Is it a good design to inject services as factories? - c#

I have been reading Mark Seemann's excellent book on DI and hope to implement it in my next WPF project. However I have a query regarding object lifetime. So far, most examples seem to explain the repository pattern per request for MVC applications. In WPF there isn't really an alternative to this (I think). Seeing as the object graph of the entire application is constructed in the composition root, how can I make sure that my unit-of-work stuff is working properly. For example:
public class ContextFactory : IContextFactory
{
DBContext context;
public ContextFactory()
{
context = new MyDBContext();
}
public DBContext GetContext()
{
return context;
}
}
public class ItemOneRepository() : IItemOneRepository
{
DBContext context;
public ItemOneRepository(IContextFactory contextFactory)
{
this.context = contextFactory.GetContext();
}
public IEnumerable GetItems()
{
return context.ItemOnes;
}
}
public class ItemTwoRepository() : IItemTwoRepository
{
DBContext context;
public ItemTwoRepository(IContextFactory contextFactory)
{
this.context = contextFactory.GetContext();
}
public IEnumerable GetItemsByItemOneID(int itemOneID)
{
return context.ItemTwos.Where(i => i.itemOneID == itemOneID);
}
}
public class ThingService : IThingService
{
IItemOneRepository itemOneRepo;
IItemTwoRepository itemTwoRepo;
public ThingService(
IItemOneRepository itemOneRepository,
IItemTwoRepository itemTwoRepository)
{
itemOneRepo = itemOneRepository;
itemTwoRepo = itemTwoRepository;
}
public IEnumerable Things GetThing()
{
var ItemOnes = itemOneRepo.GetItems();
return ItemOnes.Select(i =>
new Thing(
i.FieldOne,
i.FieldFour,
itemRepoTwo.GetItemsByItemOneID(i.ID)
)
);
}
}
In this case the MyDBContext instance is created through ContextFactory in the composition root. ItemOneRepository and ItemTwoRepository are using the same unit-of-work (MyDBContext), but so is the rest of the application which is plainly wrong. What if I changed the repositories to accept a DBContext instead of ContextFactory and added a ThingServiceFactory class like:
public ThingServiceFactory : IThingServiceFactory
{
IContextFactory contextFactory;
public ThingServiceFactory(IContextFactory factory)
{
contextFactory = factory;
}
public IThingService Create()
{
MyDBContext context = contextFactory.Create();
ItemOneRepository itemOneRepo = new ItemOneRepository(context);
ItemOneRepository itemTwoRepo = new ItemTwoRepository(context);
return new ThingService(itemOneRepo, itemTwoRepo);
}
}
This is better as I can now pass the ThingServiceFactory to my ViewModels instead of an instance of ThingService (complete with DBContext). I can then create a unit-of-work whenever I need one and instantly dispose of it when I’ve finished. However, is this really the correct approach. Do I really need to write a factory for every unit-of-work operation I need? Surely there is a better way...

