I have an application which receives data from multiple sockets and then write the data into a DB.
I am currently using EF to do this. I would like to know how I can make it more efficient.
I have read that doing a bulk insert is faster so I am only saving changes to the DB every 500 insters:
db.Logs_In.Add(tableItem);
if (logBufferCounter++ > 500)
{
db.SaveChanges();
logBufferCounter = 0;
}
Now I have profiled the application and 74% of the work is being done by the Function: System.Data.Enitity.DbSet'1[System._Canon].Add
Is there a better way to do the insert? Maybe queue up the tableItems into a List and then add the whole list to the DB Context.
Or maybe Im looking at it all wrong and I should totally avoid using EntityFramework for this higher performance insert? Currently it is the bottle neck in my application and if I look at the system resources SQL doesn't even seem to be budging an eyelid.
So my Questions:
1: In what way would I achieve the most efficient / quickest insert on multiple inserts
2: If EF is acceptable, how can I improve my solution?
I am using SQL Server 2012 enterprise Edition,
The incoming data is a constant stream, however I can afford to buffer it and then do A bulk insert if this is a better solution.
[EDIT]
To further explain the scenario. I have a thread which is looping on a concurrentQueue which dequeues the items from this queue. However due to the fact that the db insert is the bottle neck. there are often thousands of entries in the queue, So if there is also an Async or Parallel way in which I could possibly make use of more than one thread to do the insert.
For scenarios that involve large amounts of inserts, I tend to favor "buffer seperately" (in-memory, or a redis list, or whatever), then as a batch job (perhaps every minute, or every few minutes) read the list and use SqlBulkCopy to throw the data into the database as efficiently as possible. To help with that, I use the ObjectReader.Create method of fastmember, which exposes a List<T> (or any IEnumerable<T>) as an IDataReader that can be fed into SqlBulkCopy, exposing properties of T as logical columns in the data-reader. All you need to do, then, is fill the List<T> from the buffer.
Note, however, that you need to think about the "something goes wrong" scenario; i.e. if the insert fails half way through, what do you do about the data in the buffer? One option here is to do the SqlBulkCopy into a staging table (same schema, but not the "live" table), then use a regular INSERT to copy the data in one step when you know it is at the database - this makes recovery simpler.
Related
I have a lot of rows (300k+) to upsert into SQL server database in a shortest possible period of time, so the idea was to use parallelization and partition the data and use async to pump the data into SQL, X threads at the time, 100 rows per context, with context being recycled to minimize tracking overhead. However, that means more than one connection is to be used in parallel and thus CommittableTransaction/TransactionScope would use distributed transaction which would cause parallelized transaction enlistment operation to return the infamous "This platform does not support distributed transactions." exception.
I do need the ability to commit/rollback the entire set of upserts. Its part of the batch upload process and any error should rollback the changes to previously working/stable condition, application wise.
What are my options? Short of using one connection and no parallelization?
Note: Problem is not so simple as a batch of insert commands, if that was the case, I would just generate inserts and run them on server as query or indeed use SqlBulkCopy. About half of them are updates, half are inserts where new keys are generated by SQL Server which need to be obtained and re-keyed on child objects which would be inserted next, rows are spread over about a dozen tables in a 3-level hierarchy.
Nope. Totally wrong approach. Do NOT use EF for that - bulk insert ETL is not what Object Relational Mappers are made for and a lot of design decisions are not productive for that. You would also not use a small car instead of a truck to transport 20 tons of goods.
300k rows are trivial if you use SqlBulkCopy API in some sort.
I have the following scenario: I am building a dummy web app that pulls betting odds every minute, stores all the events, matches, odds etc. to the database and then updates the UI.
I have this structure: Sports > Events > Matches > Bets > Odds and I am using code first approach and for all DB-related operations I am using EF.
When I am running my application for the very first time and my database is empty I am receiving XML with odds which contains: ~16 sports, ~145 events, ~675 matches, ~17100 bets & ~72824 odds.
Here comes the problem: how to save all this entities in timely manner? Parsing is not that time consuming operation - 0.2 seconds, but when I try to bulk store all these entities I face memory problems and the save took more than 1 minute so next odd pull is triggered and this is nightmare.
I saw somewhere to disable the Configuration.AutoDetectChangesEnabled and recreate my context on every 100/1000 records I insert, but I am not nearly there. Every suggestion will be appreciated. Thanks in advance
When you are inserting huge (though it is not that huge) amounts of data like that, try using SqlBulkCopy. You can also try using Table Value Parameter and pass it to a stored procedure but I do not suggest it for this case as TVPs perform well for records under 1000. SqlBulkCopy is super easy to use which is a big plus.
