I have a producer/consumer pattern, where I need to inform the producer when the item has been consumed sucessfully. Basically a producer gives me an TransportTask an Action<TransportTask> to call when its ready. What I want to do is post it in the same SyncContext where it came from.
public class TaskProcessAgent : ITaskProcessAgent
{
private Dictionary<TransportTask, Tuple<Action<TransportTask>, SynchronizationContext>> m_tasks = new Dictionary<TransportTask, Tuple<Action<TransportTask>, SynchronizationContext>>();
private BlockingCollection<TransportTask> m_taskQueue = new BlockingCollection<TransportTask>();
private TaskCoordinator m_coordinator;
public TaskProcessAgent(TaskCoordinator coordinator)
{
m_coordinator = coordinator;
m_coordinator.OnTaskReady += OnTaskReady;
Task.Factory.StartNew(() =>
{
foreach (var _task in m_taskQueue.GetConsumingEnumerable())
ProcessTask(_task);
},
TaskCreationOptions.LongRunning);
}
public void Process(TransportTask task, Action<TransportTask> onReady)
{
lock (m_tasks)
{
m_tasks.Add(task, Tuple.Create(onReady, SynchronizationContext.Current ?? new SynchronizationContext()));
}
m_taskQueue.Add(task);
}
public void SetCompleted(TransportTask task)
{
m_coordinator.SetCompleted(task);
}
private void OnTaskReady(TransportTask task)
{
m_tasks[task].Item2.Post(p => m_tasks[task].Item1(task), null);
}
private void ProcessTask(TransportTask transportTask)
{
m_coordinator.AddTask(transportTask);
}
}
Here OnTaskReady will be called by TaskCoordinator from it's own thread. What I want is to call the callback from the same SychronizationContext which called Process.
I'm not sure it's going to work and I need to write a lot more code to get to a point where I can test whether it works. The crucial line is m_tasks[task].Item2.Post(p => m_tasks[task].Item1(task), null); and I'm not sure it works this way.
Related
I working on real-time search. At this moment on property setter which is bounded to edit text, I call a method which calls API and then fills the list with the result it looks like this:
private string searchPhrase;
public string SearchPhrase
{
get => searchPhrase;
set
{
SetProperty(ref searchPhrase, value);
RunOnMainThread(SearchResult.Clear);
isAllFriends = false;
currentPage = 0;
RunInAsync(LoadData);
}
}
private async Task LoadData()
{
var response = await connectionRepository.GetConnections(currentPage,
pageSize, searchPhrase);
foreach (UserConnection uc in response)
{
if (uc.Type != UserConnection.TypeEnum.Awaiting)
{
RunOnMainThread(() =>
SearchResult.Add(new ConnectionUser(uc)));
}
}
}
But this way is totally useless because of it totally mashup list of a result if a text is entering quickly. So to prevent this I want to run this method async in a property but if a property is changed again I want to kill the previous Task and star it again. How can I achieve this?
Some informations from this thread:
create a CancellationTokenSource
var ctc = new CancellationTokenSource();
create a method doing the async work
private static Task ExecuteLongCancellableMethod(CancellationToken token)
{
return Task.Run(() =>
{
token.ThrowIfCancellationRequested();
// more code here
// check again if this task is canceled
token.ThrowIfCancellationRequested();
// more code
}
}
It is important to have this checks for cancel in the code.
Execute the function:
var cancellable = ExecuteLongCancellableMethod(ctc.Token);
To stop the long running execution use
ctc.Cancel();
For further details please consult the linked thread.
This question can be answered in many different ways. However IMO I would look at creating a class that
Delays itself automatically for X (ms) before performing the seach
Has the ability to be cancelled at any time as the search request changes.
Realistically this will change your code design, and should encapsulate the logic for both 1 & 2 in a separate class.
