How to chunk and stream a file - c#

I need to simulate a stream using a file...
This is what I was able to produce so far... the code works, but the streaming does not occur.
I have no experience with streams, so expect to find lot of bugs.
Stream chunkedStream = new MemoryStream();
var task = session.AnalyzeAsync(chunkedStream);
FillStream(chunkedStream);
while (!task.Wait(500))
{
Console.Write("\r" + ((float)chunkedStream.Position / 16000) + " Seconds");
if (!chunkedStream.CanWrite)
{
break;
}
}
private static async Task FillStream(Stream chunkedStream)
{
var stream = Properties.Resources.ResourceManager.GetStream("Sample");
byte[] chunk = new byte[16000];
while (true)
{
Thread.Sleep(1000);
int index = 0;
// There are various different ways of structuring this bit of code.
// Fundamentally we're trying to keep reading in to our chunk until
// either we reach the end of the stream, or we've read everything we need.
while (index < chunk.Length)
{
int bytesRead = stream.Read(chunk, index, chunk.Length - index);
if (bytesRead == 0)
{
break;
}
index += bytesRead;
}
if (index != 0) // Our previous chunk may have been the last one
{
// SendChunk(chunk, index); // index is the number of bytes in the chunk
chunkedStream.Write(chunk, 0, chunk.Length);
}
if (index != chunk.Length) // We didn't read a full chunk: we're done
{
chunkedStream.Close();
return;
}
}
}
public async Task AnalyzeAsync(Stream voiceStream)
{
IntervalHandler();
_StreamTask = UpStreamVoiceData(voiceStream);
await _StreamTask;
}
private async Task<Result<AnalysisResult>> UpStreamVoiceData(Stream voiceStream)
{
HttpWebRequest webRequest = WebRequestExtensions.CreateJsonPostRequest(_actions.upStream);
webRequest.ReadWriteTimeout = 1000000;
webRequest.Timeout = 10000000;
webRequest.SendChunked = true;
webRequest.AllowWriteStreamBuffering = false;
webRequest.AllowReadStreamBuffering = false;
using (var requeststream = webRequest.GetRequestStream())
{
await voiceStream.CopyStreamWithAutoFlush(requeststream);
requeststream.Close();
}
return webRequest.ReadJsonResponseAs<Result<AnalysisResult>>();
}

Related

Read from C# Stream without busy waiting

I need to read content from Stream in C#. I do not know which kind of Stream it would be. Let's assume it is Network Stream and network is very slow. So I can't read all bytes immediately. I know that 4 bytes in stream is integer and this int defines content length that we need to get from stream. How to do it without busy waiting (looping)?
private (int headerValue, bool isSuccess) ReadHeader()
{
var bytesRead = 0;
var headerBuffer = new byte[BufferHeaderLength];
var headerIsReady = false;
while (!headerIsReady)
{
try
{
var availableBytesToRead = Math.Min(BufferHeaderLength - bytesRead, underlyingStream.Length); // should be a number from 0 to 4
bytesRead += underlyingStream.Read(headerBuffer, bytesRead, (int)availableBytesToRead);
if (bytesRead == 0)
{
break;
}
}
catch (Exception)
{
break;
}
headerIsReady = bytesRead == BufferHeaderLength;
}
var headerValue = headerIsReady ? BitConverter.ToInt32(headerBuffer, 0) : 0;
return (headerValue, headerIsReady);
}

