Lets start with:
using System;
public class Program
{
class A
{
public virtual void Do() { }
}
class B:A
{
}
public static void Main()
{
var m1 = typeof(A).GetMethod("Do");
var m2 = typeof(B).GetMethod("Do");
Console.WriteLine("Methods are equal?\t\t{0}", m1 == m2);
Console.WriteLine("Method handles are equal?\t{0}", m1.MethodHandle == m2.MethodHandle);
Console.WriteLine("Done.");
Console.ReadKey();
}
}
(try it online at ideone)
So, there are two unequal MethodInfo instances, both containing the same method handle. Here's the equals operator source:
public static bool operator ==(MethodInfo left, MethodInfo right)
{
if (ReferenceEquals(left, right))
return true;
if ((object)left == null || (object)right == null ||
left is RuntimeMethodInfo || right is RuntimeMethodInfo) // <----???
{
return false;
}
return left.Equals(right);
}
It doesn't look like an accidental bug, at least until there was assumption that all instances of RuntimeMethodInfo are cached and there newer will be two different instances for the same method. In that case something is broken, obviously.
Any reasons behind this behavior, anyone?
P.S. Do not mark as a [duplicate], please:) The question is not about 'how to compare?'. That one was answered multiple times, here and here for example.
Thanks!
I believe your assumption for the reasoning behind it - that two RuntimeMethodInfo instances can be compared by reference equality - is correct. Your assumption that it's broken isn't correct though.
The two MethodInfo objects here are different, as they have different ReflectedType properties:
Console.WriteLine(m1.ReflectedType); // Program+A
Console.WriteLine(m2.ReflectedType); // Program+B
Related
I suppose method call chain below.
void DoSomething()
{
ObjectA a = CreateA();
if (a != null)
{
a.Foo();
}
}
ObjectA CreateA()
{
ObjectB b = CreateB();
if (b != null)
{
ObjectA a = b.ToA();
return a;
}
return null;
}
If method call depth get deeper, null checking will be more overlapped.
Is there any good solution for this?
Modified
I changed example code. It can't solve my problem that change CreateA to constructor.
The problem is only unnecessary null check chaining overlapping.
void SetImage()
{
UISprite image = GetSprite();
if (image != null)
{
image.spriteName = "hat";
}
}
UISprite GetSprite()
{
UISprite image = GetComponent<UISprite>();
if (image != null)
{
image.width = 100;
image.height = 100;
return image;
}
return null;
}
Starting with C# 6.0 you can use Null-Conditional Operator, which lets you make null-checking implicitly:
var result = possiblyNull?.MethodThatCanReturnNull()?.SomeProperty;
This construct will produce a null result if any element in the chain produces null.
You can do
void DoSomething()
{
CreateA()?.Foo();
}
ObjectA CreateA()
{
return CreateB()?.ToA();
}
Your other approach if you can't use C# 6, is don't return nulls, use null objects that way you never have to deal with null checking ( but you can still check if something is the null object )
If you are using C# 6.0 or higher, you got an easy solution with Null conditional operators for this issue.
see this link
https://msdn.microsoft.com/en-au/library/dn986595.aspx?f=255&MSPPError=-2147217396&cs-save-lang=1&cs-lang=csharp#code-snippet-1
So, assuming you (or someone else) can't use the null-conditional operator, is there a good reason to be using this pattern of methods creating objects instead of constructors creating the objects? Constructors are guaranteed not to return null.
It looks like you have some conversion or nested object heirarchy, but no inheritance heirarchy where you could just fall back on polymorphism. Maybe a tool like AutoMapper could be useful to encode these ToX() methods in a consistent manner?
I'm not sure how "nested" this would be. Your CreateB() method is going to look exactly like your CreateA() code. You're not going to end up with a "pyramid," just a lot of identical methods.