My initial thoughts are (and none of this is tested and mostly pseudo code).
class ConnectionSearch
{
public ConnectionSearch(string phrase, Action<object> addAction)
{
_searchPhrase = phrase;
_addAction = addAction;
_cancelSource = new CancellationTokenSource();
}
readonly string _searchPhrase = null;
readonly Action<object> _addAction;
readonly CancellationTokenSource _cancelSource;
public void Cancel()
{
_cancelSource?.Cancel();
}
public async void PerformSearch()
{
await Task.Delay(300); //await 300ms between keystrokes
if (_cancelSource.IsCancellationRequested)
return;
//continue your code keep checking for
//loop your dataset
//call _addAction?.Invoke(uc);
}
}
This is basic, really just encapsulates the logic for both points 1 & 2, you will need to adapt the code to do the search.
Next you could change your property to cancel a previous running instance, and then start another instance immediatly after something like below.
ConnectionSearch connectionSearch;
string searchPhrase;
public string SearchPhrase
{
get => searchPhrase;
set
{
//do your setter work
if(connectionSearch != null)
{
connectionSearch.Cancel();
}
connectionSearch = new ConnectionSearch(value, addConnectionUser);
connectionSearch.PerformSearch();
}
}
void addConnectionUser(object uc)
{
//pperform your add logic..
}
The code is pretty straight forward, however you will see in the setter is simply cancelling an existing request and then creating a new request. You could put some disposal cleanup logic in place but this should get you started.
You can implement some sort of debouncer which will encapsulate the logics of task result debouncing, i.e. it will assure if you run many tasks, then only the latest task result will be used:
public class TaskDebouncer<TResult>
{
public delegate void TaskDebouncerHandler(TResult result, object sender);
public event TaskDebouncerHandler OnCompleted;
public event TaskDebouncerHandler OnDebounced;
private Task _lastTask;
private object _lock = new object();
public void Run(Task<TResult> task)
{
lock (_lock)
{
_lastTask = task;
}
task.ContinueWith(t =>
{
if (t.IsFaulted)
throw t.Exception;
lock (_lock)
{
if (_lastTask == task)
{
OnCompleted?.Invoke(t.Result, this);
}
else
{
OnDebounced?.Invoke(t.Result, this);
}
}
});
}
public async Task WaitLast()
{
await _lastTask;
}
}
Then, you can just do:
private readonly TaskDebouncer<Connections[]> _connectionsDebouncer = new TaskDebouncer<Connections[]>();
public ClassName()
{
_connectionsDebouncer.OnCompleted += OnConnectionUpdate;
}
public void OnConnectionUpdate(Connections[] connections, object sender)
{
RunOnMainThread(SearchResult.Clear);
isAllFriends = false;
currentPage = 0;
foreach (var conn in connections)
RunOnMainThread(() => SearchResult.Add(new ConnectionUser(conn)));
}
private string searchPhrase;
public string SearchPhrase
{
get => searchPhrase;
set
{
SetProperty(ref searchPhrase, value);
_connectionsDebouncer.Add(RunInAsync(LoadData));
}
}
private async Task<Connection[]> LoadData()
{
return await connectionRepository
.GetConnections(currentPage, pageSize, searchPhrase)
.Where(conn => conn.Type != UserConnection.TypeEnum.Awaiting)
.ToArray();
}
It is not pretty clear what RunInAsync and RunOnMainThread methods are.
I guess, you don't actually need them.
Given a Task instance, how can I tell if ContinueWith has been called on it? I want to know if I'm the last task executing in a chain.
Task task = Task.FromResult();
void SomeMethod(var x) {
task = task.ContinueWith(previous => {
if (task.ContinueWith is called) return;
// do something with x...
}
}
If you meant multiple continuations. A possible solution may be like this.
class Program
{
public class TaskState
{
public bool Ended { get; set; }
}
static void Main(string[] args)
{
var task = Task.FromResult("Stackoverflow");
var state = new TaskState();
task.ContinueWith((result, continuationState) =>
{
Console.WriteLine("in first");
}, state).ContinueWith((result, continuationState) =>
{
if (!state.Ended)
Console.WriteLine("in second");
state.Ended = true;
}, state).ContinueWith((result, continuationState) =>
{
if (!state.Ended)
Console.WriteLine("in third");
state.Ended = true;
}, state);
Console.ReadLine();
}
}
You can have a static variable (a dictionary object) declared on the parent and update it with unique keyvalues when your Tasks are triggered. You can monitor this static variable to see if all the other threads has completed the execution or not.
