Code For NET 2.0.
I write function ByteArrayToObject for insert offset bytes in struct, but is it possible to quickly?
Is planned that there will be a lot of structures in which it is necessary to append the changed network information. If I can insert these bytes quickly to the right place, it will be organized in the protocol as one big structure.
Thank you for any help.
In my case, I do not like that every time to replace the bytes that have to do all the copy of the object func ObjectToByteArray.
/// <summary> Convert an object struct to a byte array </summary>
private static byte[] ObjectToByteArray(Object obj)
{
var size = Marshal.SizeOf(obj);
// Both managed and unmanaged buffers required.
var bytes = new byte[size];
var ptr = Marshal.AllocHGlobal(size);
// Copy object byte-to-byte to unmanaged memory.
Marshal.StructureToPtr(obj, ptr, false);
// Copy data from unmanaged memory to managed buffer.
Marshal.Copy(ptr, bytes, 0, size);
// Release unmanaged memory.
Marshal.FreeHGlobal(ptr);
return bytes;
}
/// <summary> Need Faster ? </summary>
public static T ByteArrayToObject<T>(ref T obj, int StartOffset, params byte[] bytes)
{
int size = Marshal.SizeOf(obj);
int Length = (bytes.Length > size) ? size : bytes.Length;
byte[] Allbytes = ObjectToByteArray(obj);
Array.Copy(bytes, 0, Allbytes, StartOffset, Length - StartOffset);
var ptr = Marshal.AllocHGlobal(size);
Marshal.Copy(Allbytes, 0, ptr, Length );
obj = (T)Marshal.PtrToStructure(ptr, typeof(T));
Marshal.FreeHGlobal(ptr);
return obj;
}
Example use
[Serializable]
[System.Runtime.InteropServices.StructLayout(System.Runtime.InteropServices.LayoutKind.Sequential, Pack = 1, CharSet = System.Runtime.InteropServices.CharSet.Ansi)]
struct Protocol
{
public byte f0;
public byte f1;
public short f2;
public byte f3;
public long f4;
[System.Runtime.InteropServices.MarshalAs(System.Runtime.InteropServices.UnmanagedType.ByValArray, SizeConst = 20000)]
public int[] Array; // 20000
}
System.Diagnostics.Stopwatch sw = new System.Diagnostics.Stopwatch();
for (byte i = 1; i < 10; i++)
{
sw.Reset();
sw.Start();
ob = ByteArrayToObject<Protocol>(ref ob,1, i, 0x11, i, 0x22, i);
sw.Stop();
Console.WriteLine("Tick =" + sw.ElapsedTicks);
}
Output
Tick =9940
Tick =686
Tick =593
Tick =474
Tick =562
Tick =5283
Tick =193
Tick =173
Tick =164
This is too long for a comment, but to expand on the unsafe approach:
unsafe struct Ex
{
public byte f0,f1,f2,f3,f4;
public fixed int buffer[20000];
}
class Program
{
public static unsafe void ByteArrayToEx(Ex* obj, int offset, params byte[] bytes)
{
// you should add some safely nets here sizeof(Ex) should used for size of struct
byte* p = (byte*)obj;
foreach (var b in bytes)
{
p[offset++] = b;
}
// dont return value, it is expensive!
}
unsafe static void Main(string[] args)
{
Stopwatch sw = new Stopwatch();
Console.WriteLine(Stopwatch.Frequency);
Ex e = new Ex { f0 = 0, f1 = 1, f2 = 2, f3 = 3, f4 = 4 };
ByteArrayToEx(&e, 2, 5, 6, 7);
for (int i = 0; i < 10; i++) {
sw.Restart();
ByteArrayToEx(&e, 2, (byte) i, 6, 7);
sw.Stop();
Console.WriteLine(sw.ElapsedTicks);
}
}
}
This may or may not work for you. Also dont return the value. You are already mutating the pointer to it. Returning a copy of such a big struct adds 10 ticks to every call to it.
Also, you need to do at least 1 warmup when bench marking. That is why the first number is so poor.
Results on my PC:
3312929
4
2
0
0
0
0
0
0
0
0
Rewrote a little
public static unsafe void ByteArrayToEx(ref Ex value, int offset, params byte[] bytes)
{
// you should add some safely nets here sizeof(Ex) should used for size of struct
fixed (Ex* obj = &value)
{
byte* p = (byte*)obj;
foreach (var b in bytes)
{
p[offset++] = b;
}
}
// dont return value, it is expensive!