There's IMO only one good solution to this problem and that is to apply a command-based and query-based application design.
When you define a single ICommandHandler<TCommand> abstraction to define business transactions, you can inject closed versions of that interface into any form that needs this. Say for instance you have a "move customer" 'command' operation:
public class MoveCustomer
{
public Guid CustomerId;
public Address NewAddress;
}
And you can create a class that will be able to execute this command:
public class MoveCustomerHandler : ICommandHandler<MoveCustomer>
{
private readonly DBContext context;
// Here we simply inject the DbContext, not a factory.
public MoveCustomerHandler(DbContext context)
{
this.context = context;
}
public void Handle(MoveCustomer command)
{
// write business transaction here.
}
}
Now your WPF Windows class can depend on ICommandHandler<MoveCustomer> as follows:
public class MoveCustomerWindow : Window
{
private readonly ICommandHandler<MoveCustomer> handler;
public MoveCustomerWindows(ICommandHandler<MoveCustomer> handler)
{
this.handler = handler;
}
public void Button1Click(object sender, EventArgs e)
{
// Here we call the command handler and pass in a newly created command.
this.handler.Handle(new MoveCustomer
{
CustomerId = this.CustomerDropDown.SelectedValue,
NewAddress = this.AddressDropDown.SelectedValue,
});
}
}
Since MoveCustomerWindow lives for quite some time, it will drag on its dependencies for as long as it lives. If those dependencies shouldn't live that long (for instance your DbContext) you will be in trouble and Mark Seemann calls this problem Captive Dependency.
But since we now have a single ICommandHandler<TCommand> abstraction between our presentation layer and our business layer, it becomes very easy to define a single decorator that allows postponing the creation of the real MoveCustomerHandler. For instance:
public class ScopedCommandHandlerProxy<TCommand> : ICommandHandler<TCommand>
{
private readonly Func<ICommandHandler<TCommand>> decorateeFactory;
private readonly Container container;
// We inject a Func<T> that is able to create the command handler decoratee
// when needed.
public ScopedCommandHandlerProxy(
Func<ICommandHandler<TCommand>> decorateeFactory,
Container container)
{
this.decorateeFactory = decorateeFactory;
this.container = container;
}
public void Handle(TCommand command)
{
// Start some sort of 'scope' here that allows you to have a single
// instance of DbContext during that scope. How to do this depends
// on your DI library (if you use any).
using (container.BeginLifetimeScope())
{
// Create a wrapped handler inside the scope. This way it will get
// a fresh DbContext.
ICommandHandler<TCommand> decoratee =this.decorateeFactory.Invoke();
// Pass the command on to this handler.
decoratee.Handle(command);
}
}
}
This sounds a bit complex, but this completely allows you to hide the fact that a new DbContext is needed from the client Window and you hide this complexity as well from your business layer; you can simply inject a DbContext into your handler. Both sides know nothing about this little peace of infrastructure.
Of course you still have to wire this up. Without a DI library you do something like this:
var handler = new ScopedCommandHandlerProxy<MoveCustomerCommand>(
() => new MoveCustomerCommandHandler(new DbContext()),
container);
How to register this in a DI library is completely depending on the library of choice, but with Simple Injector you do it as follows:
// Register all command handler implementation all at once.
container.Register(
typeof(ICommandHandler<>),
typeof(ICommandHandler<>).Assembly);
// Tell Simple Injector to wrap each ICommandHandler<T> implementation with a
// ScopedCommandHandlerProxy<T>. Simple Injector will take care of the rest and
// will inject the Func<ICommandHandler<T>> for you. The proxy can be a
// singleton, since it will create the decoratee on each call to Handle.
container.RegisterDecorator(
typeof(ICommandHandler<>),
typeof(ScopedCommandHandlerProxy<>),
Lifestyle.Singleton);
This is just one of the many advantages that this type of design gives you. Other advantages is that it makes much easier to apply all sorts of cross-cutting concerns such as audit trailing, logging, security, validation, de-duplication, caching, deadlock-prevention or retry mechanisms, etc, etc. The possibilities are endless.

ItemOneRepository and ItemTwoRepository are using the same
unit-of-work (MyDBContext), but so is the rest of the application
which is plainly wrong.
If your factory is registered with a transient lifecycle, you will get a new instance every time it's injected, which will be a new DBContext each time.
However, I would recommend a more explicit unit of work implementation:
public DBContext GetContext() //I would rename this "Create()"
{
return new MyDBContext();
}
And:
public IEnumerable GetItemsByItemOneID(int itemOneID)
{
using (var context = contextFactory.Create())
{
return context.ItemTwos.Where(i => i.itemOneID == itemOneID);
}
}
This gives you fine-grained control over the unit of work and transaction.
You might also ask yourself if the repositories are gaining you anything vs. just using the context directly via the factory. Depending on the complexity of your application, the repositories may be unnecessary overhead.

