Calling await on a task created with Task.Run() - c#

Why is it possible to do this in C#?
var task = Task.Run (...);
await task;
Isn't Task.Run() supposed to be used for CPU-bound code? Does it make sense to call awaitfor this?
I.e., after calling Task.Run I understand that the task is running in another thread of the thread pool. What's the purpose of calling await? Wouldn't make more sense just to call task.Wait()?
One last question, my first impression was that await is intended to be used exclusively with async methods. Is it common to use it for task returned by Task.Run()?
EDIT. It also makes me wonder, why do we have Task.Wait () and not a Task.Await(). I mean, why a method is used for Wait() and a keyworkd for await. Wouldn't be more consistent to use a method in both cases?

There would be no point at all in using Wait. There's no point in starting up a new thread to do work if you're just going to have another thread sitting there doing nothing waiting on it. The only sensible option of those two is to await it. Awaiting a task is entirely sensible, as it's allowing the original thread to continue execution.
It's sensible to await any type of Task (in the right context), regardless of where it comes from. There's nothing special about async methods being awaited. In fact in every single asynchronous program there needs to be asynchronous methods that aren't using the async keyword; if every await is awaiting an async method then you'll never have anywhere to start.

There are several good answers here, but from a more philosophical standpoint...
If you have lots of CPU-bound work to do, the best solution is usually the Task Parallel Library, i.e., Parallel or Parallel LINQ.
If you have I/O-bound work to do, the best solution is usually async and await code that is built around naturally-asynchronous implementations (e.g., Task.Factory.FromAsync).
Task.Run is a way to execute a single piece of CPU-bound code and treat it as asynchronous from the point of view of the calling thread. I.e., if you want to do CPU-bound work but not have it interfere with the UI.
The construct await Task.Run is a way to bridge the two worlds: have the UI thread queue up CPU-bound work and treat it asynchronously. This is IMO the best way to bridge asynchronous and parallel code as well, e.g., await Task.Run(() => Parallel.ForEach(...)).
why a method is used for Wait() and a keyword for await.
One reason that await is a keyword is because they wanted to enable pattern matching. Tasks are not the only "awaitables" out there. WinRT has its own notion of "asynchronous operations" which are awaitable, Rx observable sequences are awaitable, Task.Yield returns a non-Task awaitable, and this enables you to create your own awaitables if necessary (e.g., if you want to avoid Task allocations in high-performance socket applications).

Yes, it's common and recommended. await allows to wait for a task (or any awaitable) asynchronously. It's true that it's mostly used for naturally asynchronous operations (e.g. I/O), but it's also used for offloading work to be done on a different thread using Task.Run and waiting asynchronously for it to complete.
Using Wait not only blocks the calling thread and so defeats the purpose of using Task.Run in the first place, it could also potentially lead to deadlocks in a GUI environment with a single threaded synchronization context.
One last question, my first impression was that await is intended to be used exclusively with async methods
Whether a method is actually marked with the async modifier is an implementation detail and most "root" task returning methods in .Net aren't actually async ones (Task.Delay is a good example for that).

Wouldn't make more sense just to call task.Wait()?
No, if you call Wait you're involving two threads there, one of the worker threads from the ThreadPool is working for you (given the task is CPU bound), and also your calling thread will be blocked.
Why would you block the calling thread? The result will be too bad if the calling thread is a UI thread! Also if you call Task.Run immediately followed by Task.Wait you're making it worse, too. It is no better than calling the delegate synchronously. There is no point whatsoever in calling Wait immediately after starting a Task.
You should almost never use Wait, always prefer await and release the calling thread.