}
Related
I have a problem that just baffles me. I import a .wav file and read them as bytes. Then I turn them into integers that I then all divide by 2 (or some other number) in order to decrease the volume. Then I make a new .wav file into which I put the new data. The result is loud and heavy distortion over the original track.
Scroll to the Main() method for the relevant (C#-)code:
using System;
using System.IO;
namespace ConsoleApp2 {
class basic {
public static byte[] bit32(int num) { //turns int into byte array of length 4
byte[] numbyt = new byte[4] { 0x00, 0x00, 0x00, 0x00 };
int pow;
for (int k = 3; k >= 0; k--) {
pow = (int)Math.Pow(16, 2*k + 1);
numbyt[k] += (byte)(16*(num/pow));
num -= numbyt[k]*(pow/16);
numbyt[k] += (byte)(num/(pow/16));
num -= (num/(pow/16))*pow/16;
}
return numbyt;
}
public static byte[] bit16(int num) { //turns int into byte array of length 2
if (num < 0) {
num += 65535;
}
byte[] numbyt = new byte[2] { 0x00, 0x00 };
int pow;
for (int k = 1; k >= 0; k--) {
pow = (int)Math.Pow(16, 2*k + 1);
numbyt[k] += (byte)(16*(num/pow));
num -= numbyt[k]*(pow/16);
numbyt[k] += (byte)(num/(pow/16));
num -= (num/(pow/16))*pow/16;
}
return numbyt;
}
public static int bitint16(byte[] numbyt) { //turns byte array of length 2 into int
int num = 0;
num += (int)Math.Pow(16, 2)*numbyt[1];
num += numbyt[0];
return num;
}
}
class wavfile: FileStream {
public wavfile(string name, int len) : base(name, FileMode.Create) {
int samplerate = 44100;
byte[] riff = new byte[] { 0x52, 0x49, 0x46, 0x46 };
this.Write(riff, 0, 4);
byte[] chunksize;
chunksize = basic.bit32(36 + len*4);
this.Write(chunksize, 0, 4);
byte[] wavebyte = new byte[4] { 0x57, 0x41, 0x56, 0x45 };
this.Write(wavebyte, 0, 4);
byte[] fmt = new byte[] { 0x66, 0x6d, 0x74, 0x20 };
this.Write(fmt, 0, 4);
byte[] subchunk1size = new byte[] { 0x10, 0x00, 0x00, 0x00 };
this.Write(subchunk1size, 0, 4);
byte[] formchann = new byte[] { 0x01, 0x00, 0x02, 0x00 };
this.Write(formchann, 0, 4);
byte[] sampleratebyte = basic.bit32(samplerate);
this.Write(sampleratebyte, 0, 4);
byte[] byterate = basic.bit32(samplerate*4);
this.Write(byterate, 0, 4);
byte[] blockalign = new byte[] { 0x04, 0x00 };
this.Write(blockalign, 0, 2);
byte[] bits = new byte[] { 0x10, 0x00 };
this.Write(bits, 0, 2);
byte[] data = new byte[] { 0x64, 0x61, 0x74, 0x61 };
this.Write(data, 0, 4);
byte[] samplesbyte = basic.bit32(len*4);
this.Write(samplesbyte, 0, 4);
}
public void sound(int[] w, int len, wavfile wavorigin = null) {
byte[] wavbyt = new byte[len*4];
for (int t = 0; t < len*2; t++) {
byte[] wavbit16 = basic.bit16(w[t]);
wavbyt[2*t] = wavbit16[0];
wavbyt[2*t + 1] = wavbit16[1];
}
this.Write(wavbyt, 0, len*4);
System.Media.SoundPlayer player = new System.Media.SoundPlayer();
player.SoundLocation = this.Name;
while (true) {
player.Play();
Console.WriteLine("repeat?");
if (Console.ReadLine() == "no") {
break;
}
}
}
}
class Program {
static void Main() {
int[] song = new int[45000*2];
byte[] songbyt = File.ReadAllBytes("name.wav"); //use your stereo, 16bits per sample wav-file
for (int t = 0; t < 45000*2; t++) {
byte[] songbytsamp = new byte[2] { songbyt[44 + 2*t], songbyt[44 + 2*t + 1] }; //I skip the header
song[t] = basic.bitint16(songbytsamp)/2; //I divide by 2 here, remove the "/2" to hear the normal sound again
//song[t] *= 2;
}
wavfile wav = new wavfile("test.wav", 45000); //constructor class that writes the header of a .wav file
wav.sound(song, 45000); //method that writes the data from "song" into the .wav file
}
}
}
The problem is not the rounding down that happens when you divide an odd number by 2; you can uncomment the line that says song[t] *= 2; and hear for yourself that all of the distortion has completely disappeared again.