ObjectB CreateB()
{
ObjectC c = CreateC();
if (c != null)
{
ObjectB b = c.ToB();
return b;
}
return null;
}
Most of the time, you're doing this in an environment where you don't control all the classes. In that case, writing your own conversion functions or AutoMapper (really, worth the time) is the best approach. But, if you own the class hierarchy you might implement an abstract class that will do most of the heavy lifting for you. But honestly, I would only write something like this if I had a really good reason (something more than I just wanted to fuck with people). I include this to demonstrate how much simpler life is if you just use a constructor, which is guaranteed not to return null;
public abstract class MyAbstractObject<Tobj> where TObj: MyAbstractObject, new()
{
public static MyAbstractObject CreateObject()
{
Tobj subOb = new TObj();
MyAbstractObject parent = subOb.ToObject();
return parent;
}
public virtual TObj ToObject()
{
return CreateObject();
}
}
public class ObjectD : MyAbstractObject<ObjectC> { }
public class ObjectC : MyAbstractObject<ObjectB> { }
public class ObjectB : MyAbstractObject<ObjectA> { }
public class ObjectA : MyAbstractObject<ObjectA>
{
public override TObj ToObject()
{
return this;
}
}
static void Main()
{
ObjectA a = ObjectD.CreateObject();
}
I have a class like this
public class TestData
{
public string Name {get;set;}
public string type {get;set;}
public List<string> Members = new List<string>();
public void AddMembers(string[] members)
{
Members.AddRange(members);
}
}
I want to know if it is possible to directly compare to instances of this class to eachother and find out they are exactly the same? what is the mechanism? I am looking gor something like if(testData1 == testData2) //Do Something And if not, how to do so?
You should implement the IEquatable<T> interface on your class, which will allow you to define your equality-logic.
Actually, you should override the Equals method as well.
public class TestData : IEquatable<TestData>
{
public string Name {get;set;}
public string type {get;set;}
public List<string> Members = new List<string>();
public void AddMembers(string[] members)
{
Members.AddRange(members);
}
// Overriding Equals member method, which will call the IEquatable implementation
// if appropriate.
public override bool Equals( Object obj )
{
var other = obj as TestData;
if( other == null ) return false;
return Equals (other);
}
public override int GetHashCode()
{
// Provide own implementation
}
// This is the method that must be implemented to conform to the
// IEquatable contract
public bool Equals( TestData other )
{
if( other == null )
{
return false;
}
if( ReferenceEquals (this, other) )
{
return true;
}
// You can also use a specific StringComparer instead of EqualityComparer<string>
// Check out the specific implementations (StringComparer.CurrentCulture, e.a.).
if( EqualityComparer<string>.Default.Compare (Name, other.Name) == false )
{
return false;
}
...
// To compare the members array, you could perhaps use the
// [SequenceEquals][2] method. But, be aware that [] {"a", "b"} will not
// be considerd equal as [] {"b", "a"}
return true;
}
}
One way of doing it is to implement IEquatable<T>
public class TestData : IEquatable<TestData>
{
public string Name {get;set;}
public string type {get;set;}
public List<string> Members = new List<string>();
public void AddMembers(string[] members)
{
Members.AddRange(members);
}
public bool Equals(TestData other)
{
if (this.Name != other.Name) return false;
if (this.type != other.type) return false;
// TODO: Compare Members and return false if not the same
return true;
}
}
if (testData1.Equals(testData2))
// classes are the same
You can also just override the Equals(object) method (from System.Object), if you do this you should also override GetHashCode see here
There are three ways objects of some reference type T can be compared to each other:
With the object.Equals method
With an implementation of IEquatable<T>.Equals (only for types that implement IEquatable<T>)
With the comparison operator ==
Furthermore, there are two possibilities for each of these cases:
The static type of the objects being compared is T (or some other base of T)
The static type of the objects being compared is object
The rules you absolutely need to know are:
The default for both Equals and operator== is to test for reference equality
Implementations of Equals will work correctly no matter what the static type of the objects being compared is
IEquatable<T>.Equals should always behave the same as object.Equals, but if the static type of the objects is T it will offer slightly better performance
So what does all of this mean in practice?
As a rule of thumb you should use Equals to check for equality (overriding object.Equals as necessary) and implement IEquatable<T> as well to provide slightly better performance. In this case object.Equals should be implemented in terms of IEquatable<T>.Equals.
For some specific types (such as System.String) it's also acceptable to use operator==, although you have to be careful not to make "polymorphic comparisons". The Equals methods, on the other hand, will work correctly even if you do make such comparisons.
You can see an example of polymorphic comparison and why it can be a problem here.
Finally, never forget that if you override object.Equals you must also override object.GetHashCode accordingly.
I see many good answers here but just in case you want the comparison to work like
if(testData1 == testData2) // DoSomething
instead of using Equals function you can override == and != operators:
public static bool operator == (TestData left, TestData right)
{
bool comparison = true; //Make the desired comparison
return comparison;
}
public static bool operator != (TestData left, TestData right)
{
return !(left == right);
}
You can override the equals method and inside it manually compare the objects
Also take a look at Guidelines for Overloading Equals() and Operator ==
You will need to define the rules that make object A equal to object B and then override the Equals operator for this type.
http://msdn.microsoft.com/en-us/library/ms173147(v=vs.80).aspx
First of all equality is difficult to define and only you can define as to what equality means for you
Does it means members have same value
Or they are pointing to same location.
