size of a dictionary object in Bytes - c#

I would like to know the size of a dictionary item in bytes.How could I do that? Is there any predefined method? I saw a similar question being answered saying to get the difference using GC.TotalMemory method. But here I cannot Gc.KeepAlive the object. Please advice. The problem of calculating the difference before and after the usage of the dictionary is not possible as the total memory would not only include that dictionary's memory but also memory of several other threads.Please provide an alternative way for this.

You can do like this :
long StopBytes = 0;
// Declare your dictionnary
Dictionary<string, int> myDictionary;
// Get total memory before create your dictionnary
long StartBytes = System.GC.GetTotalMemory(true);
// Initialize your dictionnary
myDictionary = new Dictionary<string, int>();
// Get total memory after create your dictionnary
StopBytes = System.GC.GetTotalMemory(true);
// This ensure a reference to object keeps object in memory
GC.KeepAlive(myFoo);
// Calcul the difference , and that all :-)
MessageBox.Show("Size is " + ((long)(StopBytes - StartBytes)).ToString());
More information here -> http://blogs.msdn.com/b/mab/archive/2006/04/24/582666.aspx

Related

Dictionary Unhandled Exception in C#: "The given key was not present in the dictionary"

I'm trying to print out a dictionary in C# that will simulate a graph. My dictionary looks like this:
Dictionary<int, List<int>> graph = new Dictionary<int, List<int>>();
In main, I add something to the dictionary, then try to print it out:
dicOfLists myDic = new dicOfLists();
myDic.AddEdge(1, 2);
myDic.printList();
The methods AddEdge and PrintList are pretty straightforward:
AddEdge:
public void AddEdge(int v1, int v2)
{
if (graph[v1] == null)
{
graph[v1] = new List<int> { v2 };
return;
}
graph[v1].Add(v2);
}
PrintList:
for (int i = 0; i < 1; i++)
{
Console.WriteLine(graph[i][i]);
}
I haven't done much programming in C# or Python, so dictionaries are new to me. I think why I'm getting tripped up is more conceptual than anything, specifically because I'm not sure how a list works within a dictionary.
The way I currently understand it is as follows:
Upon calling Addedge(1, 2) my dictionary is creating a list with a single element 2 at position 1 of my dictionary. This is because the first parameter represents the dictionary's key, and the second represents the list. The key functions like it would in a hashtable. When the key is provided, the dictionary looks at that position, and then creates a list.
Like I said, I'm new to C# so please don't skewer me too hard. While this might be something trivial like a straightforward syntax error, I'm not able to find much of anything for this specific problem online. Any help would be greatly appreciated!
You've got one method adding key/values to a dictionary and another printing them. The method printing them doesn't "know" what's been inserted, so it's better if that method doesn't make any assumptions about what's in the dictionary. Instead of just looping through a series of possible keys (0 to 1, 0 to n, etc.) it's better to operate according to what actually is in the dictionary.
var keys = graph.Keys;
// or, if you they were entered out of sequence and you want to sort them
var keys = graph.Keys.OrderBy(k => k);
// Now you're using the actual keys that are in the dictionary, so you'll never
// try to access a missing key.
foreach(var key in keys)
{
// It's not quite as clear to me what you're doing with these objects.
// Suppose you wanted to print out everything:
Console.WriteLine($"Key: {key}");
foreach(var value in graph[key])
{
Console.WriteLine(value);
}
}

How to get the last value entered [duplicate]