ReadAsync on a NetworkStream appears to be using all my CPU

I have the following method, which reads and deserializes packets from a NetworkStream asynchronously. Everything works, but CPU profiling shows that the very last line, in which I am awaiting an asynchronous read, is where the majority of my CPU usage comes from.
Have I implemented this badly/inefficiently, or is there something inherently wrong with the NetworkStream's async implementation?
public async Task<Packet> ReadAsync(CancellationToken cancellationToken)
{
while (true)
{
// Read through the available bytes until we find the start of a packet
while (start < length && buffer[start] != Packet.STX)
start++;
// Align the packet (and all successive bytes) with the beginning of the buffer
if (start > 0)
{
if (start < length)
Array.Copy(buffer, start, buffer, 0, length - start);
length -= start;
start = 0;
}
// Read through the available bytes until we find the end of the packet
while (end < length && buffer[end] != Packet.ETX)
end++;
// If we have a whole packet in the buffer, deserialize and return it
if (end < length)
{
byte[] data = new byte[end + 1];
Array.Copy(buffer, data, end + 1);
byte[] decoded = null;
Packet packet = null;
try
{
decoded = Packet.Decode(data);
}
catch (Exception ex)
{
throw new IOException("Could not decode packet", ex);
}
if (decoded != null)
{
try
{
packet = Packet.Deserialize(decoded);
}
catch (Exception ex)
{
throw new IOException("Could not deserialize packet", ex);
}
}
Array.Copy(buffer, end + 1, buffer, 0, length - (end + 1));
length -= end + 1;
end = 0;
if (packet != null)
return packet;
}
// If we read all available bytes while looking for the end of a packet
if (end == length)
{
if (length == buffer.Length)
throw new InsufficientMemoryException();
length += await Stream.ReadAsync(buffer, length, buffer.Length - length, cancellationToken);
}
}
}
I have updated the code to sleep between each call to ReadAsync, for roughly the amount of time the last read took:
var stopwatch = new Stopwatch();
var iteration = 0;
while (true)
{
// ...
var delay = stopwatch.Elapsed;
stopwatch.Restart();
if (iteration % 10 != 0)
await Task.Delay(delay);
length += await Stream.ReadAsync(buffer, length, buffer.Length - length, cancellationToken);
stopwatch.Stop();
iteration += 1;
}
This has drastically dropped the CPU usage. This is definitely a work-around, as it does not address the issue, but it works. I would love to hear anyone else's answers or opinions on this issue.

