I'm writing a tool that sends queries to an azure table, the amount of queries depends on the user.
I want to send queries in parallel but only up to a given number ( i don't want to send all 100 queries at once).
Is there any built in mechanism i can use to sent say up to 20 queries in parallel each time ?
I know there is Parallel.Foreach which can be limited using ParallelOptions.MaxDegreeOfParallelism
but for asynchronous operation like mine this will just send all the queries really fast and my tool will handle all 100 callbacks at once.
You should use SemaphoreSlim. It's especially nice in the case of async operations because it has WaitAsync that returns a task you can await on. The first 20 will go right through, and the rest will asynchronously wait for an operation to end so they can start.
SemaphoreSlim _semaphore = new SemaphoreSlim(20);
async Task DoSomethingAsync()
{
await _semaphore.WaitAsync();
try
{
// possibly async operations limited to 20
}
finally
{
_semaphore.Release();
}
}
Usage:
for(int i=0; i < 100; i++)
{
await DoSomethingAsync();
}
Related
I have an ASP.NET 5 Web API application which contains a method that takes objects from a List<T> and makes HTTP requests to a server, 5 at a time, until all requests have completed. This is accomplished using a SemaphoreSlim, a List<Task>(), and awaiting on Task.WhenAll(), similar to the example snippet below:
public async Task<ResponseObj[]> DoStuff(List<Input> inputData)
{
const int maxDegreeOfParallelism = 5;
var tasks = new List<Task<ResponseObj>>();
using var throttler = new SemaphoreSlim(maxDegreeOfParallelism);
foreach (var input in inputData)
{
tasks.Add(ExecHttpRequestAsync(input, throttler));
}
List<ResponseObj> resposnes = await Task.WhenAll(tasks).ConfigureAwait(false);
return responses;
}
private async Task<ResponseObj> ExecHttpRequestAsync(Input input, SemaphoreSlim throttler)
{
await throttler.WaitAsync().ConfigureAwait(false);
try
{
using var request = new HttpRequestMessage(HttpMethod.Post, "https://foo.bar/api");
request.Content = new StringContent(JsonConvert.SerializeObject(input, Encoding.UTF8, "application/json");
var response = await HttpClientWrapper.SendAsync(request).ConfigureAwait(false);
var responseBody = await response.Content.ReadAsStringAsync().ConfigureAwait(false);
var responseObject = JsonConvert.DeserializeObject<ResponseObj>(responseBody);
return responseObject;
}
finally
{
throttler.Release();
}
}
This works well, however I am looking to limit the total number of Tasks that are being executed in parallel globally throughout the application, so as to allow scaling up of this application. For example, if 50 requests to my API came in at the same time, this would start at most 250 tasks running parallel. If I wanted to limit the total number of Tasks that are being executed at any given time to say 100, is it possible to accomplish this? Perhaps via a Queue<T>? Would the framework automatically prevent too many tasks from being executed? Or am I approaching this problem in the wrong way, and would I instead need to Queue the incoming requests to my application?
I'm going to assume the code is fixed, i.e., Task.Run is removed and the WaitAsync / Release are adjusted to throttle the HTTP calls instead of List<T>.Add.
I am looking to limit the total number of Tasks that are being executed in parallel globally throughout the application, so as to allow scaling up of this application.
This does not make sense to me. Limiting your tasks limits your scaling up.
For example, if 50 requests to my API came in at the same time, this would start at most 250 tasks running parallel.
Concurrently, sure, but not in parallel. It's important to note that these aren't 250 threads, and that they're not 250 CPU-bound operations waiting for free thread pool threads to run on, either. These are Promise Tasks, not Delegate Tasks, so they don't "run" on a thread at all. It's just 250 objects in memory.
If I wanted to limit the total number of Tasks that are being executed at any given time to say 100, is it possible to accomplish this?
Since (these kinds of) tasks are just in-memory objects, there should be no need to limit them, any more than you would need to limit the number of strings or List<T>s. Apply throttling where you do need it; e.g., number of HTTP calls done simultaneously per request. Or per host.
Would the framework automatically prevent too many tasks from being executed?
The framework has nothing like this built-in.
Perhaps via a Queue? Or am I approaching this problem in the wrong way, and would I instead need to Queue the incoming requests to my application?