I must be making a small stupid mistake somewhere, but I cannot find it. I just want to make the sound data quieter to avoid distortion when I add more sounds to it.
Well, I knew it would be something stupid, and I was right. I forgot to account for the fact that negative numbers are written in signed 16 bit language as the numbers above 2^15, and when you divide by 2, you push them into (very large) positive values. I altered my code to substract 2^16 from any number that's above 2^15 before dividing by 2. I have to thank this person though: How to reduce volume of wav stream?
If this means that my question was a duplicate, then go ahead and delete it, but I'm letting it stay for now, because someone else might find it helpful.
Using Math.Pow to do bit and byte operations is a really bad idea. That function takes double values as inputs and returns a double. It also does exponentiation (not a trivial operation). Using traditional bit shift and mask operations is clearer, much faster and less likely to introduce noise (because of the inaccuracy of doubles).
As you noticed, you really want to work with unsigned quantities (like uint/UInt32 and ushort/UInt16). Sign extension trips up everyone when doing this sort of work.
This is not a full answer to your question, but it does present a way to do the byte operations that is arguably better.
First, create a small struct to hold a combination of a bit-mask and a shift quantity:
public struct MaskAndShift {
public uint Mask {get; set;}
public int Shift {get; set;}
}
Then I create two arrays of these structs for describing what should be done to extract individual bytes from a uint or a ushort. I put them both in a static class named Worker:
public static class Worker {
public static MaskAndShift[] Mask32 = new MaskAndShift[] {
new MaskAndShift {Mask = 0xFF000000, Shift = 24},
new MaskAndShift {Mask = 0x00FF0000, Shift = 16},
new MaskAndShift {Mask = 0x0000FF00, Shift = 8},
new MaskAndShift {Mask = 0x000000FF, Shift = 0},
};
public static MaskAndShift[] Mask16 = new MaskAndShift[] {
new MaskAndShift {Mask = 0x0000FF00, Shift = 8},
new MaskAndShift {Mask = 0x000000FF, Shift = 0},
};
}
Looking at the first entry in the first array, it says "to extract the first byte from a uint, mask that uint with 0xFF000000 and shift the result 24 bits to the right". If you have endian-ness issues, you can simply re-order the entries in the array.
Then I created this static function (in the Worker class) to convert a uint / UInt32 to an array of four bytes:
public static byte[] UintToByteArray (uint input) {
var bytes = new byte[4];
int i = 0;
foreach (var maskPair in Mask32) {
var masked = input & maskPair.Mask;
if (maskPair.Shift != 0) {
masked >>= maskPair.Shift;
}
bytes[i++] = (byte) masked;
}
return bytes;
}
The code to do the same operation for a 16 bit ushort (aka UInt16) looks nearly the same (there's probably an opportunity for some refactoring here):
public static byte[] UShortToByteArray (ushort input) {
var bytes = new byte[2];
int i = 0;
foreach (var maskPair in Mask16) {
var masked = input & maskPair.Mask;
if (maskPair.Shift != 0) {
masked >>= maskPair.Shift;
}
bytes[i++] = (byte) masked;
}
return bytes;
}
The reverse operation is much simpler (however, if you have endian-ness issues, you'll need to write the code). Here I just take the entries of the array, add them into a value and shift the result:
public static uint ByteArrayToUint (byte[] bytes) {
uint result = 0;
//note that the first time through, result is zero, so shifting is a noop
foreach (var b in bytes){
result <<= 8;
result += b;
}
return result;
}
Doing this for the 16 bit version ends up being effectively the same code, so...