If you need to do an update to many records, you can use SqlBulkCopy for that as well but with a little trick. Create a staging table and insert the data using SqlBulkCopy into the staging table, then call a stored procedure which will get records from the staging table and update the target table. I have used SqlBulkCopy for both cases numerous times and it works pretty well.
Furthermore, with SqlBulkCopy you can do the insertion in batches as well and provide feedback to the user, however, in your case, I do not think you need to do that. But nonetheless, this flexibility is there.
Can I do it using EF only?
I have not tried but there is this library you can try.
I understand your situation but:
All actions you've been doing it all depends on your machine specs and
the software itself.
Now if machine specs cannot handle the process it will be the time to
change a plan like to limit the count of records to be inserted till
it all to be done.
I have a database in SQL Server 2012 and want to update a table in it.
My table has three columns, the first column is of type nchar(24). It is filled with billion of rows. The other two columns are from the same type, but they are null (empty) at this moment.
I need to read the data from the first column, with this information I do some calculations. The result of my calculations are two strings, this two strings are the data I want to insert into the two empty columns.
My question is what is the fastest way to read the information from the first column of the table and update the second and third column.
Read and update step by step? Read a few rows, do the calculation, update the rows while reading the next few rows?
As it comes to billion of rows, performance is the only important thing here.
Let me know if you need any more information!
EDIT 1:
My calculation canĀ“t be expressed in SQL.
As the SQL server is on the local machine, the througput is nothing we have to be worried about. One calculation take about 0.02154 seconds, I have a total number of 2.809.475.760 rows this is about 280 GB of data.
Normally, DML is best performed in bigger batches. Depending on your indexing structure, a small batch size (maybe 1000?!) can already deliver the best results, or you might need bigger batch sizes (up to the point where you write all rows of the table in one statement).
Bulk updates can be performed by bulk-inserting information about the updates you want to make, and then updating all rows in the batch in one statement. Alternative strategies exist.
As you can't hold all rows to be updated in memory at the same time you probably need to look into MARS to be able to perform streaming reads while writing occasionally at the same time. Or, you can do it with two connections. Be careful to not deadlock across connections. SQL Server cannot detect that by principle. Only a timeout will resolve such a (distributed) deadlock. Making the reader run under snapshot isolation is a good strategy here. Snapshot isolation causes reader to not block or be blocked.
Linq is pretty efficient from my experiences. I wouldn't worry too much about optimizing your code yet. In fact that is typically something you should avoid is prematurely optimizing your code, just get it to work first then refactor as needed. As a side note, I once tested a stored procedure against a Linq query, and Linq won (to my amazement)
There is no simple how and a one-solution-fits all here.
If there are billions of rows, does performance matter? It doesn't seem to me that it has to be done within a second.
What is the expected throughput of the database and network. If your behind a POTS dial-in link the case is massively different when on 10Gb fiber.
The computations? How expensive are they? Just c=a+b or heavy processing of other text files.
Just a couple of questions raised in response. As such there is a lot more involved that we are not aware of to answer correctly.
Try a couple of things and measure it.
As a general rule: Writing to a database can be improved by batching instead of single updates.
Using a async pattern can free up some of the time for calculations instead of waiting.
EDIT in reply to comment
If calculations take 20ms biggest problem is IO. Multithreading won't bring you much.
Read the records in sequence using snapshot isolation so it's not hampered by write locks and update in batches. My guess is that the reader stays ahead of the writer without much trouble, reading in batches adds complexity without gaining much.
Find the sweet spot for the right batchsize by experimenting.
I have an SQL Server 2008 Database and am using C# 4.0 with Linq to Entities classes setup for Database interaction.
There exists a table which is indexed on a DateTime column where the value is the insertion time for the row. Several new rows are added a second (~20) and I need to effectively pull them into memory so that I can display them in a GUI. For simplicity lets just say I need to show the newest 50 rows in a list displayed via WPF.
I am concerned with the load polling may place on the database and the time it will take to process new results forcing me to become a slow consumer (Getting stuck behind a backlog). I was hoping for some advice on an approach. The ones I'm considering are;
Poll the database in a tight loop (~1 result per query)
Poll the database every second (~20 results per query)
Create a database trigger for Inserts and tie it to an event in C# (SqlDependency)
I also have some options for access;
Linq-to-Entities Table Select
Raw SQL Query
Linq-to-Entities Stored Procedure
If you could shed some light on the pros and cons or suggest another way entirely I'd love to hear it.
The process which adds the rows to the table is not under my control, I wish only to read the rows never to modify or add. The most important things are to not overload the SQL Server, keep the GUI up to date and responsive and use as little memory as possible... you know, the basics ;)
Thanks!