There's already a queue of requests. It's handled by IIS (or whatever your host is). If your server gets too busy (or gets busy very suddenly), the requests will queue up without you having to do anything.
If I wanted to limit the total number of Tasks that are being executed at any given time to say 100, is it possible to accomplish this?
What you are looking for is to limit the MaximumConcurrencyLevel of what's called the Task Scheduler. You can create your own task scheduler that regulates the MaximumCongruencyLevel of the tasks it manages. I would recommend implementing a queue-like object that tracks incoming requests and currently working requests and waits for the current requests to finish before consuming more. The below information may still be relevant.
The task scheduler is in charge of how Tasks are prioritized, and in charge of tracking the tasks and ensuring that their work is completed, at least eventually.
The way it does this is actually very similar to what you mentioned, in general the way the Task Scheduler handles tasks is in a FIFO (First in first out) model very similar to how a ConcurrentQueue<T> works (at least starting in .NET 4).
Would the framework automatically prevent too many tasks from being executed?
By default the TaskScheduler that is created with most applications appears to default to a MaximumConcurrencyLevel of int.MaxValue. So theoretically yes.
The fact that there practically is no limit to the amount of tasks(at least with the default TaskScheduler) might not be that big of a deal for your case scenario.
Tasks are separated into two types, at least when it comes to how they are assigned to the available thread pools. They're separated into Local and Global queues.
Without going too far into detail, the way it works is if a task creates other tasks, those new tasks are part of the parent tasks queue (a local queue). Tasks spawned by a parent task are limited to the parent's thread pool.(Unless the task scheduler takes it upon itself to move queues around)
If a task isn't created by another task, it's a top-level task and is placed into the Global Queue. These would normally be assigned their own thread(if available) and if one isn't available it's treated in a FIFO model, as mentioned above, until it's work can be completed.
This is important because although you can limit the amount of concurrency that happens with the TaskScheduler, it may not necessarily be important - if for say you have a top-level task that's marked as long running and is in-charge of processing your incoming requests. This would be helpful since all the tasks spawned by this top-level task will be part of that task's local queue and therefor won't spam all your available threads in your thread pool.
When you have a bunch of items and you want to process them asynchronously and with limited concurrency, the SemaphoreSlim is a great tool for this job. There are two ways that it can be used. One way is to create all the tasks immediately and have each task acquire the semaphore before doing it's main work, and the other is to throttle the creation of the tasks while the source is enumerated. The first technique is eager, and so it consumes more RAM, but it's more maintainable because it is easier to understand and implement. The second technique is lazy, and it's more efficient if you have millions of items to process.
The technique that you have used in your sample code is the second (lazy) one.
Here is an example of using two SemaphoreSlims in order to impose two maximum concurrency policies, one per request and one globally. First the eager approach:
private const int maxConcurrencyGlobal = 100;
private static SemaphoreSlim globalThrottler
= new SemaphoreSlim(maxConcurrencyGlobal, maxConcurrencyGlobal);
public async Task<ResponseObj[]> DoStuffAsync(IEnumerable<Input> inputData)
{
const int maxConcurrencyPerRequest = 5;
var perRequestThrottler
= new SemaphoreSlim(maxConcurrencyPerRequest, maxConcurrencyPerRequest);
Task<ResponseObj>[] tasks = inputData.Select(async input =>
{
await perRequestThrottler.WaitAsync();
try
{
await globalThrottler.WaitAsync();
try
{
return await ExecHttpRequestAsync(input);
}
finally { globalThrottler.Release(); }
}
finally { perRequestThrottler.Release(); }
}).ToArray();
return await Task.WhenAll(tasks);
}
The Select LINQ operator provides an easy and intuitive way to project items to tasks.