public static ushort ByteArrayToUshort (byte[] bytes) {
return (ushort) ByteArrayToUint(bytes);
}
Bit-twiddling never works the first time. So I wrote some test code:
public static void Main(){
//pick a nice obvious pattern
uint bit32Test = (((0xF1u * 0x100u) + 0xE2u) * 0x100u + 0xD3u) * 0x100u + 0xC4u;
Console.WriteLine("Start");
Console.WriteLine("Input 32 Value: " + bit32Test.ToString("X"));
var bytes32 = Worker.UintToByteArray(bit32Test);
foreach (var b in bytes32){
Console.WriteLine(b.ToString("X"));
}
Console.WriteLine();
ushort bit16Test = (ushort)((0xB5u * 0x100u) + 0xA6u);
Console.WriteLine("Input 16 Value: " + bit16Test.ToString("X"));
var bytes16 = Worker.UShortToByteArray(bit16Test);
foreach (var b in bytes16){
Console.WriteLine(b.ToString("X"));
}
Console.WriteLine("\r\nNow the reverse");
uint reconstitued32 = Worker.ByteArrayToUint(bytes32);
Console.WriteLine("Reconstituted 32: " + reconstitued32.ToString("X"));
ushort reconstitued16 = Worker.ByteArrayToUshort(bytes16);
Console.WriteLine("Reconstituted 16: " + reconstitued16.ToString("X"));
}
The output from that test code looks like:
Start
Input 32 Value: F1E2D3C4
F1
E2
D3
C4
Input 16 Value: B5A6
B5
A6
Now the reverse
Reconstituted 32: F1E2D3C4
Reconstituted 16: B5A6
Also note that I do everything in hexadecimal - it makes everything so much easier to read and to understand.
I want to use my laptop to communicate with MES(Manufacturing Execution System).
And when I serialized the data (struct type), something happen.
The code below is what I have done:
[StructLayout(LayoutKind.Sequential, Pack = 4)]
struct DataPackage
{
public int a;
public ushort b;
public byte c;
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 5)] public string d;
}
class Program
{
static void Main(string[] args)
{
DataPackage pack1 = new DataPackage();
pack1.a = 0x33333301;
pack1.b = 200;
pack1.c = 21;
pack1.d = "hello";
byte[] pack1_serialized = getBytes(pack1);
Console.WriteLine(BitConverter.ToString(pack1_serialized));
byte[] getBytes(DataPackage str)
{
int size = Marshal.SizeOf(str);
byte[] arr = new byte[size];
IntPtr ptr = Marshal.AllocHGlobal(size);
Marshal.StructureToPtr(str, ptr, true);
Marshal.Copy(ptr, arr, 0, size);
Marshal.FreeHGlobal(ptr);
return arr;
}
}
}
And here is the outcome:
I want the outcome to be like this:
33-33-33-01-00-C8-15-68-65-6C-6C-6F
So the questions are:
Why is the uint / ushort type data reverse after Marshalling?
Is there any other way that I can send the data in the sequence that I want ?
Why is the last word "o" in string "hello" disappear in the byte array ?
Thanks.
1 - Because your expected outcome is big endian, and your system appears to use little endian, so basically reversed order of bytes compared to what you expect.
2- Easiest way is to "convert" your numbers to big endian before marshalling (that is change them in a way which will produce desired result while converting them using little endian), for example like this:
static int ToBigEndianInt(int x) {
if (!BitConverter.IsLittleEndian)
return x; // already fine
var ar = BitConverter.GetBytes(x);
Array.Reverse(ar);
return BitConverter.ToInt32(ar, 0);
}
static ushort ToBigEndianShort(ushort x) {
if (!BitConverter.IsLittleEndian)
return x; // already fine
var ar = BitConverter.GetBytes(x);
Array.Reverse(ar);
return BitConverter.ToUInt16(ar, 0);
}
And then:
pack1.a = ToBigEndianInt(0x33333301);
pack1.b = ToBigEndianShort(200);
Note that this way of conversion is not very efficient and if you need more perfomance you can do this with some bit manipulations.
3 - Because string is null terminated, and this null terminator counts in SizeConst. Since you have it 5, there will be 4 characters of your string + 1 null terminator. Just increase SizeConst = 6 (that might add additional zeroes at the end because of Pack = 4).
I would like to save a Color[] to a file. To do so, I found that saving a byte array to a file using "System.IO.File.WriteAllBytes" should be very efficient.