It is very common and useful for cases like (greatly simplified; production code would need exception handling, for instance):
async void OnButtonClicked()
{
//... Get information from UI controls ...
var results = await Task.Run(CpuBoundWorkThatShouldntBlockUI);
//... Update UI based on results from work run in the background ...
}
Regarding the comment of your later edit, 'await' is not a method call. It is a keyword (only allowed in a method that has been marked 'async', for clarity) that the compiler uses to decide how to implement the method. Under the hood, this involves rewriting the method procedure as a state machine that can be paused every time you use the 'await' keyword, then resumed when whatever is it awaiting calls back to indicate that it is done. This is a simplified description (exception propagation and other details complicate things), but the key point is that 'await' does a lot more than just calling a method on a Task.
In previous C# versions, the closest construct to this 'async/await' magic was the use of 'yield return' to implement IEnumerable<T>. For both enumerations and async methods, you want a way to pause and resume a method. The async/await keywords (and associated compiler support) start with this basic idea of a resumable method, then add in some powerful features like automatic propagation of exceptions, dispatching callbacks via a synchronization context (mostly useful to keep code on the UI thread) and automatic implementation of all the glue code to set up the continuation callback logic.

Related

release the calling thread while calling async function in synchronous context

It seems it is impossible in c# (dotnet core 3.1) to call an asynchronous function from a non-async method without blocking the original thread. Why ?
Code example:
public async Task myMethodAsync() {
await Task.Delay(5000);
}
public void callingMethhod() {
myMethodAsync().Wait(); // all flavours of this expression, like f.ex. .Result seem to be blocking the calling thread
}
What is the technical limitation for being able to release the calling thread until the async method completes, and then continue execution from there? Is it something technically impossible?
Yes, that is expected. That is why the concept of Task etc exist. If it was possible to do what you want: they wouldn't need to - we could just wave a wand and everything would be async. The entire point of awaitable types is that releasing the calling thread while allowing later continuation is hard, and requires coordination and participation from the calling code; and from what ever calls that; etc - all the way up the stack to whatever is running the threads. Your callingMethhod code is synchronous: it has only a few things it can do:
it can run to completion - meaning: it would have to block
it can throw an exception
The impact of this is that async/await is infectious; anything that touches awaitables kinda needs to also be awaitable, which means: you would typically only call myMethodAsync from a callingMethhod that returned a [Value]Task[<T>], and which is presumably async with an await (although those bits aren't strictly necessary in the example shown).
It seems it is impossible in c# (dotnet core 3.1) to call an asynchronous function from a non-async method without blocking the original thread. Why ?
Because that's what synchronous means. Synchronous means it blocks the thread until the method is complete.
What is the technical limitation for being able to release the calling thread until the async method completes, and then continue execution from there? Is it something technically impossible?
If your calling method wants to release its thread, then make it asynchronous. Asynchronous methods are capable of releasing their calling threads. There's nothing impossible here; it's been solved by async and await.
Now, if you're asking "why can't every method implicitly be async", then that is in theory possible, but it causes a couple of major issues. It can never be done in C# for backwards compatibility reasons. The two issues that immediately come to mind are:
Limited interop. It's not possible to use an "everything is async" language to interop with anything that uses old-school threading (Win32 mutexes, et. al.).
Unexpected concurrency. There are a lot of scenarios where developers make an assumption of synchronous code. If every method is potentially asynchronous, then even code as simple as var x = this._list[0]; this._list.RemoveAt(0); is no longer safe.

C# async/await - UI thread vs. other threads [duplicate]