Reading all data from stream of TcpClient

I am working on a new machine at my works which is controlled via a PC. Current stuck on talking to a camera system that is connected via Ethernet.
Here is my code of opening a connection.
TcpClient client;
NetworkStream stream;
public bool OpenConnection()
{
client = new TcpClient();
try
{
//Camera.Open();
client.Connect("192.168.0.10", 8500);
stream = client.GetStream();
}
catch (Exception ex)
{
return false;
}
return true;
}
So far so good. Once the connection is open I then request some information from the camera
The message format I am using has STX(0x02) to indicate the start of the message and ETX(0x03) as the end of the message.
char StartOfPacket = (char)0x02;
char EndOfPacket= (char)0x03;
public bool RetrieveDigits(out string Digits)
{
// Send the trigger cammand to the vision system
Digits = "";
bool EverythingOK = true;
string DataToSend = StartOfPacket + "T1" + EndOfPacket;
byte[] buff = Encoding.ASCII.GetBytes(DataToSend);
if (LogCameraEvent != null)
LogCameraEvent(">> " + DataToSend);
try
{
stream.Write(buff, 0, buff.Length);
}
catch (Exception ex)
{
Logging.Instance.LogExceptionToFile(MethodBase.GetCurrentMethod(), ex);
EverythingOK = false;
}
Thread.Sleep(100);
byte[] buffer;
if (EverythingOK)
{
// Check the response
buffer = ReadCamera(10);
// Process the packets
string[] packets = ProcessPackets(buffer);
if (packets != null)
{
if (packets.Length > 0)
{
bool TriggerFound = false;
for (int i = 0; i < packets.Length; i++)
{
if (packets[i] == "T1")
{
TriggerFound = true;
continue;
}
else if (TriggerFound)
{
// If we are here then we should now be the data that was requested
if (string.IsNullOrEmpty(packets[i]))
{
Digits = packets[i-1]; // previous packet may have data from previous trigger. Need to look into why this happens.
}
else
Digits = packets[i];
EverythingOK = true;
break;
}
else
EverythingOK = false;
}
}
else
{
Console.WriteLine("No Packets Recieved");
EverythingOK = false;
}
}
else
{
Console.WriteLine("No Packets Recieved");
EverythingOK = false;
}
}
return EverythingOK;
}
Here is the part where I think the issue may lie, getting the response.
private byte[] ReadCamera(int ExpectedLength)
{
if(ExpectedLength < 1)
{
ExpectedLength = 100;
}
byte[] Buffer = new byte[ExpectedLength];
int read = 0;
int chunk;
while(stream.DataAvailable)
{
chunk = stream.Read(Buffer, read, Buffer.Length-read);
read += chunk;
// If we have reached the end of our buffer, check to see if theres any more information
if(read == Buffer.Length)
{
if(!stream.DataAvailable)
return Buffer;
// Nope. Resize the buffer, put the byte we've just read and continue
byte[] newBuffer = new byte[Buffer.Length * 2];
Array.Copy(Buffer, newBuffer, Buffer.Length);
Buffer = newBuffer;
//read++;
}
else if(!stream.DataAvailable)
return Buffer;
Thread.Sleep(50);
}
// Buffer is now too big, shrink it
byte[] ret = new byte[read];
Array.Copy(Buffer, ret, read);
return ret;
}
private string[] ProcessPackets(byte[] data)
{
// look for the stat char
List<string> Packets = new List<string>();
byte Start = 0x02;
bool StartFound = false;
byte End = 0x03;
StringBuilder sb = new StringBuilder();
for(int i =0; i<data.Length; i++)
{
if(StartFound)
{
// Check to see if its the end
if (data[i] == End)
{
Packets.Add(sb.ToString());
sb.Clear();
}
else
sb.Append(Encoding.ASCII.GetChars(data, i, 1));
}
// Find the start
if (!StartFound)
{
if (data[i] == Start)
{
StartFound = true;
}
}
}
return Packets.ToArray();
}
Let me explain what should happen and then what is happening. Through RetrieveDigits method I am sending "T1" to the camera. What the camera will do is respond with "T1" followed by 2 ascii characters, for now we will say AA. Using a diagnostic app on the camera system I can monitor the Ethernet and I see the following.
(>> means Received by Camera)
(<< means Sent from Camera)
>>[STX]T1[ETX]
<<[STX]T1[ETX][STX]AA[ETX]
So I see what the camera has sent. I confirmed the PC has has received the data using wire shark.
Now further down in the RetrieveDigits method you can see I process the packets received, loop through the packets until I find "T1" and then assume the next packet will be the data I am after and I set Digits to this value.
What I am finding is that sometimes when I run the app I see that Digits is set to "".
I am also finding that sometimes my data received will be "AA" then "T1" rather than "T1" then "AA". What I suspect is happening is that when its back to front, the "AA" is actually from the previous data sent from the camera and for some reason it was missed when reading from the stream.
Any idea why this could be happening as I am reading the data until Stream.Available is false.
Edit:
Modified the ReadCamera code to process the packets, reading 1 byte at a time.
private string[] ReadCamera(int ExpectedLength, int ExpectedPackets)
{
List<string> Packets = new List<string>();
bool StartFound = false;
StringBuilder sb = new StringBuilder();
if(ExpectedLength < 1)
{
ExpectedLength = 100;
}
byte[] Buffer = new byte[ExpectedLength];
int read = 0;
while (true)
{
read += stream.Read(Buffer, read, 1);
// Check to see if the byte read is the start of a packet
if (Buffer[read - 1] == StartOfPacket)
{
StartFound = true;
}
else if (StartFound)
{
// Check to see if the byte read is the end of a packet
if (Buffer[read - 1] == EndOfPacket)
{
Packets.Add(sb.ToString());
sb.Clear();
StartFound = false;
if (Packets.Count == ExpectedPackets)
break;
}
else
{
sb.Append(Encoding.ASCII.GetChars(Buffer, read - 1, 1));
}
}
}
// For Debuggin purposes
foreach(string s in Packets)
if (LogCameraEvent != null)
LogCameraEvent("<< " + s);
return Packets.ToArray();
}
and modified calling the method like so
// Check the response
string[] packets = ReadCamera(10,2);
// Process the packets
//string[] packets = ProcessPackets(buffer);

