking ...
return ((NameAttribute)type.GetCustomAttributes(typeof(NameAttribute), false)[0]).Name;
}
}
Now this code can get names with and without instances:
Console.WriteLine(new Dad().Name);
Console.WriteLine(new Son().Name);
Console.WriteLine(NameGetter.For<Dad>());
Console.WriteLine(NameGetter.For<Son>());
You can make your property static, as pointed out by many others.
public static string Name{ get{ return "David"; } }
Be aware that this means your instances of MyClass will no longer have their own Name property, since static members belong to the class, not the individual object instances of it.
Edit:
In a note, you mentioned that you want to override the Name property in subclasses. At the same time, you want to be able to access it at the class level (access it without creating an instance of your class).
For the static properties, you would simply create a new Name property in each class. Since they are static, you're always (almost always, yay reflection) going to access them using a specific class, so you'd be specifying which version of Name you want to get. If you want to try and hack polymorphism in there and get the name from any given subclass of MyClass, you could do so using reflection, but I wouldn't recommend doing so.
Using the example from your comment:
public class Dad
{
public static string Name { get { return "George"; }
}
public class Son : Dad
{
public static string Name { get{ return "Frank"; }
}
public static void Test()
{
Console.WriteLine(Dad.Name); // prints "George"
Console.WriteLine(Son.Name); // prints "Frank"
Dad actuallyASon = new Son();
PropertyInfo nameProp = actuallyASon.GetType().GetProperty("Name");
Console.WriteLine(nameProp.GetValue(actuallyASon, null)); // prints "Frank"
}
As a side note, since you are declaring a property that has only a getter and it is returning a constant value, I recommend possibly using a const or static readonly variable instead.
public const string Name = "David";
public static readonly string Name = "David";
Usage for both would be the same:
string name = MyClass.Name;
The main benefit (and drawback) of const is that all references to it are actually replaced by its value when the code is compiled. That means it will be a little faster, but if you ever change its value, you will need to recompile ALL code that references it.
Whenever you write C# code, always check if your method and property getter/setter code does anything at all with other instance members of the class. If they don't, be sure to apply the static keyword. Certainly the case here, it trivially solves your problem.
The reason I really post to this question is that there's a bit of language bias at work in some of the answers. The C# rule that you can't call an instance method on a null object is a specific C# language rule. It is without a doubt a very wise one, it really helps to troubleshoot NullReferenceExceptions, they are raised at the call site instead of somewhere inside of a method where it gets very hard to diagnose that the this reference is null.
But this is certainly not a requirement to the CLR, nor of every language that run on the CLR. In fact, even C# doesn't enforce it consistently, you can readily bypass it in an extension method:
public static class Extensions {
public static bool IsNullOrEmpty(this string obj) {
return obj != null && obj.Length > 0;
}
}
...
string s = null;
bool empty = s.IsNullOrEmpty(); // Fine
And using your property from a language that doesn't have the same rule works fine as well. Like C++/CLI:
#include "stdafx.h"
using namespace System;
using namespace ClassLibrary1; // Add reference
int main(array<System::String ^> ^args)
{
MyClass^ obj = nullptr;
String^ name = obj->Name; // Fine
Console::WriteLine(name);
return 0;
}
Create a static property:
public class MyClass
{
public static string Name { get { return "David"; } }
public MyClass()
{
}
}
Get it like so:
string name1 = MyClass.Name;
That is not possible. As Name is an instance property, you can only get its value if you have an instance.
Also, note that you are not talking about a parameter, but about a property.
Create a static class or a static property, and you don't have to explicitly instantiate it.
I have requirement in a custom class where I want to make one of my properties required.
How can I make the following property required?
public string DocumentType
{
get
{
return _documentType;
}
set
{
_documentType = value;
}
}
If you mean "the user must specify a value", then force it via the constructor:
public YourType(string documentType) {
DocumentType = documentType; // TODO validation; can it be null? blank?
}
public string DocumentType {get;private set;}
Now you can't create an instance without specifying the document type, and it can't be removed after that time. You could also allow the set but validate:
public YourType(string documentType) {
DocumentType = documentType;
}
private string documentType;
public string DocumentType {
get { return documentType; }
set {
// TODO: validate
documentType = value;
}
}
.NET 7 or newer
Syntax
public class MyClass
{
public required string Name { get; init; }
}
new MyClass(); // illegal
new MyClass { Name = "Me" }; // works fine
Remarks
The required properties must declare a setter (either init or set).
Access modifiers on properties or setters cannot be less visible than their containing type, as they would make impossible to initialize the class in some cases.
public class MyClass
{
internal required string Name { get; set; } // illegal
}
Documentation
Official documentation here
Feature demo here
.NET 6 or older
See this answer
If you mean you want it always to have been given a value by the client code, then your best bet is to require it as a parameter in the constructor:
class SomeClass
{
private string _documentType;
public string DocumentType
{
get
{
return _documentType;
}
set
{
_documentType = value;
}
}
public SomeClass(string documentType)
{
DocumentType = documentType;
}
}
You can do your validation – if you need it – either in the property's set accessor body or in the constructor.
With the release of .NET 7 and C# 11 in November 2022 you can now use the required modifier this way:
public class Person
{
public Person() { }
[SetsRequiredMembers]
public Person(string firstName) => FirstName = firstName;
public required string FirstName { get; init; }
public int Age { get; set; }
}
And when you don't have the required properties it will throw an error when you try to initialize an object.