I'm a little late to the party here, but if you have the feature on your edition of SQL Server 2008, there is a feature known as Change Data Capture that may help. Basically, you have to enable this feature both for the database and for the specific tables you need to capture. The built-in Change Data Capture process looks at the transaction log to determine what changes have been made to the table and records them in a pre-defined table structure. You can then query this table or pull results from the table into something friendlier (perhaps on another server altogether?). We are in the early stages of using this feature for a particular business requirement, and it seems to be working quite well thus far.
You would have to test whether this feature would meet your needs as far as speed, but it may help maintenance since no triggers are required and the data capture does not tie up your database tables themselves.
Rather than polling the database, maybe you can use the SQL Server Service broker and perform the read from there, even pushing which rows are new. Then you can select from the table.
The most important thing I would see here is having an index on the way you identify new rows (a timestamp?). That way your query would select the top entries from the index instead of querying the table every time.
Test, test, test! Benchmark your performance for any tactic you want to try. The biggest issues to resolve are how the data is stored and any locking and consistency issues you need to deal with.
If you table is updated constantly with 20 rows a second, then there is nothing better to do that pull every second or every few seconds. As long as you have an efficient way (meaning an index or clustered index) that can retrieve the last rows that were inserted, this method will consume the fewest resources.
IF the updates occur in burst of 20 updates per second but with significant periods of inactivity (minutes) in between, then you can use SqlDependency (which has absolutely nothing to do with triggers, by the way, read The Mysterious Notification for to udneratand how it actually works). You can mix LINQ with SqlDependency, see linq2cache.
Do you have to query to be notified of new data?
You may be better off using push notifications from a Service Bus (eg: NServiceBus).
Using notifications (i.e events) is almost always a better solution than using polling.
I am writing an application that logs status updates (GPS locations) from devices to a database. The updates occur at a set interval for each device, which is currently every 3 seconds. I'm using a simple table in SQL Server 08 for storing each update.
I've noticed that running the inserts is an area of slow down in my application. Its not a severe slow down, but noticable. Naturally, I'd like to write to the database in as an efficient way as possible. I have an idea to improve the performance and am looking for input and advice to see if it will help:
The status updates come in from an asynchronous Socket thread. In my current implementation, the database insert call is executed from this thread. I'm thinking I can create a queue for holding update data that the Socket thread can quickly add its update to and then go on its merry way. There would then be a separate thread whose sole responsibility would be checking the update queue and inserting the updates into the database.
Basically this whole process rests on the assumption that writing to the database from one location with a bunch of data all at once is more efficient than writing one row of data at a random time. Is my assumption correct, or way off base? Also, on the SQL side, is there a command to tell it to write a bunch of rows at once that would improve write performance?
This is how the database is being written to:
I'm using LinqToSQL in C#, so for each insert, I first create a DataContext instance. From the DataContext object I then call a stored procedure which inserts the location update.
The table is indexed by datetime, for the time of the update.
Have a look at the SqlBulkCopy class - this allows you to use BCP to insert chunks of data very quickly.
Also, make sure your indexes are efficient. If you have a clustered index on anything that does not increase sequentially (integer, date) then you will suffer performance slowdowns as the pages are filled up.
Have you looked MSMQ ( Microsoft Message Queuing (MSMQ)) ? That seems to me an option to take a look.
Yes, inserting in batches will typically be faster than separate inserts given your description. Each insert will require a connection to be set up and packets to be transferred. If you have a single small insert that takes one packet and you issue three of those, but you alternatively have three inserts that are small enough that they can all fit in one packet then it will help.
Quantifying it is difficult just based on your description - you'll need to do testing for that. For example, if you are keeping a dedicated connection open at all times anyway, as hova suggests, then you might see less of an impact.
Another area you might want to take a look at is whether you are setting up and tearing down a connection for each insert. That alone might make a performance improvement, negating the need for batching.
You'll also want to have as few indexes on the table as possible.
It sounds like a good idea. Why not give it a shot and see how it performs?
On the SQL side you'd want to have a look at making sure you are using parameterized queries.
Also batching your INSERT statements will certainly increase the performance.
Connection management is also key, of course that depends on how the application is built and whether it depends on a connection being there.
Are you not afraid to loose data while are you collecting data to batch copy?
I'm writing application doing the same. At start I will have to write data from 3,5k GPS devices. One device should send data each minute but it can send faster. Destination number of devices is 10,5k.
I'm wondering about inserting performance too. For now I'm saving received data to db on every packet using pure ADO.NET ICommand and stored procedure. On my test serwer (Xeon 3,4GHz and one 1TB hard disk - normal desktop ;) it takes for now 1ms or less.
#GRIMUS - should I wondering if there will be more devices?