Here is a discussion and an answer here
What is "Best Practice" For Comparing Two Instances of a Reference Type?
Implement the IEquatable<T> interface. This defines a generalized method that a value type or class implements to create a type-specific method for determining equality of instances. More information here:
http://msdn.microsoft.com/en-us/library/ms131187.aspx
I just got into a debate with one of my coworkers about checking for null values.
He SWEARS that "in certain situations" the code below would give him a null value exception:
string test = null;
if(test == null) //error here
{
}
but that if changed the code to this there would be no error:
string test = null;
if(null == test) //NO error here
{
}
I told him there was no way this could happen but he swears it fixed his code. Is there any possible situation where the above change could fix an error?
Not with string, no. You could do so with a badly written == overload though:
using System;
public class NaughtyType
{
public override int GetHashCode()
{
return 0;
}
public override bool Equals(object other)
{
return true;
}
public static bool operator ==(NaughtyType first, NaughtyType second)
{
return first.Equals(second);
}
public static bool operator !=(NaughtyType first, NaughtyType second)
{
return !first.Equals(second);
}
}
public class Test
{
static void Main()
{
NaughtyType nt = null;
if (nt == null)
{
Console.WriteLine("Hmm...");
}
}
}
Of course, if you changed the equality operator to this:
public static bool operator ==(NaughtyType first, NaughtyType second)
{
return second.Equals(first);
}
then your colleagues code would fail, but yours wouldn't! Basically if you overload operators properly - or use types which don't overload operators - this isn't a problem. If your colleague keeps claiming he's run into it, ask him to reproduce it. He certainly shouldn't be asking you to reduce readability (I believe most people find the first form more readable) on the basis of something he can't demonstrate.
I think this is a left-over from a 'best practice' in C/C++, because using '=' instead of '==' is an easy to make mistake:
if(test = null) // C compiler Warns, but evaluates always to false
if(null = test) // C compiler error, null cannot be assigned to
In C#, they both produce an error.
You're right. If he can reproduce this without an overloaded == operator, invite him to post it here.
The test of if (test == null) if test is a string is valid and will never give an exception. Both tests are also essentially exactly the same.
Consider the following (heavily simplified) code:
public T Function<T>() {
if (typeof(T) == typeof(string)) {
return (T) (object) "hello";
}
...
}
It's kind of absurd to first cast to object, then to T. But the compiler has no way of knowing that the previous test assured T is of type string.
What is the most elegant, idiomatic way of achieving this behavior in C# (which includes getting rid of the stupid typeof(T) == typeof(string), since T is string can't be used)?
Addendum: There is no return type variance in .net, so you can't make a function overload to type string (which, by the way, is just an example, but one reason why association end redefinition in polymorphism, e.g. UML, can't be done in c#). Obviously, the following would be great, but it doesn't work:
public T Function<T>() {
...
}
public string Function<string>() {
return "hello";
}
Concrete Example 1: Because there's been several attacks to the fact that a generic function that tests for specific types isn't generic, I'll try to provide a more complete example. Consider the Type-Square design pattern. Here follows a snippet:
public class Entity {
Dictionary<PropertyType, object> properties;
public T GetTypedProperty<T>(PropertyType p) {
var val = properties[p];
if (typeof(T) == typeof(string) {
(T) (object) p.ToString(this); // magic going here
}
return (T) TypeDescriptor.GetConverter(typeof(T)).ConvertFrom(val);
}
}
Concrete Example 2: Consider the Interpreter design pattern:
public class Expression {
public virtual object Execute() { }
}
public class StringExpression: Expression {
public override string Execute() { } // Error! Type variance not allowed...
}
Now let's use generics in Execute to allow the caller to force a return type:
public class Expression {
public virtual T Execute<T>() {
if(typeof(T) == typeof(string)) { // what happens when I want a string result from a non-string expression?
return (T) (object) do_some_magic_and_return_a_string();
} else if(typeof(T) == typeof(bool)) { // what about bools? any number != 0 should be True. Non-empty lists should be True. Not null should be True
return (T) (object) do_some_magic_and_return_a_bool();
}
}
}
public class StringExpression: Expressiong {
public override T Execute<T>() where T: string {
return (T) string_result;
}
}
If you're making these types of checks in a generic method, I'd rethink your design. The method is obviously not truly generic - if it were, you wouldn't need specific type checking...