My dictionary:
Dictionary<double, string> dic = new Dictionary<double, string>();
How can I return the last element in my dictionary?
What do you mean by Last? Do you mean Last value added?
The Dictionary<TKey,TValue> class is an unordered collection. Adding and removing items can change what is considered to be the first and last element. Hence there is no way to get the Last element added.
There is an ordered dictionary class available in the form of SortedDictionary<TKey,TValue>. But this will be ordered based on comparison of the keys and not the order in which values were added.
EDIT
Several people have mentioned using the following LINQ style approach
var last = dictionary.Values.Last();
Be very wary about using this method. It will return the last value in the Values collection. This may or may not be the last value you added to the Dictionary. It's probably as likely to not be as it is to be.
Dictionaries are unordered collections - as such, there is no concept of a first or last element. If you are looking for a class that behaves like a dictionary but maintains the insertion order of items, consider using OrderedDictionary.
If you are looking for a collection that sorts the items, consider using SortedDictionary<TKey,TValue>.
If you have an existing dictionary, and you are looking for the 'last' element given some sort order, you could use linq to sort the collection, something like:
myDictionary.Values.OrderBy( x => x.Key ).Last();
By wary of using Dictionary.Keys.Last() - while the key list is sorted using the default IComparer for the type of the key, the value you get may not be the value you expect.
I know this question is too old to get any upvotes, but I didn't like any of the answers so will post my own in the hopes of offering another option to future readers.
Assuming you want the highest key value in a dictionary, not the last inserted:
The following did not work for me on .NET 4.0:
myDictionary.Values.OrderBy( x => x.Key ).Last();
I suspect the problem is that the 'x' represents a value in the dictionary, and a value has no key (the dictionary stores the key, the dictionary values do not). I may also be making a mistake in my usage of the technique.
Either way, this solution would be slow for large dictionaries, probably O(n log n) for CS folks, because it is sorting the entire dictionary just to get one entry. That's like rearranging your entire DVD collection just to find one specific movie.
var lastDicVal = dic.Values.Last();
is well established as a bad idea. In practice, this solution may return the last value added to the dictionary (not the highest key value), but in software engineering terms that is meaningless and should not be relied upon. Even if it works every time for the rest of eternity, it represents a time bomb in your code that depends on library implementation detail.
My solution is as follows:
var lastValue = dic[dic.Keys.Max()];
The Keys.max() function is much faster than sorting O(n) instead of O(n log n).
If performance is important enough that even O(n) is too slow, the last inserted key can be tracked in a separate variable used to replace dic.Keys.Max(), which will make the entire lookup as fast as it can be, or O(1).
Note: Use of double or float as a key is not best practice and can yield surprising results which are beyond the scope of this post. Read about "epsilon" in the context of float/double values.
If you're using .NET 3.5, look at:
dic.Keys.Last()
If you want a predictable order, though, use:
IDictionary<int, string> dic = new SortedDictionary<int, string>();
Instead of using:
Dictionary<double, string>
...you could use:
List<KeyValuePair<double, string>>
This would allow you to use the indexer to access the element by order instead of by key.
Consider creating a custom collection that contains a reference in the Add method of the custom collection. This would set a private field containing the last added key/value(or both) depending on your requirements.
Then have a Last() method that returns this. Here's a proof of concept class to show what I mean (please don't knock the lack of interface implementation etc- it is sample code):
public class LastDictionary<TKey, TValue>
{
private Dictionary<TKey, TValue> dict;
public LastDictionary()
{
dict = new Dictionary<TKey, TValue>();
}
public void Add(TKey key, TValue value)
{
LastKey = key;
LastValue = value;
dict.Add(key, value);
}
public TKey LastKey
{
get; private set;
}
public TValue LastValue
{
get; private set;
}
}
From the docs:
For purposes of enumeration, each item
in the dictionary is treated as a
KeyValuePair structure representing a
value and its key. The order in which
the items are returned is undefined.
So, I don't think you can rely on Dictionary to return the last element.
Use another collection. Maybe SortedDictionary ...
If you just want the value, this should work (assuming you can use LINQ):
dic.Values.Last()
You could use:
dic.Last()
But a dictionary doesn't really have a last element (the pairs inside aren't ordered in any particular way). The last item will always be the same, but it's not obvious which element it might be.
With .Net 3.5:
string lastItem = dic.Values.Last()
string lastKey = dic.Keys.Last()
...but keep in mind that a dictionary is not ordered, so you can't count on the fact that the values will remain in the same order.
A dictionary isn't meant to be accessed in order, so first, last have no meaning. Do you want the value indexed by the highest key?
Dictionary<double, string> dic = new Dictionary<double, string>();
double highest = double.MinValue;
string result = null;
foreach(double d in dic.keys)
{
if(d > highest)
{
result = dic[d];
highest = d;
}
}
Instead of using Linq like most of the other answers suggest, you can just access the last element of any Collection object via the Count property (see ICollection.Count Property for more information).
See the code here for an example of how to use count to access the final element in any Collection (including a Dictionary):
Dictionary<double, string> dic = new Dictionary<double, string>();
var lastElementIndex = dic.Count - 1;
var lastElement = dic[lastElementIndex];
Keep in mind that this returns the last VALUE, not the key.

How to keep track of 2 related values and add new as needed?