Basically what I'm doing is I'm creating a temporary buffer that writes data to a byte[] and then returns the size of the buffer; I'm then using this to attempt to de-segmentate my code over a network. (Trying to get my C# Client to work properly with Netty's FrameDecoder class)
Basically, I'm storing all of my Actions in a List to be called over the network once I find the buffer-size(Dynamic)
public void SendBuffer(DataOutputStream ClientOuput)
{
ClientOuput.WriteInt(GetBufferSize());
foreach (Action a in executionList)
{
// What Do?
}
}
My problem is I need to Invoke the method inside of the DataOutputStream that's passed through the SendBuffer parameters, so something like
ClientOutput.a.invoke();
What's the best way to do this?
It's not that clear what you are asking but I try to answer anyway. So you have bunch of actions (defined somewhere) that you want to be executed by instance of DataOutputStream? Then you could do something like:
public async void SendBuffer(DataOutputStream clientOuput)
{
var executionList = new List<Action>()
{
() => { Debug.WriteLine("whatyousay"); Thread.Sleep(1500); },
() => { Debug.WriteLine("allyourbase"); Thread.Sleep(1500); },
};
clientOuput.WriteInt(1);
foreach (Action action in executionList)
await clientOuput.Execute(action);
Debug.WriteLine("arebelongtous");
}
Here DataOutputStream is just
public class DataOutputStream
{
// await and actions will be executed in given order, non-blocking
public Task Execute(Action action)
{
return Task.Run(action);
}
// fire & forget, non-blocking
public void BeginInvoke(Action action)
{
action.BeginInvoke(callback => {}, null);
}
// blocking
public void Invoke(Action action)
{
action.Invoke();
}
public void WriteInt(int integer)
{
Debug.WriteLine("int:{0}", integer);
}
}
I adopted my implementation of parallel/consumer based on the code in this question
class ParallelConsumer<T> : IDisposable
{
private readonly int _maxParallel;
private readonly Action<T> _action;
private readonly TaskFactory _factory = new TaskFactory();
private CancellationTokenSource _tokenSource;
private readonly BlockingCollection<T> _entries = new BlockingCollection<T>();
private Task _task;
public ParallelConsumer(int maxParallel, Action<T> action)
{
_maxParallel = maxParallel;
_action = action;
}
public void Start()
{
try
{
_tokenSource = new CancellationTokenSource();
_task = _factory.StartNew(
() =>
{
Parallel.ForEach(
_entries.GetConsumingEnumerable(),
new ParallelOptions { MaxDegreeOfParallelism = _maxParallel, CancellationToken = _tokenSource.Token },
(item, loopState) =>
{
Log("Taking" + item);
if (!_tokenSource.IsCancellationRequested)
{
_action(item);
Log("Finished" + item);
}
else
{
Log("Not Taking" + item);
_entries.CompleteAdding();
loopState.Stop();
}
});
},
_tokenSource.Token);
}
catch (OperationCanceledException oce)
{
System.Diagnostics.Debug.WriteLine(oce);
}
}
private void Log(string message)
{
Console.WriteLine(message);
}
public void Stop()
{
Dispose();
}
public void Enqueue(T entry)
{
Log("Enqueuing" + entry);
_entries.Add(entry);
}
public void Dispose()
{
if (_task == null)
{
return;
}
_tokenSource.Cancel();
while (!_task.IsCanceled)
{
}
_task.Dispose();
_tokenSource.Dispose();
_task = null;
}
}
And here is a test code
class Program
{
static void Main(string[] args)
{
TestRepeatedEnqueue(100, 1);
}
private static void TestRepeatedEnqueue(int itemCount, int parallelCount)
{
bool[] flags = new bool[itemCount];
var consumer = new ParallelConsumer<int>(parallelCount,
(i) =>
{
flags[i] = true;
}
);
consumer.Start();
for (int i = 0; i < itemCount; i++)
{
consumer.Enqueue(i);
}
Thread.Sleep(1000);
Debug.Assert(flags.All(b => b == true));
}
}
The test always fails - it always stuck at around 93th-item from the 100 tested. Any idea which part of my code caused this issue, and how to fix it?