Socket OnData event

I'm currently in a little bit of a pickle. I have some code that reads data from a socket whenever data is available but currently it is in a while loop on a separate thread and chews through 50% of the CPU when the function returns because of no data available. What I would really like is a blocking function for Sockets that blocks until data is available, or at least a OnData event that could be listened on. I originally converted this code from AS3 (Flash) but their sockets class has the OnData event I need... just in the wrong language.
I currently have this code in the code that handles a client connecting:
ServerThread = new Thread(() =>
{
while (server.Connected && ServerContinue)
{
ReceiveFromServer(server, client);
}
Disconnect(server, client, false);
});
ServerThread.Start();
And this is the code in ReceiveFromServer:
bool isReady = false;
int messageLength = 0;
int dataAvailable = 0;
UInt16 packetSize = 0;
byte[] temp = new byte[2];
do
{
dataAvailable = server.Available;
if (isReady)
{
if (dataAvailable >= messageLength)
{
byte[] temp1 = new byte[2000];
int bytesRead = server.Receive(temp1, 0, messageLength, SocketFlags.None);
byte[] data = new byte[bytesRead + 2];
Buffer.BlockCopy(temp1, 0, data, 2, messageLength);
Helpers.ByteArray tempo = data;
tempo.writeByte(temp[1]);
tempo.writeByte(temp[0]);
if (!VersionCheckPass)
{
Send(tempo, client);
return;
}
ServerPacketHandler(tempo, client);
messageLength = 0;
isReady = false;
temp = new byte[2];
}
}
else if(dataAvailable > 2)
{
server.Receive(temp, 0, 2, SocketFlags.None);
temp = temp.Reverse().ToArray();
packetSize = BitConverter.ToUInt16(temp, 0);
if (packetSize > 0)
{
messageLength = packetSize;
isReady = true;
}
}
}
while (dataAvailable > 2 && dataAvailable >= messageLength && ServerContinue);
But the issue here is that when dataAvailable is 0 the function simply returns, and then RecevieFromServer is called again in the thread. This means that alot of the CPU is used by simply calling ReceiveFromServer and then returning again.
I currently have Thread.Sleep(10) after ReceiveFromServer in the ServerThread but this is inefficient. So my question is, Is there a way to block until data is available or is there an event that I can handle? Or does anyone else have any suggestions on how to do the same thing I am currently doing but it doesn't loop endlessly whilst there is no data available.
Found a really easy (and obvious) solution to block until data is available. Call Socket.Receive with a receive size of 0. The socket blocks until there is data to receive, then reads 0 bytes from the socket, and unblocks. Its really quite marvelous :) Heres how I implemented it:
ServerThread = new Thread(() =>
{
byte[] zero = new byte[0];
while (Server.Connected && ServerContinue)
{
server.Receive(zero, 0, SocketFlags.None);
ReceiveFromServer(server, client);
}
Disconnect(server, client, false);
});
Thanks for all the help.
Josh
There is not a lot of re-write needed. Your code looks like it's just receiving the message and then passing off to another routine to process it.
My reply to this thread pretty much covers what you're wanting to do:
C# Sockets and Multithreading
My socketReadCallBack function is:
private void OnDataReceived(IAsyncResult asyn)
{
ReceiveState rState = (ReceiveState)asyn.AsyncState;
Socket client = rState.Client;
SocketError socketError = SocketError.TypeNotFound;
if (!client.Connected)
{
// Not Connected anymore ?
return;
}
_LastComms = DateTime.Now;
_LastIn = _LastComms;
int dataOffset = 0;
int restOfData = 0;
int dataRead = 0;
Boolean StreamClosed = false;
long rStateDataLength = 0;
long LastrStateDataLength = 0;
try
{
dataRead = client.EndReceive(asyn, out socketError);
}
catch (Exception excpt)
{
// Handle error - use your own code..