I would like to cast my Color[] (array of struct) to a byte array into a safe way considering:
Potential problem of little endian / big endian (I think it is impossible to happen but want to be sure)
Having 2 differents pointer to the same memory which point to different type. Does the garbage collection will know what to do - moving objects - deleting a pointer ???
If it is possible, it would be nice to have a generic way to cast array of byte to array of any struct (T struct) and vice-versa.
If not possible, why ?
Thanks,
Eric
I think that those 2 solutions make a copy that I would like to avoid and also they both uses Marshal.PtrToStructure which is specific to structure and not to array of structure:
Reading a C/C++ data structure in C# from a byte array
How to convert a structure to a byte array in C#?
Since .NET Core 2.1, yes we can! Enter MemoryMarshal.
We will treat our Color[] as a ReadOnlySpan<Color>. We reinterpret that as a ReadOnlySpan<byte>. Finally, since WriteAllBytes has no span-based overload, we use a FileStream to write the span to disk.
var byteSpan = MemoryMarshal.AsBytes(colorArray.AsSpan());
fileStream.Write(byteSpan);
As an interesting side note, you can also experiment with the [StructLayout(LayoutKind.Explicit)] as an attribute on your fields. It allows you to specify overlapping fields, effectively allowing the concept of a union.
Here is a blog post on MSDN that illustrates this. It shows the following code:
[StructLayout(LayoutKind.Explicit)]
public struct MyUnion
{
[FieldOffset(0)]
public UInt16 myInt;
[FieldOffset(0)]
public Byte byte1;
[FieldOffset(1)]
public Byte byte2;
}
In this example, the UInt16 field overlaps with the two Byte fields.
This seems to be strongly related to what you are trying to do. It gets you very close, except for the part of writing all the bytes (especially of multiple Color objects) efficiently. :)
Regarding Array Type Conversion
C# as a language intentionally makes the process of flattening objects or arrays into byte arrays difficult because this approach goes against the principals of .NET strong typing. The conventional alternatives include several serialization tools which are generally seen a safer and more robust, or manual serialization coding such as BinaryWriter.
Having two variables of different types point to the same object in memory can only be performed if the types of the variables can be cast, implicitly or explicitly. Casting from an array of one element type to another is no trivial task: it would have to convert the internal members that keep track of things such as array length, etc.
A simple way to write and read Color[] to file
void WriteColorsToFile(string path, Color[] colors)
{
BinaryWriter writer = new BinaryWriter(File.OpenWrite(path));
writer.Write(colors.Length);
foreach(Color color in colors)
{
writer.Write(color.ToArgb());
}
writer.Close();
}
Color[] ReadColorsFromFile(string path)
{
BinaryReader reader = new BinaryReader(File.OpenRead(path));
int length = reader.ReadInt32();
Colors[] result = new Colors[length];
for(int n=0; n<length; n++)
{
result[n] = Color.FromArgb(reader.ReadInt32());
}
reader.Close();
}
You could use pointers if you really want to copy each byte and not have a copy but the same object, similar to this:
var structPtr = (byte*)&yourStruct;
var size = sizeof(YourType);
var memory = new byte[size];
fixed(byte* memoryPtr = memory)
{
for(int i = 0; i < size; i++)
{
*(memoryPtr + i) = *structPtr++;
}
}
File.WriteAllBytes(path, memory);
I just tested this and after adding the fixed block and some minor corrections it looks like it is working correctly.