You cannot use Parallel.Foreach() with BlockingCollection.GetConsumingEnumerable(), as you have discovered.
For an explanation, see this blog post:
https://devblogs.microsoft.com/pfxteam/parallelextensionsextras-tour-4-blockingcollectionextensions/
Excerpt from the blog:
BlockingCollection’s GetConsumingEnumerable implementation is using BlockingCollection’s internal synchronization which already supports multiple consumers concurrently, but ForEach doesn’t know that, and its enumerable-partitioning logic also needs to take a lock while accessing the enumerable.
As such, there’s more synchronization here than is actually necessary, resulting in a potentially non-negligable performance hit.
[Also] the partitioning algorithm employed by default by both Parallel.ForEach and PLINQ use chunking in order to minimize synchronization costs: rather than taking the lock once per element, it'll take the lock, grab a group of elements (a chunk), and then release the lock.
While this design can help with overall throughput, for scenarios that are focused more on low latency, that chunking can be prohibitive.
That blog also provides the source code for a method called GetConsumingPartitioner() which you can use to solve the problem.
public static class BlockingCollectionExtensions
{
public static Partitioner<T> GetConsumingPartitioner<T>(this BlockingCollection<T> collection)
{
return new BlockingCollectionPartitioner<T>(collection);
}
public class BlockingCollectionPartitioner<T> : Partitioner<T>
{
private BlockingCollection<T> _collection;
internal BlockingCollectionPartitioner(BlockingCollection<T> collection)
{
if (collection == null)
throw new ArgumentNullException("collection");
_collection = collection;
}
public override bool SupportsDynamicPartitions
{
get { return true; }
}
public override IList<IEnumerator<T>> GetPartitions(int partitionCount)
{
if (partitionCount < 1)
throw new ArgumentOutOfRangeException("partitionCount");
var dynamicPartitioner = GetDynamicPartitions();
return Enumerable.Range(0, partitionCount).Select(_ => dynamicPartitioner.GetEnumerator()).ToArray();
}
public override IEnumerable<T> GetDynamicPartitions()
{
return _collection.GetConsumingEnumerable();
}
}
}
The reason for failure is because of the following reason as explained here
The partitioning algorithm employed by default by both
Parallel.ForEach and PLINQ use chunking in order to minimize
synchronization costs: rather than taking the lock once per element,
it'll take the lock, grab a group of elements (a chunk), and then
release the lock.
To get it to work, you can add a method on your ParallelConsumer<T> class to indicate that the adding is completed, as below
public void StopAdding()
{
_entries.CompleteAdding();
}
And now call this method after your for loop , as below
consumer.Start();
for (int i = 0; i < itemCount; i++)
{
consumer.Enqueue(i);
}
consumer.StopAdding();
Otherwise, Parallel.ForEach() would wait for the threshold to be reached so as to grab the chunk and start processing.
I have a method that queues some work to be executed asynchronously. I'd like to return some sort of handle to the caller that can be polled, waited on, or used to fetch the return value from the operation, but I can't find a class or interface that's suitable for the task.
BackgroundWorker comes close, but it's geared to the case where the worker has its own dedicated thread, which isn't true in my case. IAsyncResult looks promising, but the provided AsyncResult implementation is also unusable for me. Should I implement IAsyncResult myself?