I've been reading about the new async and await operators in C# and tried to figure out in which circumstances they would possibly be useful to me. I studied several MSDN articles and here's what I read between the lines:
You can use async for Windows Forms and WPF event handlers, so they can perform lengthy tasks without blocking the UI thread while the bulk of the operation is being executed.
async void button1_Click(object sender, EventArgs e)
{
// even though this call takes a while, the UI thread will not block
// while it is executing, therefore allowing further event handlers to
// be invoked.
await SomeLengthyOperationAsync();
}
A method using await must be async, which means that the usage of any async function somewhere in your code ultimately forces all methods in the calling sequence from the UI event handlers up until the lowest-level async method to be async as well.
In other words, if you create a thread with an ordinary good old ThreadStart entry point (or a Console application with good old static int Main(string[] args)), then you cannot use async and await because at one point you would have to use await, and make the method that uses it async, and hence in the calling method you also have to use await and make that one async and so on. But once you reach the thread entry point (or Main()), there's no caller to which an await would yield control to.
So basically you cannot use async and await without having a GUI that uses the standard WinForms and WPF message loop. I guess all that makes indeed sense, since MSDN states that async programming does not mean multithreading, but using the UI thread's spare time instead; when using a console application or a thread with a user defined entry point, multithreading would be necessary to perform asynchronous operations (if not using a compatible message loop).
My question is, are these assumptions accurate?
So basically you cannot use async and await without having a GUI that uses the standard WinForms and WPF message loop.
That's absolutely not the case.
In Windows Forms and WPF, async/await has the handy property of coming back to the UI thread when the asynchronous operation you were awaiting has completed, but that doesn't mean that's the only purpose to it.
If an asynchronous method executes on a thread-pool thread - e.g. in a web service - then the continuation (the rest of the asynchronous method) will simply execute in any thread-pool thread, with the context (security etc) preserved appropriately. This is still really useful for keeping the number of threads down.
For example, suppose you have a high traffic web service which mostly proxies requests to other web services. It spends most of its time waiting for other things, whether that's due to network traffic or genuine time at another service (e.g. a datbase). You shouldn't need lots of threads for that - but with blocking calls, you naturally end up with a thread per request. With async/await, you'd end up with very few threads, because very few requests would actually need any work performed for them at any one point in time, even if there were a lot of requests "in flight".
The trouble is that async/await is most easily demonstrated with UI code, because everyone knows the pain of either using background threads properly or doing too much work in the UI thread. That doesn't mean it's the only place the feature is useful though - far from it.
Various server-side technologies (MVC and WCF for example) already have support for asynchronous methods, and I'd expect others to follow suit.
A method using await must be async, which means that the usage of any async function somewhere in your code ultimately forces all methods in the calling sequence from the UI event handlers up until the lowest-level async method to be async as well.
Not true - methods marked async just mean they can use await, but callers of those methods have no restrictions. If the method returns Task or Task<T> then they can use ContinueWith or anything else you could do with tasks in 4.0
A good non-UI example is MVC4 AsyncController.
Ultimately, async/await is mostly about getting the compiler rewriting so you can write what looks like synchronous code and avoid all the callbacks like you had to do before async/await was added. It also helps with the SynchronizationContext handling, useful for scenarios with thread affinity (UI frameworks, ASP.NET), but even without those, it's still useful. Main can always do DoStuffAsync().Wait(); for instance. :)
My question is, are these assumptions accurate?
No.
You can use async for Windows Forms and WPF event handlers, so they can perform lengthy tasks without blocking the UI thread while the bulk of the operation is being executed.
True. Also true for other UI applications including Silverlight and Windows Store.
And also true for ASP.NET. In this case, it's the HTTP request thread that is not blocked.
A method using await must be async, which means that the usage of any async function somewhere in your code ultimately forces all methods in the calling sequence from the UI event handlers up until the lowest-level async method to be async as well.
This is a best practice ("async all the way down"), but it's not strictly required. You can block on the result of an asynchronous operation; many people choose to do this in Console applications.
an ordinary good old ThreadStart entry point
Well... I do have to take issue with "ordinary good old". As I explain on my blog, Thread is pretty much the worst option you have for doing background operations.
I recommend you review my introduction to async and await, and follow up with the async / await FAQ.
async-await is only wrapper for Task class manipulations, which is part of so named Tasks Parallel Library - TPL(published before async-await auto code generation tech.)
So fact is you may not use any references to UI controls within async - await.
Typically async-await is powerfull tool for any web and server relations, loading resources, sql. It works with smart waiting data with alive UI.
Typically TPL application: from simple big size loop till multi stages parallel calculations in complex calculations based on shared data (ContinueWith and so on)