This is what I used to test it:
public static void Main(string[] args)
{
var a = new s { i = 1, j = 2 };
var sPtr = (byte*)&a;
var size = sizeof(s);
var mem = new byte[size];
fixed (byte* memPtr = mem)
{
for (int i = 0; i < size; i++)
{
*(memPtr + i) = *sPtr++;
}
}
File.WriteAllBytes("A:\\file.txt", mem);
}
struct s
{
internal int i;
internal int j;
}
The result is the following:
(I manually resolved the hex bytes in the second line, only the first line was produced by the program)
public struct MyX
{
public int IntValue;
[MarshalAs(UnmanagedType.ByValArray, SizeConst = 3, ArraySubType = UnmanagedType.U1)]
public byte[] Array;
MyX(int i, int b)
{
IntValue = b;
Array = new byte[3];
}
public MyX ToStruct(byte []ar)
{
byte[] data = ar;//= { 1, 0, 0, 0, 9, 8, 7 }; // IntValue = 1, Array = {9,8,7}
IntPtr ptPoit = Marshal.AllocHGlobal(data.Length);
Marshal.Copy(data, 0, ptPoit, data.Length);
MyX x = (MyX)Marshal.PtrToStructure(ptPoit, typeof(MyX));
Marshal.FreeHGlobal(ptPoit);
return x;
}
public byte[] ToBytes()
{
Byte[] bytes = new Byte[Marshal.SizeOf(typeof(MyX))];
GCHandle pinStructure = GCHandle.Alloc(this, GCHandleType.Pinned);
try
{
Marshal.Copy(pinStructure.AddrOfPinnedObject(), bytes, 0, bytes.Length);
return bytes;
}
finally
{
pinStructure.Free();
}
}
}
void function()
{
byte[] data = { 1, 0, 0, 0, 9, 8, 7 }; // IntValue = 1, Array = {9,8,7}
IntPtr ptPoit = Marshal.AllocHGlobal(data.Length);
Marshal.Copy(data, 0, ptPoit, data.Length);
var x = (MyX)Marshal.PtrToStructure(ptPoit, typeof(MyX));
Marshal.FreeHGlobal(ptPoit);
var MYstruc = x.ToStruct(data);
Console.WriteLine("x.IntValue = {0}", x.IntValue);
Console.WriteLine("x.Array = ({0}, {1}, {2})", x.Array[0], x.Array[1], x.Array[2]);
}
Working code for reference (take care, I did not need the alpha channel in my case):
// ************************************************************************
// If someday Microsoft make Color serializable ...
//public static void SaveColors(Color[] colors, string path)
//{
// BinaryFormatter bf = new BinaryFormatter();
// MemoryStream ms = new MemoryStream();
// bf.Serialize(ms, colors);
// byte[] bytes = ms.ToArray();
// File.WriteAllBytes(path, bytes);
//}
// If someday Microsoft make Color serializable ...
//public static Colors[] LoadColors(string path)
//{
// Byte[] bytes = File.ReadAllBytes(path);
// BinaryFormatter bf = new BinaryFormatter();
// MemoryStream ms2 = new MemoryStream(bytes);
// return (Colors[])bf.Deserialize(ms2);
//}
// ******************************************************************
public static void SaveColorsToFile(Color[] colors, string path)
{
var formatter = new BinaryFormatter();
int count = colors.Length;
using (var stream = File.OpenWrite(path))
{
formatter.Serialize(stream, count);
for (int index = 0; index < count; index++)
{
formatter.Serialize(stream, colors[index].R);
formatter.Serialize(stream, colors[index].G);
formatter.Serialize(stream, colors[index].B);
}
}
}
// ******************************************************************
public static Color[] LoadColorsFromFile(string path)
{
var formatter = new BinaryFormatter();
Color[] colors;
using (var stream = File.OpenRead(path))
{
int count = (int)formatter.Deserialize(stream);
colors = new Color[count];
for (int index = 0; index < count; index++)
{
byte r = (byte)formatter.Deserialize(stream);
byte g = (byte)formatter.Deserialize(stream);
byte b = (byte)formatter.Deserialize(stream);
colors[index] = Color.FromRgb(r, g, b);
}
}
return colors;
}
// ******************************************************************
In the following bit of code, I am observing that the marshaler is reading past the 3 byte source array to populate another 8 bytes of data. With time, the code eventually throws a memory access violation. Is there a way to tell the marshaller to only marshal the first 3 bytes when converting a pointer to a structure? If I make the Articulations array "NonSerialized" then the constructor will throw an access violation when processing a source array of 11 bytes.
using System;
using System.Runtime.InteropServices;
namespace MarshallingTest
{
[StructLayout(LayoutKind.Sequential, Pack = 1)]
public struct Articulation
{
public const int BaseSize = 8;
public byte attribute1;
public byte attribute2;
public byte attribute3;
public byte attribute4;
public byte attribute5;
public byte attribute6;
public byte attribute7;
public byte attribute8;
}
[StructLayout(LayoutKind.Sequential, Pack = 1)]
public class TestEntity
{
public const int BaseSize = 3;
public byte EntityId; // 1 byte
public byte Variable; // 1 byte
public byte NumArticulations; // 1 byte
[MarshalAs(UnmanagedType.ByValArray, ArraySubType = UnmanagedType.Struct)]
public Articulation[] Articulations; // 8 bytes each
public TestEntity(byte[] rawData)
{
unsafe
{
fixed (byte* pData = rawData)
{
// I am observing that the marshaler is reading past the 3 bytes
// to populate another 8 bytes of data. With time, the code
// will eventually throw a memory access violation.