}
if (socketError != SocketError.Success)
{
// Has Connection been lost ?
OnConnectionDropped(client);
return;
}
if (dataRead <= 0)
{
// Has connection been lost ?
OnConnectionDropped(client);
return;
}
while (dataRead > 0)
{
//check to determine what income data contain: size prefix or message
if (!rState.DataSizeReceived)
{
//there is already some data in the buffer
if (rState.Data.Length > 0)
{
restOfData = PrefixSize - (int)rState.Data.Length;
rState.Data.Write(rState.Buffer, dataOffset, restOfData);
dataRead -= restOfData;
dataOffset += restOfData;
}
else if (dataRead >= PrefixSize)
{ //store whole data size prefix
rState.Data.Write(rState.Buffer, dataOffset, PrefixSize);
dataRead -= PrefixSize;
dataOffset += PrefixSize;
}
else
{ // store only part of the size prefix
rState.Data.Write(rState.Buffer, dataOffset, dataRead);
dataOffset += dataRead;
dataRead = 0;
}
if (rState.Data.Length == PrefixSize)
{ //we received data size prefix
rState.DataSize = BitConverter.ToInt32(rState.Data.GetBuffer(), 0);
rState.DataSizeReceived = true;
//reset internal data stream
rState.Data.Position = 0;
rState.Data.SetLength(0);
}
else
{ //we received just part of the prefix information
//issue another read
client.BeginReceive(rState.Buffer, 0, rState.Buffer.Length,
SocketFlags.None, new AsyncCallback(socketReadCallBack),
rState);
return;
}
}
//at this point we know the size of the pending data
// Object disposed exception may raise here
try
{
rStateDataLength = rState.Data.Length;
LastrStateDataLength = rStateDataLength;
}
catch (ObjectDisposedException Ode)
{
StreamClosed = true;
}
if (!StreamClosed)
{
if ((rStateDataLength + dataRead) >= rState.DataSize)
{ //we have all the data for this message
restOfData = rState.DataSize - (int)rState.Data.Length;
rState.Data.Write(rState.Buffer, dataOffset, restOfData);
//Console.WriteLine("Data message received. Size: {0}",
// rState.DataSize);
// Is this a heartbeat message ?
if (rState.Data.Length == 2)
{
// Yes
HeartBeatReceived();
}
else
{
//charArray = new char[uniEncoding.GetCharCount(
//byteArray, 0, count)];
//uniEncoding.GetDecoder().GetChars(
// byteArray, 0, count, charArray, 0);
//Console.WriteLine(charArray);
//rState.Data.Position = 0;
DecodeMessageReceived(GetStringFromStream(rState.Data));
}
dataOffset += restOfData;
dataRead -= restOfData;
//message received - cleanup internal memory stream
rState.Data = new MemoryStream();
rState.Data.Position = 0;
rState.DataSizeReceived = false;
rState.DataSize = 0;
if (dataRead == 0)
{
//no more data remaining to process - issue another receive
if (_IsConnected)
{
client.BeginReceive(rState.Buffer, 0, rState.Buffer.Length,
SocketFlags.None, new AsyncCallback(socketReadCallBack),
rState);
return;
}
}
else
continue; //there's still some data to process in the buffers
}
else
{ //there is still data pending, store what we've
//received and issue another BeginReceive
if (_IsConnected)
{
rState.Data.Write(rState.Buffer, dataOffset, dataRead);
client.BeginReceive(rState.Buffer, 0, rState.Buffer.Length,
SocketFlags.None, new AsyncCallback(socketReadCallBack), rState);
dataRead = 0;
}
}
}
else
{
// Stream closed, but have we read everything ?
if (LastrStateDataLength + dataRead == rState.DataSize)
{
// We're equal, get ready for more
//no more data remaining to process - issue another receive
if (_IsConnected)
{
client.BeginReceive(rState.Buffer, 0, rState.Buffer.Length,
SocketFlags.None, new AsyncCallback(socketReadCallBack),
rState);
}
return;
}
else
{
// We should have more..
// Report Error
}
}
// If we've been disconnected, provide a graceful exit
if (!_IsConnected)
dataRead = -1;
}
}
I've got a few more things in here than you need like provision for a heartbeat message and raising events on connection dropped etc.