Task.Factory.New vs Task.Run vs async/await, best way to not block UI thread

I need to make sure some of my code runs in the background and doesn't stop block the UI thread, and I thought I knew how to use Task.Factory.New, but as I read more and more, it seems that it doesn't always create a new thread but sometimes runs it on the UI thread if the thread pool thinks that's the way to go so now I am pretty confused over what to use to be safe that the method is not blocking the UI thread. I should also add that I don't need a return value from the method , I just need it to run asynchronously ( in the background ).
So what's the difference between these methods below and what is best to use to make sure it doesn't block the UI thread ?
And is it really true that Task.Factory.StartNew doesn't always create a thread that runs in the background and doesn't block the UI?
public Form1()
{
Task.Factory.StartNew(() => Thread.Sleep(1000));
Task.Run(() => Thread.Sleep(1000));
Task<int> longRunningTask = LongRunningOperationAsync();
}
public async Task<int> LongRunningOperationAsync() // assume we return an int from this long running operation
{
await Task.Delay(1000);
return 1;
}
I should also add that I don't need a return value from the method
Beware of a common problem: just because you don't need a return value doesn't mean you shouldn't await the returned task. awaiting the task provides you with exception information as well. The only time it's appropriate to ignore the returned task is when you don't care about the return value and you don't care about any exceptions the background work may raise (that is, you're OK with silently swallowing them).
In easily >99% of cases, the appropriate behavior is to await the task.
So what's the difference between these methods below
StartNew is an outdated way to run code on a thread pool thread. You should use Run instead of StartNew. I describe why in painful detail on my blog, but the short answer is that StartNew does not understand async delegates and has inappropriate default options.
async is completely different. Run executes code on a thread pool thread, but async rewrites the code so that it doesn't need a thread while there's an asynchronous operation in progress. So, the Run example will block a thread pool thread for 1000ms in the Thread.Sleep call. The async example will run on the UI thread and then not use the UI thread for 1000ms in the await Task.Delay call.
and what is best to use to make sure it doesn't block the UI thread?
Both Task.Run and async are appropriate in UI apps, depending on the nature of the background code.
If your code is asynchronous (usually all I/O-bound code), then you should use async/await. Note that imposing asynchrony "top-down" is hard. Don't think about "forcing code off the UI thread"; instead, identify the naturally-asynchronous parts of your system (DB, file, WebAPI calls, etc), change them to be async at the lowest level, and work up from there.
If your code is synchronous (CPU-bound), then you can use Task.Run if it takes too long to run on your UI thread.
And is it really true that Task.Factory.StartNew doesn't always create a thread that runs in the background and doesn't block the UI?
Run always executes code on threads from the thread pool. The rules for StartNew are much more complex, but in your example example code, if TaskScheduler.Current == TaskScheduler.Default, then StartNew will also use a thread from the thread pool.
The two examples you give are pretty much the same and depend of the context you are using them on.
Tasks are a way to describe a packet of work with meta information to know about its state, synchronize multiple tasks, cancel them etc. The main idea about tasks and asynchronicity is that you don't have to care about "where" (on which thread) this unit of work is executed, it is performed asynchronously, that's all you need to know. So no worries for your UI-Thread, as long as you are working asynchronously, it won't be locked (that's one of the main improvements since Win8 and the async/await keywords, every UI Manipulation has to be async not to bloat the UI).
As for async&await, those are in fact syntactic sugar. In many simple cases, you don't need to care about the task itself, you just want the asynchronous computation "do this and give me the answer when you have it".
int x = await ComputeXAsync(); //Returns a Task<int> which will be automatically unwrapped as an int
If you need to synchronize tasks, for example start multiple tasks in parallel and wait that all of them are done before continuing, you can't rely on the simple await Task<int> format, you then need to work with the task itself, its Status property and in this case the Task.WaitAll(task[]) API.
Edit: I really recommend the chapter of JonSkeets Book C# in Depth (last edition). The Async/Await part is really well explained and will take you way further than any reading online will do.
The first two are actually the same. see here
Well you can think of it as a task is something you want to be done.
A thread is something like a worker which does the task for you. So basically a threads helps you doing a task, but it doesn't return a value.
a task does not create its own OS thread. Instead, tasks are executed by a TaskScheduler; the default scheduler simply runs on the ThreadPool.
See Here
An example is. A remote request you can do as task, you want the job done but dont know when it will be. But a TCPListener for the server I would run as a thread, because it always needs to listen to the socket.
Like Andreas Niedermair pointed out, you can also use longliving tasks with the TaskCreationOptions