I have a situation where I am translating a file, and if I encounter a string of "#sometext" versus "#45" where I would use the value of 45, I need to start correlating that value as (#sometext,16) and each time I encounter "#sometext" translate it as 16, but if I then later encounter "#othertext" I would use the next incremented value (17) each time it is referenced.
Is there a simple way in C# for me to handle this type of operation? Each time I enounter "#text" check all entries for that text, and if not found, add it as an entry with the next incremented reference value?
I thought a 2D array might work, but I'm not thinking I'll be able to easily search current entries to see if text exists already.
Use a Dictionary.
Dictionary<string, int> textDict = new Dictionary<string, int>();
int initial = 16;
...
public string ReplaceText(string stringVal)
{
if (!textDict.ContainsKey(stringVal))
textDict.Add(stringVal, initial + textDict.Count);
return textDict[stringVal].ToString();
}

How to reset a Dictionary

If I declared a dictionary like this:
private static Dictionary<string, object> aDict = new Dictionary<string, object>();
And now I want to use it at another place. How do I reset it?
aDict = new Dictionary<string, object>(); // like this?
aDict = null; // or like this?
or other reset styles?
You can simply use the Clear method, it will remove all keys and values, then you can reuse it without having to create new instances:
aDict.Clear();
Try this
aDict.Clear();
aDict.Clear(); will work.
aDict.Clear(); is the only way to go since you don't want to change the reference and keep the same object available at another place
As everybody has pretty much answered that .Clear() method provided on the Dictionary class should be the way to go here (can't agree more).
Just to make it clear (for newbies of course ;)) that why not the other approaches, like creating a new instance every time we need to refresh the dictionary
aDict = new Dictionary<string, object>(); // like this?
because even though this way works, it is not a memory efficient approach as this creates a new instance and leaves behind the old instance(s) of the dictionary waiting for GC (garbage collector) to dispose it (as it is no longer referred). So you would agree on not consuming extra memory when you don't need to :)
and
aDict = null; // or like this?
because this leaves your instance set to null and next time as the OP wanted to use it as a dict, OP has to create another instance (yes, you got it right not memory efficient)
and also this won't be a better programming style here as someone might end up doing .ContainsKey() (or any operation on the dictionary for that matter)on the aDict variable and cause a nullPointerException if aDict is still pointing to a null object.
Hope this explanation helps!! Thanks for reading!
Running a decompile of the Clear method in Resharper on a Dictionary object shows this:
/// <summary>Removes all keys and values from the <see cref="T:System.Collections.Generic.Dictionary`2" />.</summary>
[__DynamicallyInvokable]
public void Clear()
{
if (this.count <= 0)
return;
for (int index = 0; index < this.buckets.Length; ++index)
this.buckets[index] = -1;
Array.Clear((Array) this.entries, 0, this.count);
this.freeList = -1;
this.count = 0;
this.freeCount = 0;
++this.version;
}
The dictionary contains an integer array of buckets and other control variables that are either set to -1 or 0 to effectively clear the keys and values from the dictionary object. It is pretty many variables representing a valid state of the Dictionary as we can see in the .NET source code. Interesting.

How to initialize a List<T> to a given size (as opposed to capacity)?