//
// Is there a way to tell the marshaller to only marshal the
// first 3 bytes when converting a pointer to a structure?
Marshal.PtrToStructure((IntPtr) pData, this);
for (int i = 0; i < BaseSize + Articulation.BaseSize; i++)
{
Console.WriteLine("pData + " + i + " = " + *(pData + i));
}
}
}
}
public byte[] ToRaw()
{
byte[] byteArray = new byte[BaseSize + Articulation.BaseSize*Articulations.Length];
unsafe
{
fixed (byte* pData = byteArray)
{
Marshal.StructureToPtr(this, (IntPtr) pData, false);
}
}
return byteArray;
}
}
internal class Program
{
private const int TestDataSize = TestEntity.BaseSize;
private static void Main()
{
byte[] testData = new byte[TestDataSize];
for (int i = 0; i < TestDataSize; i++)
{
testData[i] = (byte) (i + 1);
}
TestEntity test = new TestEntity(testData);
// Print resulting array. You'll see that data outside the source
// byte array was marshalled into the test structure.
Console.WriteLine(test.EntityId);
Console.WriteLine(test.Variable);
Console.WriteLine(test.NumArticulations);
Console.WriteLine(test.Articulations[0].attribute1);
Console.WriteLine(test.Articulations[0].attribute2);
Console.WriteLine(test.Articulations[0].attribute3);
Console.WriteLine(test.Articulations[0].attribute4);
Console.WriteLine(test.Articulations[0].attribute5);
Console.WriteLine(test.Articulations[0].attribute6);
Console.WriteLine(test.Articulations[0].attribute7);
Console.WriteLine(test.Articulations[0].attribute8);
Console.WriteLine("Test complete.");
}
}
}
Is there a way of mapping data collected on a stream or array to a data structure or vice-versa?
In C++ this would simply be a matter of casting a pointer to the stream as a data type I want to use (or vice-versa for the reverse)
eg: in C++
Mystruct * pMyStrct = (Mystruct*)&SomeDataStream;
pMyStrct->Item1 = 25;
int iReadData = pMyStrct->Item2;
obviously the C++ way is pretty unsafe unless you are sure of the quality of the stream data when reading incoming data, but for outgoing data is super quick and easy.
Most people use .NET serialization (there is faster binary and slower XML formatter, they both depend on reflection and are version tolerant to certain degree)
However, if you want the fastest (unsafe) way - why not:
Writing:
YourStruct o = new YourStruct();
byte[] buffer = new byte[Marshal.SizeOf(typeof(YourStruct))];
GCHandle handle = GCHandle.Alloc(buffer, GCHandleType.Pinned);
Marshal.StructureToPtr(o, handle.AddrOfPinnedObject(), false);
handle.Free();
Reading:
handle = GCHandle.Alloc(buffer, GCHandleType.Pinned);
o = (YourStruct)Marshal.PtrToStructure(handle.AddrOfPinnedObject(), typeof(YourStruct));
handle.Free();
In case lubos hasko's answer was not unsafe enough, there is also the really unsafe way, using
pointers in C#. Here's some tips and pitfalls I've run into:
using System;
using System.Runtime.InteropServices;
using System.IO;
using System.Diagnostics;
// Use LayoutKind.Sequential to prevent the CLR from reordering your fields.
[StructLayout(LayoutKind.Sequential)]
unsafe struct MeshDesc
{
public byte NameLen;
// Here fixed means store the array by value, like in C,
// though C# exposes access to Name as a char*.
// fixed also requires 'unsafe' on the struct definition.
public fixed char Name[16];
// You can include other structs like in C as well.
public Matrix Transform;
public uint VertexCount;
// But not both, you can't store an array of structs.