Clarification:
I have a class that conceptually looks like this:
class AsyncScheduler
{
private List<object> _workList = new List<object>();
private bool _finished = false;
public SomeHandle QueueAsyncWork(object workObject)
{
// simplified for the sake of example
_workList.Add(workObject);
return SomeHandle;
}
private void WorkThread()
{
// simplified for the sake of example
while (!_finished)
{
foreach (object workObject in _workList)
{
if (!workObject.IsFinished)
{
workObject.DoSomeWork();
}
}
Thread.Sleep(1000);
}
}
}
The QueueAsyncWork function pushes a work item onto the polling list for a dedicated work thread, of which there will only over be one. My problem is not with writing the QueueAsyncWork function--that's fine. My question is, what do I return to the caller? What should SomeHandle be?
The existing .Net classes for this are geared towards the situation where the asynchronous operation can be encapsulated in a single method call that returns. That's not the case here--all of the work objects do their work on the same thread, and a complete work operation might span multiple calls to workObject.DoSomeWork(). In this case, what's a reasonable approach for offering the caller some handle for progress notification, completion, and getting the final outcome of the operation?
Yes, implement IAsyncResult (or rather, an extended version of it, to provide for progress reporting).
public class WorkObjectHandle : IAsyncResult, IDisposable
{
private int _percentComplete;
private ManualResetEvent _waitHandle;
public int PercentComplete {
get {return _percentComplete;}
set
{
if (value < 0 || value > 100) throw new InvalidArgumentException("Percent complete should be between 0 and 100");
if (_percentComplete = 100) throw new InvalidOperationException("Already complete");
if (value == 100 && Complete != null) Complete(this, new CompleteArgs(WorkObject));
_percentComplete = value;
}
public IWorkObject WorkObject {get; private set;}
public object AsyncState {get {return WorkObject;}}
public bool IsCompleted {get {return _percentComplete == 100;}}
public event EventHandler<CompleteArgs> Complete; // CompleteArgs in a usual pattern
// you may also want to have Progress event
public bool CompletedSynchronously {get {return false;}}
public WaitHandle
{
get
{
// initialize it lazily
if (_waitHandle == null)
{
ManualResetEvent newWaitHandle = new ManualResetEvent(false);
if (Interlocked.CompareExchange(ref _waitHandle, newWaitHandle, null) != null)
newWaitHandle.Dispose();
}
return _waitHandle;
}
}
public void Dispose()
{
if (_waitHandle != null)
_waitHandle.Dispose();
// dispose _workObject too, if needed
}
public WorkObjectHandle(IWorkObject workObject)
{
WorkObject = workObject;
_percentComplete = 0;
}
}
public class AsyncScheduler
{
private Queue<WorkObjectHandle> _workQueue = new Queue<WorkObjectHandle>();
private bool _finished = false;
public WorkObjectHandle QueueAsyncWork(IWorkObject workObject)
{
var handle = new WorkObjectHandle(workObject);
lock(_workQueue)
{
_workQueue.Enqueue(handle);
}
return handle;
}
private void WorkThread()
{
// simplified for the sake of example
while (!_finished)
{
WorkObjectHandle handle;
lock(_workQueue)
{
if (_workQueue.Count == 0) break;
handle = _workQueue.Dequeue();
}
try
{
var workObject = handle.WorkObject;
// do whatever you want with workObject, set handle.PercentCompleted, etc.
}
finally
{
handle.Dispose();
}
}
}
}
If I understand correctly you have a collection of work objects (IWorkObject) that each complete a task via multiple calls to a DoSomeWork method. When an IWorkObject object has finished its work you'd like to respond to that somehow and during the process you'd like to respond to any reported progress?
In that case I'd suggest you take a slightly different approach. You could take a look at the Parallel Extension framework (blog). Using the framework, you could write something like this:
public void QueueWork(IWorkObject workObject)
{
Task.TaskFactory.StartNew(() =>
{
while (!workObject.Finished)
{
int progress = workObject.DoSomeWork();
DoSomethingWithReportedProgress(workObject, progress);
}
WorkObjectIsFinished(workObject);
});
}
Some things to note:
QueueWork now returns void. The reason for this is that the actions that occur when progress is reported or when the task completes have become part of the thread that executes the work. You could of course return the Task that the factory creates and return that from the method (to enable polling for example).