Related

How to use DI in WPF to having a new istance without ask to container

i'm trying to develop from scratch a WPF app with the use of Simpleinjector as a IOC container.
I'm new on this topic and i have some issue regards lifetime of object and hot use them correctly.
I started the app by following the WPF integration guide on simpleinjector manual.
But i don't understand how to receive a new instance every time a service needed it
As i ask in my previous post i need to receive a new unitOfWork every time a service need it.
as #Steven say on my previous post
Do note that transient means "allways a new instance is resolved when it is requested from the container." If you're not requesting it again, you will be operating on the same instance, which might explain the ObjectDisposedException.
In the other post i found a solutin but i think it's a little bit over-complicated and it's to create a factory and inject this instead of the instance because i want to call the container.getInstance only on the startup method and not on the service by passing the container as a dependency
It's the only way i have to achieve this or there is something that i don't understand on how to develop in DI way?
Example of code:
public class HeaderViewModelFactory : IWpfRadDispenserViewModelFactory<HeaderviewModel>
{
private readonly ProductionService _service;
public HeaderViewModelFactory(ProductionService service)
{
_service = service;
}
public HeaderviewModel CreateViewModel()
{
return new HeaderviewModel(_service);
}
}
public class HeaderviewModel : ViewModelBase
{
private readonly ProductionService _service;
public HeaderviewModel(ProductionService service)
{
_service = service;
CreateData();
}
private void CreateData()
{
_service.CreateTestCycle();
}
}
public class CycleService : GenericDataService<Cycle>
{
private readonly IUnitOfWork<WpfRadDispenserDbContext> _uowContext;
public CycleService(IUnitOfWork<WpfRadDispenserDbContext> uowContext)
: base(uowContext)
{
_uowContext = uowContext;
}
public void CreateTestCycle()
{
var cycleDataService = new GenericDataService<Cycle>(_uowContext);
var vialDataService = new GenericDataService<Vial>(_uowContext);
Cycle c = new Cycle();
c.BatchName = "test";
Vial v = new Vial();
v.Name = "Test Vial";
c.Vials.Add(v);
_uowContext.CreateTransaction(IsolationLevel.ReadCommitted);
try
{
vialDataService.Create(v);
_uowContext.Persist();
var list = vialDataService.GetAll();
cycleDataService.Create(c);
_uowContext.Persist();
_uowContext.Commit();
}
catch (Exception e)
{
Console.WriteLine(e);
_uowContext.RollBack();
throw;
}
finally
{
_uowContext.Dispose();
}
}
}
private static Container Bootstrap()
{
// Create the container as usual.
var container = new Container();
// Register your types:
// Register your windows and view models:
container.Register<WpfRadDispenserDbContextFactory>(Lifestyle.Transient);
container.Register<IUnitOfWork<WpfRadDispenserDbContext>,WpfRadDispenserUOW>();
container.Register(typeof(CycleService));
container.Register<IWpfRadDispenserViewModelFactory<ProductionViewModel>,
ProductionViewModelFactory>(Lifestyle.Transient);
container.Register<IWpfRadDispenserViewModelFactory<AnagraphicViewModel>,
AnagraphicsViewModelFactory>(Lifestyle.Transient);
container.Register<IWpfRadDispenserViewModelFactory<HeaderviewModel>,
HeaderViewModelFactory>(Lifestyle.Transient);
container.Register<IViewModelAbstractFactory,
ViewModelAbstractFactory>(Lifestyle.Transient);
container.Register<INavigator, Navigator>(Lifestyle.Transient);
container.Register<MainWindowViewModel>();
container.Register<MainWindow>();
//container.Options.EnableAutoVerification = false;
//container.Verify();
return container;
}
in this way every time i create a new viewmodel i receive the same service and ovviously the dbcontext it's not present anymore because disposed.
This is not the rela code but only an example that i made to understand how DI works.
Using Abstract Factory pattern is the most common and recommended approach. Using the container in your application directly is widely considered an anti-pattern, like the Service Locator (Service Locator is an Anti-Pattern) for a very good reason.
Abstract factory allows instantiation of objects without introducing a tight coupling to the actual implementation that knows how to create specific instances.
Most IoC frameworks support this pattern natively. Most of the time they provide the generic interface for the factory. You register the instance (the product) with the container and the framework will export a ready-to use factory for you. You add the dependency to this framework interface to your object e.g. constructor. Then you register the generic factory interface. The framework will automatically create the instance of the factory and inject it into the relevant instances e.g., via constructor.
I am not too familiar with Simple Injector, but the framework really keeps things simple. There is no such code generation.
But the pattern is very simple (that's why this is so easy to automate) and in no way complicated.
Example
The interface required to dynamically create the instances of type TInstance:
interface IFactory<TInstance>
{
TInstance Create();
}
The implementation of this factory:
class SaveItemFactory : IFactory<ISaveItem>
{
ISaveItem Create() => new SaveItem();
}
The type that needs to create a dependency dynamically:
interface IItemManager {}
class ItemManager : IItemManager
{
IFactory<ISaveItem> SaveItemFactory { get; }
public ItemManager(IFactory<ISaveItem> itemFactory) => this.SaveItemFactory = itemFactory;
public void SaveData(object data)
{
ISaveItem saveItem = this.SaveItemFactory.Create();
saveItem.SetData(data);
}
}
Configure the container:
public void Run()
{
var container = new SimpleInjector.Container();
container.Register<IFactory<ISaveItem>, SaveItemFactory>(Lifestyle.Singleton);
container.Register<IItemManager, ItemManager>(Lifestyle.Singleton);
IItemManager itemManager = container.GetInstance<IItemManager>();
itemManager.SaveData("Some Data");
}