//public fixed Vector Vertices[512];
}
[StructLayout(LayoutKind.Sequential)]
unsafe struct Matrix
{
public fixed float M[16];
}
// This is how you do unions
[StructLayout(LayoutKind.Explicit)]
unsafe struct Vector
{
[FieldOffset(0)]
public fixed float Items[16];
[FieldOffset(0)]
public float X;
[FieldOffset(4)]
public float Y;
[FieldOffset(8)]
public float Z;
}
class Program
{
unsafe static void Main(string[] args)
{
var mesh = new MeshDesc();
var buffer = new byte[Marshal.SizeOf(mesh)];
// Set where NameLen will be read from.
buffer[0] = 12;
// Use Buffer.BlockCopy to raw copy data across arrays of primitives.
// Note we copy to offset 2 here: char's have alignment of 2, so there is
// a padding byte after NameLen: just like in C.
Buffer.BlockCopy("Hello!".ToCharArray(), 0, buffer, 2, 12);
// Copy data to struct
Read(buffer, out mesh);
// Print the Name we wrote above:
var name = new char[mesh.NameLen];
// Use Marsal.Copy to copy between arrays and pointers to arrays.
unsafe { Marshal.Copy((IntPtr)mesh.Name, name, 0, mesh.NameLen); }
// Note you can also use the String.String(char*) overloads
Console.WriteLine("Name: " + new string(name));
// If Erik Myers likes it...
mesh.VertexCount = 4711;
// Copy data from struct:
// MeshDesc is a struct, and is on the stack, so it's
// memory is effectively pinned by the stack pointer.
// This means '&' is sufficient to get a pointer.
Write(&mesh, buffer);
// Watch for alignment again, and note you have endianess to worry about...
int vc = buffer[100] | (buffer[101] << 8) | (buffer[102] << 16) | (buffer[103] << 24);
Console.WriteLine("VertexCount = " + vc);
}
unsafe static void Write(MeshDesc* pMesh, byte[] buffer)
{
// But byte[] is on the heap, and therefore needs
// to be flagged as pinned so the GC won't try to move it
// from under you - this can be done most efficiently with
// 'fixed', but can also be done with GCHandleType.Pinned.
fixed (byte* pBuffer = buffer)
*(MeshDesc*)pBuffer = *pMesh;
}
unsafe static void Read(byte[] buffer, out MeshDesc mesh)
{
fixed (byte* pBuffer = buffer)
mesh = *(MeshDesc*)pBuffer;
}
}
if its .net on both sides:
think you should use binary serialization and send the byte[] result.
trusting your struct to be fully blittable can be trouble.
you will pay in some overhead (both cpu and network) but will be safe.
If you need to populate each member variable by hand you can generalize it a bit as far as the primitives are concerned by using FormatterServices to retrieve in order the list of variable types associated with an object. I've had to do this in a project where I had a lot of different message types coming off the stream and I definitely didn't want to write the serializer/deserializer for each message.
Here's the code I used to generalize the deserialization from a byte[].
public virtual bool SetMessageBytes(byte[] message)
{
MemberInfo[] members = FormatterServices.GetSerializableMembers(this.GetType());
object[] values = FormatterServices.GetObjectData(this, members);
int j = 0;
for (int i = 0; i < members.Length; i++)
{
string[] var = members[i].ToString().Split(new char[] { ' ' });
switch (var[0])
{
case "UInt32":
values[i] = (UInt32)((message[j] << 24) + (message[j + 1] << 16) + (message[j + 2] << 8) + message[j + 3]);
j += 4;
break;
case "UInt16":
values[i] = (UInt16)((message[j] << 8) + message[j + 1]);
j += 2;
break;
case "Byte":
values[i] = (byte)message[j++];
break;
case "UInt32[]":
if (values[i] != null)
{
int len = ((UInt32[])values[i]).Length;
byte[] b = new byte[len * 4];
Array.Copy(message, j, b, 0, len * 4);
Array.Copy(Utilities.ByteArrayToUInt32Array(b), (UInt32[])values[i], len);
j += len * 4;
}
break;
case "Byte[]":
if (values[i] != null)
{
int len = ((byte[])values[i]).Length;
Array.Copy(message, j, (byte[])(values[i]), 0, len);
j += len;
}
break;
default:
throw new Exception("ByteExtractable::SetMessageBytes Unsupported Type: " + var[1] + " is of type " + var[0]);
}
}
FormatterServices.PopulateObjectMembers(this, members, values);
return true;
}