Set SynchronizationContext to null instead of using ConfigureAwait(false)

I have a library that exposes synchronous and asynchronous versions of a method, but under the hood, they both have to call an async method. I can't control that async method (it uses async/await and does not use ConfigureAwait(false)), nor can I replace it.
The code executes in the context of an ASP .NET request, so to avoid deadlocks, here's what I've done:
var capturedContext = SynchronizationContext.Current;
try
{
// Wipe the sync context, so that the bad library code won't find it
// That way, we avoid the deadlock
SynchronizationContext.SetSynchronizationContext(null);
// Call the async method and wait for the result
var task = MyMethodAsync();
task.Wait();
// Return the result
return task.Result;
}
finally
{
// Restore the sync context
SynchronizationContext.SetSynchronizationContext(capturedContext);
}
Does this produce the same effect as if MyMethodAsync had used ConfigureAwait(false) on all of its await's? Are there some other problems with this approach that I'm overlooking?
(MyMethodAsync is completely unaware that it's being run in an ASP .NET context, it doesn't do any calls to HttpContext.Current or anything like that. It just does some async SQL calls, and the writer didn't put ConfigureAwait(false) on any of them)
I have a library that exposes synchronous and asynchronous versions of a method, but under the hood, they both have to call an async method.
The library is wrong to expose a synchronous version. Just pretend the synchronous API doesn't exist.
so to avoid deadlocks
There shouldn't be any problems with deadlocks if you call an asynchronous method that uses async/await. If it doesn't use ConfigureAwait(false), then it's not as efficient as it could be, that's all. Deadlocks due to ConfigureAwait(false) only apply when you're trying to do sync-over-async (i.e., if you're calling the synchronous APIs from that library).
So, the easiest and simplest solution is to just ignore the synchronous APIs, which are incorrectly designed anyway:
return await MyMethodAsync();
Provided you wrap this technique in a suitably named static function, I think your suggest is significantly better than Task.Run, even if still the lesser of two evils.
Task.Run has a number of issues:
It is not clear why you are using it, you want to start a new task on a web server? This will be deleted by new developers fast if there are no comments. And then boom, difficult to diagnose production issues (deadlocks).
It starts on a new thread pool thread when it doesn't need to until it reaches its first await completed continuation.
It makes you block synchronously for the entire Task returning function, when from your description of the problem, the blocking is actually just part of the overall task. What is being encouraged here is longer blocking over async code, this is certainly not what you want.
If you use it multiple levels, you are multiplying the problem (with SetSynchronizationContext there's no harm in doing it more than once).
If it turns out that there was no blocking / deadlock where you thought there was, or it had been fixed, Task.Run now is introducing blocking over async, whereas SetSynchronizationContext will not cost you anything, in addition to the optimizations it makes by not resuming on the context constantly.
I also understand there is hesitance to make any recommendation given blocking on async code should be avoided at all costs, however you have made it clear you are aware of this and this is to fix a known case of this outside of your immediate control. I think the dogmatic attitude towards this topic is damaging to the .NET ecosystem.
Setting the SynchronizationContext to null seems hacky for me. Instead you can really delegate the work to threadpool. Use Task.Run..
var result = Task.Run(() => MyMethodAsync()).Result;
or
var result = Task.Run(async () => await MyMethodAsync()).Result;
This avoids the deadlock and eliminates the hacky code as well.

Is async and await exclusively for GUI-based asynchronous programming?