Replace sequence of bytes in binary file

What is the best method to replace sequence of bytes in binary file to the same length of other bytes? The binary files will be pretty large, about 50 mb and should not be loaded at once in memory.
Update: I do not know location of bytes which needs to be replaced, I need to find them first.
Assuming you're trying to replace a known section of the file.
Open a FileStream with read/write access
Seek to the right place
Overwrite existing data
Sample code coming...
public static void ReplaceData(string filename, int position, byte[] data)
{
using (Stream stream = File.Open(filename, FileMode.Open))
{
stream.Position = position;
stream.Write(data, 0, data.Length);
}
}
If you're effectively trying to do a binary version of a string.Replace (e.g. "always replace bytes { 51, 20, 34} with { 20, 35, 15 } then it's rather harder. As a quick description of what you'd do:
Allocate a buffer of at least the size of data you're interested in
Repeatedly read into the buffer, scanning for the data
If you find a match, seek back to the right place (e.g. stream.Position -= buffer.Length - indexWithinBuffer; and overwrite the data
Sounds simple so far... but the tricky bit is if the data starts near the end of the buffer. You need to remember all potential matches and how far you've matched so far, so that if you get a match when you read the next buffer's-worth, you can detect it.
There are probably ways of avoiding this trickiness, but I wouldn't like to try to come up with them offhand :)
EDIT: Okay, I've got an idea which might help...
Keep a buffer which is at least twice as big as you need
Repeatedly:
Copy the second half of the buffer into the first half
Fill the second half of the buffer from the file
Search throughout the whole buffer for the data you're looking for
That way at some point, if the data is present, it will be completely within the buffer.
You'd need to be careful about where the stream was in order to get back to the right place, but I think this should work. It would be trickier if you were trying to find all matches, but at least the first match should be reasonably simple...
My solution :
/// <summary>
/// Copy data from a file to an other, replacing search term, ignoring case.
/// </summary>
/// <param name="originalFile"></param>
/// <param name="outputFile"></param>
/// <param name="searchTerm"></param>
/// <param name="replaceTerm"></param>
private static void ReplaceTextInBinaryFile(string originalFile, string outputFile, string searchTerm, string replaceTerm)
{
byte b;
//UpperCase bytes to search
byte[] searchBytes = Encoding.UTF8.GetBytes(searchTerm.ToUpper());
//LowerCase bytes to search
byte[] searchBytesLower = Encoding.UTF8.GetBytes(searchTerm.ToLower());
//Temporary bytes during found loop
byte[] bytesToAdd = new byte[searchBytes.Length];
//Search length
int searchBytesLength = searchBytes.Length;
//First Upper char
byte searchByte0 = searchBytes[0];
//First Lower char
byte searchByte0Lower = searchBytesLower[0];
//Replace with bytes
byte[] replaceBytes = Encoding.UTF8.GetBytes(replaceTerm);
int counter = 0;
using (FileStream inputStream = File.OpenRead(originalFile)) {
//input length
long srcLength = inputStream.Length;
using (BinaryReader inputReader = new BinaryReader(inputStream)) {
using (FileStream outputStream = File.OpenWrite(outputFile)) {
using (BinaryWriter outputWriter = new BinaryWriter(outputStream)) {
for (int nSrc = 0; nSrc < srcLength; ++nSrc)
//first byte
if ((b = inputReader.ReadByte()) == searchByte0
|| b == searchByte0Lower) {
bytesToAdd[0] = b;
int nSearch = 1;
//next bytes
for (; nSearch < searchBytesLength; ++nSearch)