The progress-reporting and finish-handling are now part of the thread because you should always avoid polling when possible. Polling is more expensive because usually you either poll too frequently (too early) or not often enough (too late). There is no reason you can't report on the progress and finishing of the task from within the thread that is running the task.
The above could also be implemented using the (lower level) ThreadPool.QueueUserWorkItem method.
Using QueueUserWorkItem:
public void QueueWork(IWorkObject workObject)
{
ThreadPool.QueueUserWorkItem(() =>
{
while (!workObject.Finished)
{
int progress = workObject.DoSomeWork();
DoSomethingWithReportedProgress(workObject, progress);
}
WorkObjectIsFinished(workObject);
});
}
The WorkObject class can contain the properties that need to be tracked.
public class WorkObject
{
public PercentComplete { get; private set; }
public IsFinished { get; private set; }
public void DoSomeWork()
{
// work done here
this.PercentComplete = 50;
// some more work done here
this.PercentComplete = 100;
this.IsFinished = true;
}
}
Then in your example:
Change the collection from a List to a Dictionary that can hold Guid values (or any other means of uniquely identifying the value).
Expose the correct WorkObject's properties by having the caller pass the Guid that it received from QueueAsyncWork.
I'm assuming that you'll start WorkThread asynchronously (albeit, the only asynchronous thread); plus, you'll have to make retrieving the dictionary values and WorkObject properties thread-safe.
private Dictionary<Guid, WorkObject> _workList =
new Dictionary<Guid, WorkObject>();
private bool _finished = false;
public Guid QueueAsyncWork(WorkObject workObject)
{
Guid guid = Guid.NewGuid();
// simplified for the sake of example
_workList.Add(guid, workObject);
return guid;
}
private void WorkThread()
{
// simplified for the sake of example
while (!_finished)
{
foreach (WorkObject workObject in _workList)
{
if (!workObject.IsFinished)
{
workObject.DoSomeWork();
}
}
Thread.Sleep(1000);
}
}
// an example of getting the WorkObject's property
public int GetPercentComplete(Guid guid)
{
WorkObject workObject = null;
if (!_workList.TryGetValue(guid, out workObject)
throw new Exception("Unable to find Guid");
return workObject.PercentComplete;
}
The simplest way to do this is described here. Suppose you have a method string DoSomeWork(int). You then create a delegate of the correct type, for example:
Func<int, string> myDelegate = DoSomeWork;
Then you call the BeginInvoke method on the delegate:
int parameter = 10;
myDelegate.BeginInvoke(parameter, Callback, null);
The Callback delegate will be called once your asynchronous call has completed. You can define this method as follows:
void Callback(IAsyncResult result)
{
var asyncResult = (AsyncResult) result;
var #delegate = (Func<int, string>) asyncResult.AsyncDelegate;
string methodReturnValue = #delegate.EndInvoke(result);
}
Using the described scenario, you can also poll for results or wait on them. Take a look at the url I provided for more info.
Regards,
Ronald
If you don't want to use async callbacks, you can use an explicit WaitHandle, such as a ManualResetEvent:
public abstract class WorkObject : IDispose
{
ManualResetEvent _waitHandle = new ManualResetEvent(false);
public void DoSomeWork()
{
try
{
this.DoSomeWorkOverride();
}
finally
{
_waitHandle.Set();
}
}
protected abstract DoSomeWorkOverride();
public void WaitForCompletion()
{
_waitHandle.WaitOne();
}
public void Dispose()
{
_waitHandle.Dispose();
}
}
And in your code you could say
using (var workObject = new SomeConcreteWorkObject())
{
asyncScheduler.QueueAsyncWork(workObject);
workObject.WaitForCompletion();
}
Don't forget to call Dispose on your workObject though.
You can always use alternate implementations which create a wrapper like this for every work object, and who call _waitHandle.Dispose() in WaitForCompletion(), you can lazily instantiate the wait handle (careful: race conditions ahead), etc. (That's pretty much what BeginInvoke does for delegates.)