I've been reading about the new async and await operators in C# and tried to figure out in which circumstances they would possibly be useful to me. I studied several MSDN articles and here's what I read between the lines:
You can use async for Windows Forms and WPF event handlers, so they can perform lengthy tasks without blocking the UI thread while the bulk of the operation is being executed.
async void button1_Click(object sender, EventArgs e)
{
// even though this call takes a while, the UI thread will not block
// while it is executing, therefore allowing further event handlers to
// be invoked.
await SomeLengthyOperationAsync();
}
A method using await must be async, which means that the usage of any async function somewhere in your code ultimately forces all methods in the calling sequence from the UI event handlers up until the lowest-level async method to be async as well.
In other words, if you create a thread with an ordinary good old ThreadStart entry point (or a Console application with good old static int Main(string[] args)), then you cannot use async and await because at one point you would have to use await, and make the method that uses it async, and hence in the calling method you also have to use await and make that one async and so on. But once you reach the thread entry point (or Main()), there's no caller to which an await would yield control to.
So basically you cannot use async and await without having a GUI that uses the standard WinForms and WPF message loop. I guess all that makes indeed sense, since MSDN states that async programming does not mean multithreading, but using the UI thread's spare time instead; when using a console application or a thread with a user defined entry point, multithreading would be necessary to perform asynchronous operations (if not using a compatible message loop).
My question is, are these assumptions accurate?
So basically you cannot use async and await without having a GUI that uses the standard WinForms and WPF message loop.
That's absolutely not the case.
In Windows Forms and WPF, async/await has the handy property of coming back to the UI thread when the asynchronous operation you were awaiting has completed, but that doesn't mean that's the only purpose to it.
If an asynchronous method executes on a thread-pool thread - e.g. in a web service - then the continuation (the rest of the asynchronous method) will simply execute in any thread-pool thread, with the context (security etc) preserved appropriately. This is still really useful for keeping the number of threads down.
For example, suppose you have a high traffic web service which mostly proxies requests to other web services. It spends most of its time waiting for other things, whether that's due to network traffic or genuine time at another service (e.g. a datbase). You shouldn't need lots of threads for that - but with blocking calls, you naturally end up with a thread per request. With async/await, you'd end up with very few threads, because very few requests would actually need any work performed for them at any one point in time, even if there were a lot of requests "in flight".
The trouble is that async/await is most easily demonstrated with UI code, because everyone knows the pain of either using background threads properly or doing too much work in the UI thread. That doesn't mean it's the only place the feature is useful though - far from it.
Various server-side technologies (MVC and WCF for example) already have support for asynchronous methods, and I'd expect others to follow suit.
A method using await must be async, which means that the usage of any async function somewhere in your code ultimately forces all methods in the calling sequence from the UI event handlers up until the lowest-level async method to be async as well.
Not true - methods marked async just mean they can use await, but callers of those methods have no restrictions. If the method returns Task or Task<T> then they can use ContinueWith or anything else you could do with tasks in 4.0
A good non-UI example is MVC4 AsyncController.
Ultimately, async/await is mostly about getting the compiler rewriting so you can write what looks like synchronous code and avoid all the callbacks like you had to do before async/await was added. It also helps with the SynchronizationContext handling, useful for scenarios with thread affinity (UI frameworks, ASP.NET), but even without those, it's still useful. Main can always do DoStuffAsync().Wait(); for instance. :)
My question is, are these assumptions accurate?
No.
You can use async for Windows Forms and WPF event handlers, so they can perform lengthy tasks without blocking the UI thread while the bulk of the operation is being executed.
True. Also true for other UI applications including Silverlight and Windows Store.
And also true for ASP.NET. In this case, it's the HTTP request thread that is not blocked.
A method using await must be async, which means that the usage of any async function somewhere in your code ultimately forces all methods in the calling sequence from the UI event handlers up until the lowest-level async method to be async as well.
This is a best practice ("async all the way down"), but it's not strictly required. You can block on the result of an asynchronous operation; many people choose to do this in Console applications.
an ordinary good old ThreadStart entry point
Well... I do have to take issue with "ordinary good old". As I explain on my blog, Thread is pretty much the worst option you have for doing background operations.
I recommend you review my introduction to async and await, and follow up with the async / await FAQ.
async-await is only wrapper for Task class manipulations, which is part of so named Tasks Parallel Library - TPL(published before async-await auto code generation tech.)
So fact is you may not use any references to UI controls within async - await.
Typically async-await is powerfull tool for any web and server relations, loading resources, sql. It works with smart waiting data with alive UI.
Typically TPL application: from simple big size loop till multi stages parallel calculations in complex calculations based on shared data (ContinueWith and so on)

Categories

Resources