Situations like this typically can be handled more cleanly by a redesign. One alternative is often to provide an overload of the appropriate type. Other design alternatives which avoid the type-specific behavior exist, as well, such as Richard Berg's suggestion of passing in a delegate.
using System;
using System.Collections.Generic;
using System.Linq;
namespace SimpleExamples
{
/// <summary>
/// Compiled but not run. Copypasta at your own risk!
/// </summary>
public class Tester
{
public static void Main(string[] args)
{
// Contrived example #1: pushing type-specific functionality up the call stack
var strResult = Example1.Calculate<string>("hello", s => "Could not calculate " + s);
var intResult = Example1.Calculate<int>(1234, i => -1);
// Contrived example #2: overriding default behavior with an alternative that's optimized for a certain type
var list1 = new List<int> { 1, 2, 3 };
var list2 = new int[] { 4, 5, 6 };
Example2<int>.DoSomething(list1, list2);
var list1H = new HashSet<int> { 1, 2, 3 };
Example2<int>.DoSomething<HashSet<int>>(list1H, list2, (l1, l2) => l1.UnionWith(l2));
}
}
public static class Example1
{
public static TParam Calculate<TParam>(TParam param, Func<TParam, TParam> errorMessage)
{
bool success;
var result = CalculateInternal<TParam>(param, out success);
if (success)
return result;
else
return errorMessage(param);
}
private static TParam CalculateInternal<TParam>(TParam param, out bool success)
{
throw new NotImplementedException();
}
}
public static class Example2<T>
{
public static void DoSomething(ICollection<T> list1, IEnumerable<T> list2)
{
Action<ICollection<T>, IEnumerable<T>> genericUnion = (l1, l2) =>
{
foreach (var item in l2)
{
l1.Add(item);
}
l1 = l1.Distinct().ToList();
};
DoSomething<ICollection<T>>(list1, list2, genericUnion);
}
public static void DoSomething<TList>(TList list1, IEnumerable<T> list2, Action<TList, IEnumerable<T>> specializedUnion)
where TList : ICollection<T>
{
/* stuff happens */
specializedUnion(list1, list2);
/* other stuff happens */
}
}
}
/// I confess I don't completely understand what your code was trying to do, here's my best shot
namespace TypeSquarePattern
{
public enum Property
{
A,
B,
C,
}
public class Entity
{
Dictionary<Property, object> properties;
Dictionary<Property, Type> propertyTypes;
public T GetTypedProperty<T>(Property p)
{
var val = properties[p];
var type = propertyTypes[p];
// invoke the cast operator [including user defined casts] between whatever val was stored as, and the appropriate type as
// determined by the domain model [represented here as a simple Dictionary; actual implementation is probably more complex]
val = Convert.ChangeType(val, type);
// now create a strongly-typed object that matches what the caller wanted
return (T)val;
}
}
}
/// Solving this one is a straightforward application of the deferred-execution patterns I demonstrated earlier
namespace InterpreterPattern
{
public class Expression<TResult>
{
protected TResult _value;
private Func<TResult, bool> _tester;
private TResult _fallback;
protected Expression(Func<TResult, bool> tester, TResult fallback)
{
_tester = tester;
_fallback = fallback;
}
public TResult Execute()
{
if (_tester(_value))
return _value;
else
return _fallback;
}
}
public class StringExpression : Expression<string>
{
public StringExpression()
: base(s => string.IsNullOrEmpty(s), "something else")
{ }
}
public class Tuple3Expression<T> : Expression<IList<T>>
{
public Tuple3Expression()
: base(t => t != null && t.Count == 3, new List<T> { default(T), default(T), default(T) })
{ }
}
}
Can you use as here?
T s = "hello" as T;
if(s != null)
return s;
I can't think of an "elegant" way to do this. As you say, the compiler can't know that the conditional has ensured that the type of T is string. As a result, it has to assume that, since there's no generalized way to convert from string to T, it's an error. object to T might succeed, so the compiler allows it.
I'm not sure I'd want an elegant way to express this. Although I can see where it'd be necessary to do explicit type checks like this in some situations, I think I'd want it to be cumbersome because it really is a bit of a hack. And I'd want it to stick out: "Hey! I'm doing something weird here!"
Ok, I took a run at it from several different angles and came up short. I would have to conclude that if your current implementation gets the job done you should take the win and move on. Short of some arcane emissions what you got is what you get.
But the compiler has no way of knowing
that the previous test assured T is of
type string.
Umm.... If I am not mistaken, generics is just code gen. The compiler generates a matching method for each distinct type found in the calling methods. So the compiler does know the type argument for the overload being called. Again; If I am not mistaken.
But overall, i think you are misusing the generic in this case, from what I can see, and as others have stated, there are more appropriate solutions..... which are unnamable unless you post code that completely specifies your requirements.
just my 2 pesos...