Updating a dependency injected singleton

I generate a singleton at runtime
public void ConfigureServices(IServiceCollection services)
{
var applications = Utils.generateApplications()
services.AddSingleton<ApplicationModel[]>(applications);
services.AddMvc();
}
How can I later update this dependency injected ApplicationModel[] with a completely new ApplicationModel[]. I have a feature in my application that the user can use to trigger a data refresh on the applications, but how can I update the underlying injected Singleton so all future injections will use the updated applications? I have a function Utils.generateApplications() that gets an up to date list of applications and returns a ApplicationModel[]. How do I overwrite the old injected Singleton with a new object to be injected into future calls if that makes sense?
I have some code :
public void UpdateData()
{
var applications = Utils.generateApplications()
//How do I set applications to replace the injected singleton for all future injections?
}
You should use an additional layer of indirection. I think the simplest way is to use an abstract factory. Define an interface something like this:
interface IApplicationModelFactory
{
public ApplicationModel[] GetModel();
}
Define a second interface with the method (or methods) needed to update the model:
interface IApplicationModelUpdate
{
void UpdateModel();
}
You can then change your ApplicationModel[] registration from single instance to scoped and delegate to the factory:
var modelFactory = new ApplicationModelFactory();
services.AddSingleton<IApplicationModelFactory>(modelFactory);
services.AddSingleton<IApplicationModelUpdate>(modelFactory);
services.AddScoped<ApplicationModel[]>(provider =>
provider.GetRequiredService<IApplicationModelFactory>().GetModel());
Inject IApplicationModelUpdate into the types that update the model and ApplicationModel[] into the types that use it. This has the advantage that all types resolved for the same request will get a consistent view of the model, even if it changes in the middle of processing that request.
You could also inject IApplicationModelFactory into the consumer code, but I think injecting the model directly is better. Using the factory can lead to different bits of code seeing different models during the same request. The mutability of the model is also an implementation detail that consumer code shouldn't have to worry about.
I wouldn't monkey with dependency injection that way. Instead, inject a factory, and write whatever logic you need to return the proper instance.
Simple factory:
interface IApplicationModelFactory
{
ApplicationModel[] Model { get; }
}
class ApplicationModelFactory : IApplicationModelFactory
{
public ApplicationModel[] Model { get; set; }
}
Registration:
services.AddSingleton<IApplicationModelFactory>
(
new ApplicationModelFactory[] { Model = util.generateApplications() }
)
class receiving the injection:
class Foo
{
protected readonly IApplicationModelFactory _factory;
public Foo(IApplicationModelFactory injected)
{
_factory = injected;
}
protected ApplicationModel[] => _factory.Model;
public void Bar()
{
DoSomethingWithModel(this.ApplicationModel);
}
}

How do you inject an arbitrary/changing set of services into an object using Autofac?