//get byte, save it and test
if ((b = bytesToAdd[nSearch] = inputReader.ReadByte()) != searchBytes[nSearch]
&& b != searchBytesLower[nSearch]) {
break;//fail
}
//Avoid overflow. No need, in my case, because no chance to see searchTerm at the end.
//else if (nSrc + nSearch >= srcLength)
// break;
if (nSearch == searchBytesLength) {
//success
++counter;
outputWriter.Write(replaceBytes);
nSrc += nSearch - 1;
}
else {
//failed, add saved bytes
outputWriter.Write(bytesToAdd, 0, nSearch + 1);
nSrc += nSearch;
}
}
else
outputWriter.Write(b);
}
}
}
}
Console.WriteLine("ReplaceTextInBinaryFile.counter = " + counter);
}
You can use my BinaryUtility to search and replace one or more bytes without loading the entire file into memory like this:
var searchAndReplace = new List<Tuple<byte[], byte[]>>()
{
Tuple.Create(
BitConverter.GetBytes((UInt32)0xDEADBEEF),
BitConverter.GetBytes((UInt32)0x01234567)),
Tuple.Create(
BitConverter.GetBytes((UInt32)0xAABBCCDD),
BitConverter.GetBytes((UInt16)0xAFFE)),
};
using(var reader =
new BinaryReader(new FileStream(#"C:\temp\data.bin", FileMode.Open)))
{
using(var writer =
new BinaryWriter(new FileStream(#"C:\temp\result.bin", FileMode.Create)))
{
BinaryUtility.Replace(reader, writer, searchAndReplace);
}
}
BinaryUtility code:
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
public static class BinaryUtility
{
public static IEnumerable<byte> GetByteStream(BinaryReader reader)
{
const int bufferSize = 1024;
byte[] buffer;
do
{
buffer = reader.ReadBytes(bufferSize);
foreach (var d in buffer) { yield return d; }
} while (bufferSize == buffer.Length);
}
public static void Replace(BinaryReader reader, BinaryWriter writer, IEnumerable<Tuple<byte[], byte[]>> searchAndReplace)
{
foreach (byte d in Replace(GetByteStream(reader), searchAndReplace)) { writer.Write(d); }
}
public static IEnumerable<byte> Replace(IEnumerable<byte> source, IEnumerable<Tuple<byte[], byte[]>> searchAndReplace)
{
foreach (var s in searchAndReplace)
{
source = Replace(source, s.Item1, s.Item2);
}
return source;
}
public static IEnumerable<byte> Replace(IEnumerable<byte> input, IEnumerable<byte> from, IEnumerable<byte> to)
{
var fromEnumerator = from.GetEnumerator();
fromEnumerator.MoveNext();
int match = 0;
foreach (var data in input)
{
if (data == fromEnumerator.Current)
{
match++;
if (fromEnumerator.MoveNext()) { continue; }
foreach (byte d in to) { yield return d; }
match = 0;
fromEnumerator.Reset();
fromEnumerator.MoveNext();
continue;
}
if (0 != match)
{
foreach (byte d in from.Take(match)) { yield return d; }
match = 0;
fromEnumerator.Reset();
fromEnumerator.MoveNext();
}
yield return data;
}
if (0 != match)
{
foreach (byte d in from.Take(match)) { yield return d; }
}
}
}
public static void BinaryReplace(string sourceFile, byte[] sourceSeq, string targetFile, byte[] targetSeq)
{
FileStream sourceStream = File.OpenRead(sourceFile);
FileStream targetStream = File.Create(targetFile);
try
{
int b;
long foundSeqOffset = -1;
int searchByteCursor = 0;
while ((b=sourceStream.ReadByte()) != -1)
{
if (sourceSeq[searchByteCursor] == b)
{
if (searchByteCursor == sourceSeq.Length - 1)
{
targetStream.Write(targetSeq, 0, targetSeq.Length);
searchByteCursor = 0;
foundSeqOffset = -1;
}
else
{
if (searchByteCursor == 0)
{
foundSeqOffset = sourceStream.Position - 1;
}
++searchByteCursor;
}
}
else
{
if (searchByteCursor == 0)
{
targetStream.WriteByte((byte) b);
}
else
{
targetStream.WriteByte(sourceSeq[0]);
sourceStream.Position = foundSeqOffset + 1;
searchByteCursor = 0;
foundSeqOffset = -1;
}
}
}
}
finally
{
sourceStream.Dispose();
targetStream.Dispose();
}
}

Categories

Resources