.NET offers a generic list container whose performance is almost identical (see Performance of Arrays vs. Lists question). However they are quite different in initialization.
Arrays are very easy to initialize with a default value, and by definition they already have certain size:
string[] Ar = new string[10];
Which allows one to safely assign random items, say:
Ar[5]="hello";
with list things are more tricky. I can see two ways of doing the same initialization, neither of which is what you would call elegant:
List<string> L = new List<string>(10);
for (int i=0;i<10;i++) L.Add(null);
or
string[] Ar = new string[10];
List<string> L = new List<string>(Ar);
What would be a cleaner way?
EDIT: The answers so far refer to capacity, which is something else than pre-populating a list. For example, on a list just created with a capacity of 10, one cannot do L[2]="somevalue"
EDIT 2: People wonder why I want to use lists this way, as it is not the way they are intended to be used. I can see two reasons:
One could quite convincingly argue that lists are the "next generation" arrays, adding flexibility with almost no penalty. Therefore one should use them by default. I'm pointing out they might not be as easy to initialize.
What I'm currently writing is a base class offering default functionality as part of a bigger framework. In the default functionality I offer, the size of the List is known in advanced and therefore I could have used an array. However, I want to offer any base class the chance to dynamically extend it and therefore I opt for a list.
List<string> L = new List<string> ( new string[10] );
I can't say I need this very often - could you give more details as to why you want this? I'd probably put it as a static method in a helper class:
public static class Lists
{
public static List<T> RepeatedDefault<T>(int count)
{
return Repeated(default(T), count);
}
public static List<T> Repeated<T>(T value, int count)
{
List<T> ret = new List<T>(count);
ret.AddRange(Enumerable.Repeat(value, count));
return ret;
}
}
You could use Enumerable.Repeat(default(T), count).ToList() but that would be inefficient due to buffer resizing.
Note that if T is a reference type, it will store count copies of the reference passed for the value parameter - so they will all refer to the same object. That may or may not be what you want, depending on your use case.
EDIT: As noted in comments, you could make Repeated use a loop to populate the list if you wanted to. That would be slightly faster too. Personally I find the code using Repeat more descriptive, and suspect that in the real world the performance difference would be irrelevant, but your mileage may vary.
Use the constructor which takes an int ("capacity") as an argument:
List<string> = new List<string>(10);
EDIT: I should add that I agree with Frederik. You are using the List in a way that goes against the entire reasoning behind using it in the first place.
EDIT2:
EDIT 2: What I'm currently writing is a base class offering default functionality as part of a bigger framework. In the default functionality I offer, the size of the List is known in advanced and therefore I could have used an array. However, I want to offer any base class the chance to dynamically extend it and therefore I opt for a list.
Why would anyone need to know the size of a List with all null values? If there are no real values in the list, I would expect the length to be 0. Anyhow, the fact that this is cludgy demonstrates that it is going against the intended use of the class.
Create an array with the number of items you want first and then convert the array in to a List.
int[] fakeArray = new int[10];
List<int> list = fakeArray.ToList();
If you want to initialize the list with N elements of some fixed value:
public List<T> InitList<T>(int count, T initValue)
{
return Enumerable.Repeat(initValue, count).ToList();
}
Why are you using a List if you want to initialize it with a fixed value ?
I can understand that -for the sake of performance- you want to give it an initial capacity, but isn't one of the advantages of a list over a regular array that it can grow when needed ?
When you do this:
List<int> = new List<int>(100);
You create a list whose capacity is 100 integers. This means that your List won't need to 'grow' until you add the 101th item.
The underlying array of the list will be initialized with a length of 100.
This is an old question, but I have two solutions. One is fast and dirty reflection; the other is a solution that actually answers the question (set the size not the capacity) while still being performant, which none of the answers here do.
Reflection
This is quick and dirty, and should be pretty obvious what the code does. If you want to speed it up, cache the result of GetField, or create a DynamicMethod to do it:
public static void SetSize<T>(this List<T> l, int newSize) =>
l.GetType().GetField("_size", BindingFlags.NonPublic | BindingFlags.Instance).SetValue(l, newSize);
Obviously a lot of people will be hesitant to put such code into production.
ICollection<T>
This solution is based around the fact that the constructor List(IEnumerable<T> collection) optimizes for ICollection<T> and immediately adjusts the size to the correct amount, without iterating it. It then calls the collections CopyTo to do the copy.
The code for the List<T> constructor is as follows:
public List(IEnumerable<T> collection) {
....
ICollection<T> c = collection as ICollection<T>;
if (collection is ICollection<T> c)
{
int count = c.Count;
if (count == 0)
{
_items = s_emptyArray;
}
else {
_items = new T[count];
c.CopyTo(_items, 0);
_size = count;
}
}
So we can completely optimally pre-initialize the List to the correct size, without any extra copying.
How so? By creating an ICollection<T> object that does nothing other than return a Count. Specifically, we will not implement anything in CopyTo which is the only other function called.
private struct SizeCollection<T> : ICollection<T>
{
public SizeCollection(int size) =>
Count = size;