Using Autofac, given multiple interfaces in constructor parameters which is not what I want to achieve, let's say I have;
public class SomeController : ApiController
{
private readonly IDomainService _domainService;
private readonly IService1 _service1;
private readonly IService2 _service2;
private readonly IService3 _service3;
public SomeController(IDomainService domainService,
Iservice1 service1,
IService2 service2,
IService2 service3, ...)
{
_domainService = domainService;
_service1 = service1;
_service2 = service2;
_service3 = service3;
...
}
}
Or, we may do one interface and has multiple properties, e.g.;
public interface IAllServices
{
IDomainService DomainService { get; set; }
IService1 Service1 { get; set; }
IService2 Service2 { get; set; }
IService3 Service3 { get; set; }
}
public class SomeController : ApiController
{
private readonly IAllServices _allServices;
public SomeController(IAllServices allServices)
{
_allServices = allServices;
var domainService1 = _allServices.DomainService;
var service1 = _allServices.Service1;
etc...
}
}
However, I would like to have a list of services, and this code works for me, i.e.;
public interface IMyApp
{
IEnumerable<dynamic> Services { get; set; }
}
public class SomeController : ApiController
{
private readonly IMyApp _myapp;
public SomeController(IMyApp myapp)
{
_myapp = myapp;
foreach (var item in _myapp.Services)
{
if (item is IService1) { // do something... }
if (item is IService2) { // do something... }
if (item is IWhatever) { // do whatever something... }
}
}
}
But, I don't have a better best practice how to create the module, here is my module;
public class MainModule : Autofac.Module
{
private readonly string[] _serviceNames;
private readonly IDomainService _domainService;
public MainModule(IDomainService domainService, params string[] serviceNames)
{
_serviceNames = serviceNames;
_domainService = domainService;
}
protected override void Load(ContainerBuilder builder)
{
List<dynamic> _services = new List<dynamic>();
_services.Add(_domainService);
foreach (var serviceName in _serviceNames)
{
switch (serviceName)
{
case "MyService1":
IService1 service1 = new Service1();
_modules.Add(service1);
break;
case "MyService2":
IService2 service2 = new Service2();
_modules.Add(service2);
break;
case "SomeWhateverService":
IWhatever whateverService = new WhateverService();
_modules.Add(whateverService);
break;
}
}
builder.RegisterType<MyApp>()
.As<IMyApp>()
.WithParameter(new TypedParameter(typeof(IEnumerable<dynamic>), _services));
}
}
So, this code works, but I would like to make my DomainService and all of the Services registered in the container as well. That is, I want to replace whatever inside the switch statement without new keyword.
IService1 service1 = new Service1();
_modules.Add(service1);
And I would like to register the domain service as well. So, inside my Bootstrapper is like this;
public static class Initializer
{
public static IContainer BuildContainer(
HttpConfiguration config, Assembly assembly, IDomainService domainService, params string[] services)
{
var builder = new ContainerBuilder();
builder.RegisterApiControllers(assembly);
builder.RegisterWebApiFilterProvider(config);
builder.RegisterModule(new MainModule(domainService, services));
var container = builder.Build();
config.DependencyResolver = new AutofacWebApiDependencyResolver(container);
return container;
}
}
And what happen is, I need to create the domain service in the startup, i.e.;
public class WebApiApplication : System.Web.HttpApplication
{
protected void Application_Start()
{
GlobalConfiguration.Configure(WebApiConfig.Register);
MyDomainService domainService = new MyDomainService();
var container =
Initializer.BuildContainer(
GlobalConfiguration.Configuration,
Assembly.GetExecutingAssembly(),
domainService,
"MyService1", "MyService2", "SomeWhateverService");
}
}
You can see that I have to create the domain service first, which is not using IoC;
MyDomainService domainService = new MyDomainService();
and add to the module.
The big question, how to do this in proper way using Autofac. My Bootstrapper is in another project and all of the interfaces are in other project as well.
Many thanks for the help. And sorry for the long question.
Solution:
After testing several model, it seems the best way is to use domain events model for this type of scenario instead of injecting the services into the domain.
The proper way of doing dependency injection is using Constructor Injection. Constructor Injection should always your preferred choice, and only under high exception, you should fall back to another method.
You proposed property injection as an alternative, but this causes Temporal Coupling which means that classes can be initialized while a required dependency is missing, causing null reference exceptions later on.
The method where you inject a collection containing all services where the constructor is responsible of getting the dependencies it needs, is a variation of the Service Locator pattern. This pattern is littered with problems and is considered to be an anti-pattern.
Grouping dependencies into a new class and injecting that is only useful in case that class encapsulates logic and hides the dependencies. This pattern is called Facade Service. Having one big service that exposes the dependencies for others to use can be considered a form of the Service Locator anti-pattern, especially when the number of services that this class exposes starts to grow. It will become the common go-to object for getting services. Once that happens, it exhibits the same downsides as the other form of Service Locator does.
Extracting dependencies into a different class while allowing the consumer to use those dependencies directly doesn't help in reducing complexity of the consumer. That consumer will keep the same amount of logic and the same number of dependencies.
The core problem here seems that your classes get too many dependencies. The great thing about constructor injection though is that it makes it very clear when classes have too many dependencies. Seeking other methods to get dependencies doesn't make the class less complex. Instead of trying other methods of injection, try the following:
Apply the Single Responsibility Principle. Classes should have one reason to change.
Try extracting logic with its dependencies out of the class into a Facade Service
Remove logic and dependencies that deals with cross-cutting concerns (such as logging and security checks) from the class and place them in infrastructure (such as decorators, interceptors or depending on your framework into handlers, middleware, message pipeline, etc).
After testing several model, it seems the best way is just use domain events pattern for this type of scenario instead of injecting the services into the domain.
I refer to Udi Dahan article on domain events:
http://udidahan.com/2009/06/14/domain-events-salvation/