For more information refer to:
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-11#required-members
https://learn.microsoft.com/en-us/dotnet/csharp/properties#init-only
Add a required attribute to the property
Required(ErrorMessage = "DocumentTypeis required.")]
public string DocumentType
{
get
{
return _documentType;
}
set
{
_documentType = value;
}
}
For custom attribute detail Click Here
I used an other solution, not exactly what you want, but worked for me fine because I declare the object first and based on specific situation I have different values. I didnt want to use the constructor because I then had to use dummy data.
My solution was to create Private Sets on the class (public get) and you can only set the values on the object by methods. For example:
public void SetObject(string mandatory, string mandatory2, string optional = "", string optional2 = "")
This one liner works in C# 9:
public record Document(string DocumentType);
new Document(); // compiler error
new Document("csv"); // correct way to construct with required parameter
This explains how it works. In the above code, Document is the name of the class or "record". That first line of code actually defines an entire class. In addition to this solution essentially making a required DocumentType property (required by an auto implemented constructor), because it uses records, there are additional implications. So this may not always be an appropriate solution, and the C# 11 required keyword will still come in handy at times. Just using record types doesn't automatically make properties required. The above code is a special syntax way of using records that essentially has this effect as well as making the property init only and causes a deconstructor to be automatically implemented.
A better example would be using an int property instead of a string since a string could still be empty. Unfortunately I don't know of any good way to do extra validation within the record to make sure the string is not empty or an int is in range, etc. You would have to go deeper down the TOP (type driven development) rabbit hole, which may not be a bad thing. You could create your own type that doesn't allow empty strings or integers outside your accepted range. Unfortunately such an approach would lead to runtime discovery of invalid input instead of compile time. There might be a better way using static analysis and metadata, but I've been away from C# for too long to know anything about that.
I have got several classes looking like the one below, and I need to do some checks in the get method and custom set methods. Adding the code in each get and set method makes everything look really messed up.
Is there a way I can override the get and set methods for all properties in an entire class?
public class Test
{
private DataRow _dr;
public Test()
{
_dr = GetData();
}
public string Name
{
get { return _dr[MethodBase.GetCurrentMethod().Name.Substring(4)].ToString(); }
set
{
VerifyAccess(MethodBase.GetCurrentMethod().Name.Substring(4), this.GetType().Name);
_dr[MethodBase.GetCurrentMethod().Name.Substring(4)] = value;
}
}
public string Description
{
get { return _dr[MethodBase.GetCurrentMethod().Name.Substring(4)].ToString(); }
set
{
VerifyAccess(MethodBase.GetCurrentMethod().Name.Substring(4), this.GetType().Name);
_dr[MethodBase.GetCurrentMethod().Name.Substring(4)] = value;
}
}
public string DescriptionUrl
{
get { return _dr[MethodBase.GetCurrentMethod().Name.Substring(4)].ToString(); }
set
{
VerifyAccess(MethodBase.GetCurrentMethod().Name.Substring(4), this.GetType().Name);
_dr[MethodBase.GetCurrentMethod().Name.Substring(4)]= value;
}
}
private void VerifyAccess(string propertyname, string classname)
{
//some code to verify that the current user has access to update the property
//Throw exception
}
private DataRow GetData()
{
//Some code to pull the data from the database
}
}
I think what you need is a Proxy on your class, read about Proxy Pattern and Dynamic Proxies
Not directly, there isn't a way to do it with just a compiler. You'd have to generate your entire binary file, then post-process it with some external tool.
This post describes a somewhat similar issue; I hope it helps.
There's a variety of ways to do it.
One would be to create a proxy class (mentioned before), but that would require a lot of refactoring on your behalf.
Another way is with aspects. These do exactly what you're after (insert code based on a pre-requisite.. i.e. all get methods in a class that inherit from x). I ran into a similar problem (actually the exact same problem - checking for security on method calls), and couldn't find cheap/free aspect software that fulfilled my needs.
So, I decided to use Mono-Cecil to inject code before function calls.
If you're interested (it gets a bit messy dealing with IL codes) I can post an old copy of the source
You should extract common code to separate get/set methods, after that you'll be able to add common logic to your properties. By the way, I would do such extraction anyway to avoid copy/paste in the code.
Smth like this:
public string Name
{
get { return GetProperty(MethodBase.GetCurrentMethod()); }
set
{
SetProperty(MethodBase.GetCurrentMethod(), value);
}
}
private string GetProperty(MethodBase method)
{
return _dr[method.Name.Substring(4)].ToString();
}
private void SetProperty(MethodBase method, string value)
{
string methodName = method.Name.Substring(4);
VerifyAccess(methodName , this.GetType().Name);
_dr[methodName] = value;
}
This can be done with indirect value access, e.g. obj.PropA.Value = obj.PropB.Value + 1 -- you can even keep strong typing information. It can be implemented with either attributes or direct-instantiation.
// attribute -- bind later in central spot with annotation application
[MyCustomProp(4)] CustProp<int> Age;
// direct -- explicit binding, could also post-process dynamically
CustProp<int> Age = new CustProp<int>(4, this);
Alternatively, perhaps using a template system such as TT4 may be a viable approach.
However, don't forget "KISS" :-)
I would love for someone to give a better answer for this.
I'm looking for an answer now… best idea I have had would be to define all the properties you want to have be validated as a generic class. For example:
public class Foo {
public String Name {
get{ return _Name.value; }
set{ _Name.value = value; }
}
private Proxy<String> _Name;
static void main(String[] args) {
Foo f = new Foo();
//will go through the logic in Proxy.
f.Name = "test";
String s = f.Name;
}
}
public class Proxy<T> {
public T value {
get {
//logic here
return _this;
} set {
//logic here
_this = value;
}
}
private T _this;
}