Currently I have this (edited after reading advice):
struct Pair<T, K> : IEqualityComparer<Pair<T, K>>
{
readonly private T _first;
readonly private K _second;
public Pair(T first, K second)
{
_first = first;
_second = second;
}
public T First { get { return _first; } }
public K Second { get { return _second; } }
#region IEqualityComparer<Pair<T,K>> Members
public bool Equals(Pair<T, K> x, Pair<T, K> y)
{
return x.GetHashCode(x) == y.GetHashCode(y);
}
public int GetHashCode(Pair<T, K> obj)
{
int hashCode = obj.First == null ? 0 : obj._first.GetHashCode();
hashCode ^= obj.Second == null ? 0 : obj._second.GetHashCode();
return hashCode;
}
#endregion
public override int GetHashCode()
{
return this.GetHashCode(this);
}
public override bool Equals(object obj)
{
return (obj != null) &&
(obj is Pair<T, K>) &&
this.Equals(this, (Pair<T, K>) obj);
}
}
The problem is that First and Second may not be reference types (VS actually warns me about this), but the code still compiles. Should I cast them (First and Second) to objects before I compare them, or is there a better way to do this?
Edit:
Note that I want this struct to support value and reference types (in other words, constraining by class is not a valid solution)
Edit 2:
As to what I'm trying to achieve, I want this to work in a Dictionary. Secondly, SRP isn't important to me right now because that isn't really the essence of this problem - it can always be refactored later. Thirdly, comparing to default(T) will not work in lieu of comparing to null - try it.
Your IEqualityComparer implementation should be a different class (and definately not a struct as you want to reuse the reference).
Also, your hashcode should never be cached, as the default GetHashcode implementation for a struct (which you do not override) will take that member into account.
It looks like you need IEquatable instead:
internal struct Pair<T, K> : IEquatable<Pair<T, K>>
{
private readonly T _first;
private readonly K _second;
public Pair(T first, K second)
{
_first = first;
_second = second;
}
public T First
{
get { return _first; }
}
public K Second
{
get { return _second; }
}
public bool Equals(Pair<T, K> obj)
{
return Equals(obj._first, _first) && Equals(obj._second, _second);
}
public override bool Equals(object obj)
{
return obj is Pair<T, K> && Equals((Pair<T, K>) obj);
}
public override int GetHashCode()
{
unchecked
{
return (_first != null ? _first.GetHashCode() * 397 : 0) ^ (_second != null ? _second.GetHashCode() : 0);
}
}
}
If you use hashcodes in comparing methods, you should check for "realy value" if the hash codes are same.
bool result = ( x._hashCode == y._hashCode );
if ( result ) { result = ( x._first == y._first && x._second == y._second ); }
// OR?: if ( result ) { result = object.Equals( x._first, y._first ) && object.Equals( x._second, y._second ); }
// OR?: if ( result ) { result = object.ReferenceEquals( x._first, y._first ) && object.Equals( x._second, y._second ); }
return result;
But there is littlebit problem with comparing "_first" and "_second" fields.
By default reference types uses fore equality comparing "object.ReferenceEquals" method, bud they can override them. So the correct solution depends on the "what exactly should do" the your comparing method. Should use "Equals" method of the "_first" & "_second" fields, or object.ReferenceEquals ? Or something more complex?
Regarding the warning, you can use default(T) and default(K) instead of null.
I can't see what you're trying to achieve, but you shouldn't be using the hashcode to compare for equality - there is no guarantee that two different objects won't have the same hashcode. Also even though your struct is immutable, the members _first and _second aren't.
First of all this code violates SRP principle. Pair class used to hold pairs if items, right? It's incorrect to delegate equality comparing functionality to it.
Next let take a look at your code:
Equals method will fail if one of the arguments is null - no good. Equals uses hash code of Pair class, but take a look at the definition of GetHashCode, it just a combination of pair members hash codes - it's has nothing to do with equality of items. I would expect that Equals method will compare actual data. I'm too busy at the moment to provide correct implementation, unfortunately. But from the first look, you code seems to be wrong. It would be better if you provide us description of what you want to achieve. I'm sure SO members will be able to give you some advices.
Might I suggest the use of Lambda expressions as a parameter ?
this would allow you to specify how to compare the internal generic types.
I don't get any warning when compiling about this but I assume you are talking about the == null comparison? A cast seems like it would make this all somewhat cleaner, yes.
PS. You really should use a separate class for the comparer. This class that fills two roles (being a pair and comparing pairs) is plain ugly.