Autofac Lifetime scopes with external application

It'll probably take a few more questions to understand this subject quite well.
I've read a lot of documentations, yet I can't figure it out completely.
Say for example :
Singleton1 = resolved in lifetimeScope1
Singleton1 handles messages coming from Tcp/Ip.
DataService handles messages coming from web controllers, and it handles messages from Singleton1 (meaning - messages from Tcp/Ip).
In DataService there is a component registered as PerLifetimeScope (DbContext).
The things I can't understand is:
How will DataService know if it currently handles Http request (and should use instance 1 of DbContext) or Tcp/Ip (and use instance 2 of DbContext)?
My final goal is to configure Autofac to create me a new lifetime scope for each Tcp/Ip request I get as well. Just like it automatically does with Http requests!
Note:
If it'll be easier to understand with code, I'll put it, I just thought it could complicate things.
If anything I said was stupid or incorrect please fix me. Having hard time learning this.
Thanks!
Edit:
Adding code to explain my problem better:
public class Singleton1 : ISingleton1
{
private IDataService _dataService;
public Singleton1(IDataService dataService)
{
_dataService = dataService;
}
public void HandleExternalAddItemMessage(AddItemMessage msg)
{
_dataService.AddItem(msg.Item);
}
}
public interface IUnitOfWork : IDisposable
{
void Commit();
}
public EFUnitOfWork : IUnitOfWork
{
private DbContext _context;
public EFUnitOfWork(DbContext context)
{
_context = context;
}
public void Commit()
{
_context.SaveChanges();
}
}
public class DataService
{
private Func<Owned<IUnitOfWork>> _unitOfWorkFactory;
public (Func<Owned<IUnitOfWork>> unitOfWorkFactory)
{
_unitOfWorkFactory = unitOfWorkFactory;
}
// This method is called from both controllers and external Tcp/Ip calls. How do I do it - how do I set the context that is in the unit of work???
public void AddItem(Item item)
{
using(unitOfWork = _unitOfWorkFactory())
{
...
}
}
}
Startup code:
{
_container.RegisterType<IDataService, DataService>().SingleInstance();
_container.RegisterType<Singleton1, ISingleton1>().SingleInstance();
_container.RegisterType<EFUnitOfWork, IUnitOfWork>().PerDepnendecny();
_container.RegisterType<DbContext, MyDbContext>().InstancePerLifetimeScope();
}
This is a great article by Nicholas Blumhardt touching on many issues surrounding object lifetime including common pitfalls by developers attempting to own the object disposal in Autofac.
http://nblumhardt.com/2011/01/an-autofac-lifetime-primer/
I think what you're attempting to do is probably overly complicated and the model can probably be simplified however it is possible to register a new instance of an object by manually creating your own LifetimeScope.
public class Singleton1 : ISingleton1
{
private readonly ILifetimeScope _lifetimeScope;
public Singleton1(ILifetimeScope lifetimeScope)
{
_lifetimeScope = lifetimeScope;
}
public void HandleExternalAddItemMessage(AddItemMessage msg)
{
using(var scope = _lifetimeScope.BeginLifetimeScope())
{
var dataService = scope.Resolve<IDataService>();
dataService.AddItem(msg.Item);
}
}
}
As the article will explain you're now brewing up a nice batch of "scope soup".
Pay close attention to Nested lifetime scopes and Scope Sharing. Your usage of singletons is likely to trip you up.