public void Add(T i){}
public void Clear(){}
public bool Contains(T i)=>true;
public void CopyTo(T[]a, int i){}
public bool Remove(T i)=>true;
public int Count {get;}
public bool IsReadOnly=>true;
public IEnumerator<T> GetEnumerator()=>null;
IEnumerator IEnumerable.GetEnumerator()=>null;
}
public List<T> InitializedList<T>(int size) =>
new List<T>(new SizeCollection<T>(size));
We could in theory do the same thing for AddRange/InsertRange for an existing array, which also accounts for ICollection<T>, but the code there creates a new array for the supposed items, then copies them in. In such case, it would be faster to just empty-loop Add:
public void SetSize<T>(this List<T> l, int size)
{
if(size < l.Count)
l.RemoveRange(size, l.Count - size);
else
for(size -= l.Count; size > 0; size--)
l.Add(default(T));
}
Initializing the contents of a list like that isn't really what lists are for. Lists are designed to hold objects. If you want to map particular numbers to particular objects, consider using a key-value pair structure like a hash table or dictionary instead of a list.
You seem to be emphasizing the need for a positional association with your data, so wouldn't an associative array be more fitting?
Dictionary<int, string> foo = new Dictionary<int, string>();
foo[2] = "string";
The accepted answer (the one with the green check mark) has an issue.
The problem:
var result = Lists.Repeated(new MyType(), sizeOfList);
// each item in the list references the same MyType() object
// if you edit item 1 in the list, you are also editing item 2 in the list
I recommend changing the line above to perform a copy of the object. There are many different articles about that:
String.MemberwiseClone() method called through reflection doesn't work, why?
https://code.msdn.microsoft.com/windowsdesktop/CSDeepCloneObject-8a53311e
If you want to initialize every item in your list with the default constructor, rather than NULL, then add the following method:
public static List<T> RepeatedDefaultInstance<T>(int count)
{
List<T> ret = new List<T>(count);
for (var i = 0; i < count; i++)
{
ret.Add((T)Activator.CreateInstance(typeof(T)));
}
return ret;
}
You can use Linq to cleverly initialize your list with a default value. (Similar to David B's answer.)
var defaultStrings = (new int[10]).Select(x => "my value").ToList();
Go one step farther and initialize each string with distinct values "string 1", "string 2", "string 3", etc:
int x = 1;
var numberedStrings = (new int[10]).Select(x => "string " + x++).ToList();
string [] temp = new string[] {"1","2","3"};
List<string> temp2 = temp.ToList();
After thinking again, I had found the non-reflection answer to the OP question, but Charlieface beat me to it. So I believe that the correct and complete answer is https://stackoverflow.com/a/65766955/4572240
My old answer:
If I understand correctly, you want the List<T> version of new T[size], without the overhead of adding values to it.
If you are not afraid the implementation of List<T> will change dramatically in the future (and in this case I believe the probability is close to 0), you can use reflection:
public static List<T> NewOfSize<T>(int size) {
var list = new List<T>(size);
var sizeField = list.GetType().GetField("_size",BindingFlags.Instance|BindingFlags.NonPublic);
sizeField.SetValue(list, size);
return list;
}
Note that this takes into account the default functionality of the underlying array to prefill with the default value of the item type. All int arrays will have values of 0 and all reference type arrays will have values of null. Also note that for a list of reference types, only the space for the pointer to each item is created.
If you, for some reason, decide on not using reflection, I would have liked to offer an option of AddRange with a generator method, but underneath List<T> just calls Insert a zillion times, which doesn't serve.
I would also like to point out that the Array class has a static method called ResizeArray, if you want to go the other way around and start from Array.
To end, I really hate when I ask a question and everybody points out that it's the wrong question. Maybe it is, and thanks for the info, but I would still like an answer, because you have no idea why I am asking it. That being said, if you want to create a framework that has an optimal use of resources, List<T> is a pretty inefficient class for anything than holding and adding stuff to the end of a collection.
A notice about IList:
MSDN IList Remarks:
"IList implementations fall into three categories: read-only, fixed-size, and variable-size. (...). For the generic version of this interface, see
System.Collections.Generic.IList<T>."
IList<T> does NOT inherits from IList (but List<T> does implement both IList<T> and IList), but is always variable-size.
Since .NET 4.5, we have also IReadOnlyList<T> but AFAIK, there is no fixed-size generic List which would be what you are looking for.
This is a sample I used for my unit test. I created a list of class object. Then I used forloop to add 'X' number of objects that I am expecting from the service.
This way you can add/initialize a List for any given size.
public void TestMethod1()
{
var expected = new List<DotaViewer.Interface.DotaHero>();
for (int i = 0; i < 22; i++)//You add empty initialization here
{
var temp = new DotaViewer.Interface.DotaHero();
expected.Add(temp);
}
var nw = new DotaHeroCsvService();
var items = nw.GetHero();
CollectionAssert.AreEqual(expected,items);
}
Hope I was of help to you guys.
A bit late but first solution you proposed seems far cleaner to me : you dont allocate memory twice.
Even List constrcutor needs to loop through array in order to copy it; it doesn't even know by advance there is only null elements inside.
1.
- allocate N
- loop N
Cost: 1 * allocate(N) + N * loop_iteration
2.
- allocate N
- allocate N + loop ()
Cost : 2 * allocate(N) + N * loop_iteration
However List's allocation an loops might be faster since List is a built-in class, but C# is jit-compiled sooo...

Categories

Resources