Design pattern for API entry point?

I'm creating a class library API that wraps business logic and access to an SQL Server database via Entity Framework 6.
I've designed it using the Unit of work and repository patterns.
The purpose is to make it easy to use and to unit test.
Business logic and validation will be performed in the service layer.
I will not use an IOC container because I feel that it would complicate the API
usage.
The project have 15 repositories and services
The current design is as follows:
Service Layer A -> Unit of work -> Repository A and or B
Service Layer B -> Unit of work -> Repository B and or A...
...
public class ServiceA : IServiceA, IService
{
private readonly IUnitOfWork unitOfWork;
public AssetService(IUnitOfWork unitOfWork)
{
this.unitOfWork = unitOfWork;
}
...
public IList<DomainObjectA> GetAll()
{
return unitOfWork.RepositoryA.GetAll();
}
public void Dispose()
{
unitOfWork.Dispose();
}
...
}
public class UnitOfWork : IUnitOfWork
{
private readonly MyDbContext context = new MyDbContext();
private IRepositoryA repositoryA;
private IRepositoryB repositoryB;
...
public IRepositoryA RepositoryA
{
get { return repositoryA = repositoryA ?? new RepositoryA(context); }
}
public IRepositoryB RepositoryB
{
get { return repositoryB = repositoryB ?? new RepositoryB(context); }
}
...
public void Save()
{
context.SaveChanges();
}
public void Dispose()
{
context.Dispose();
}
}
public class RepositoryA : Repository, IRepositoryA
{
public RepositoryA(MyDbContext context)
: base(context) {}
public IList<DomainObjectA> GetAll()
{
return context.tblA.ToList().Select(x => x.ToDomainObject()).ToList();
}
...
}
Since this is an API that should be used by other projects, I need a nice and "fairly" easy to use interface for the user that consumes the API.
Because of this the UnitOfWork is created in this "public interface" between the user and the service layer, see below.
I also think it's best that the using-statement lies within the API so that the db-context is disposed properly and immediately after each service call.
I started out using the Proxy pattern for this:
Example:
public class ProxyA : Proxy, IServiceA
{
public IList<DomainObjectA> GetAll()
{
using (var service = GetService<ServiceA>())
return service.GetAll();
}
...
}
public abstract class Proxy
{
protected T GetService<T>() where T : IService
{
return (T)Activator.CreateInstance(typeof(T), new object[] { new UnitOfWork()});
}
}
But this would require me to create a proxy for each service. I could of course skip the service interface in the proxy and create a common proxy which handles all the services.
I've also looked at the Facade pattern but can't decide which pattern to use for this particular scenario.
My questions:
Is this a good approach or are there any other design patterns that will solve this problem?
Also, should there be one public API entry point or several, grouped by some business logic?
I see nothing wrong with your design and the patterns you use.
Regarding the proxy pattern it is your call if you want to use it or not. As you mention you have to create boiler plate code to create one for every service. If it is arguable if you want to use it only to hide the call to the db service, or you prefer to add that line of code every time you call the service (and make sure you do it to avoid leaks). Also you may consider if you may need to add extra functionality in the Proxy in the future, which will put extra weight to create the proxy option.
Regarding a single entry point or several, I would create a ServiceA, ServiceB, ServiceC etc (so several) grouped for business logic domains. Typically you'll have between 5-20 (just an approximate number to give an idea of the magnitude)
You may want to review the interface segregation principle which supports this idea
http://en.wikipedia.org/wiki/Interface_segregation_principle

Categories

Resources