And here is the lazy approach for doing exactly the same thing:
private const int maxConcurrencyGlobal = 100;
private static SemaphoreSlim globalThrottler
= new SemaphoreSlim(maxConcurrencyGlobal, maxConcurrencyGlobal);
public async Task<ResponseObj[]> DoStuffAsync(IEnumerable<Input> inputData)
{
const int maxConcurrencyPerRequest = 5;
var perRequestThrottler
= new SemaphoreSlim(maxConcurrencyPerRequest, maxConcurrencyPerRequest);
var tasks = new List<Task<ResponseObj>>();
foreach (var input in inputData)
{
await perRequestThrottler.WaitAsync();
await globalThrottler.WaitAsync();
Task<ResponseObj> task = Run(async () =>
{
try
{
return await ExecHttpRequestAsync(input);
}
finally
{
try { globalThrottler.Release(); }
finally { perRequestThrottler.Release(); }
}
});
tasks.Add(task);
}
return await Task.WhenAll(tasks);
static async Task<T> Run<T>(Func<Task<T>> action) => await action();
}
This implementation assumes that the await globalThrottler.WaitAsync() will never throw, which is a given according to the documentation. This will no longer be the case if you decide later to add support for cancellation, and you pass a CancellationToken to the method. In that case you would need one more try/finally wrapper around the task-creation logic. The first (eager) approach could be enhanced with cancellation support without such considerations. Its existing try/finally infrastructure is
already sufficient.
It is also important that the internal helper Run method is implemented with async/await. Eliding the async/await would be an easy mistake to make, because in that case any exception thrown synchronously by the ExecHttpRequestAsync method would be rethrown immediately, and it would not be encapsulated in a Task<ResponseObj>. Then the task returned by the DoStuffAsync method would fail without releasing the acquired semaphores, and also without awaiting the completion of the already started operations. That's another argument for preferring the eager approach. The lazy approach has too many gotchas to watch for.
I'm writing an application which interact with Azure Cosmos DB. I need commit 30,000 Records to CosmosDB in a Session. Because I used .NET Core so I cannot use BulkInsert dll. So, I use Foreach loop to Insert to CosmosDB. But I see too many request per Second and it overload RU limit by CosmosDB.
foreach(item in listNeedInsert){
await RequestInsertToCosmosDB(item);
}
I want to Pause foreach loop when Number of request reach 100. After done 100 request. foreach will continue.
You can partition the list and await the results:
var tasks = new List<Task>();
foreach(item in listNeedInsert)
{
var task = RequestInsertToCosmosDB(item);
tasks.Add(task);
if(tasks.Count == 100)
{
await Task.WhenAll(tasks);
tasks.Clear();
}
}
// Wait for anything left to finish
await Task.WhenAll(tasks);
Every time you've got 100 tasks running the code will wait for them all to finish before executing the last batch.
You could set a delay on every hundred iteration
int i = 1;
foreach(item in listNeedInsert)
{
await RequestInsertToCosmosDB(item);
if (i % 100 == 0)
{
i = 0;
await Task.Delay(100); // Miliseconds
}
i++;
}
If you really want to maximize efficiency and can't do bulk updates, look into using SemaphorSlim in this post:
Throttling asynchronous tasks
Hammering a medium-sized database with 100 concurrent requests at a time isn't a great idea because it's not equipped to handle that kind of throughput. You could try playing with a different throttling number and seeing what's optimal, but I would guess it's in the single digit range.
If you want to do something quick and dirty, you could probably use Sean's solution. But I'd set the Task count to 5 starting out, not 100.
https://github.com/thomhurst/EnumerableAsyncProcessor
I've written a library to help with this sort of logic.
Usage would be:
await AsyncProcessorBuilder.WithItems(listNeedInsert) // Or Extension Method: listNeedInsert.ToAsyncProcessorBuilder()
.ForEachAsync(item => RequestInsertToCosmosDB(item), CancellationToken.None)
.ProcessInBatches(batchSize: 100);
I am not pro in utilizing resources to the best hence am seeking the best way for a task that needs to be done in parallel and efficiently.
We have a scenario wherein we have to ping millions of system and receive a response. The response itself takes no time in computation but the task is network based.
My current implementation looks like this -
Parallel.ForEach(list, ip =>
{
try
{
// var record = client.QueryAsync(ip);
var record = client.Query(ip);
results.Add(record);
}
catch (Exception)
{
failed.Add(ip);
}
});
I tested this code for
100 items it takes about 4 secs
1k items it takes about 10 secs
10k items it takes about 80 secs
100k items it takes about 710 secs
I need to process close to 20M queries, what strategy should i use in order to speed this up further
Here is the problem
Parallel.ForEach uses the thread pool. Moreover, IO bound operations will block those threads waiting for a device to respond and tie up resources.
If you have CPU bound code, Parallelism is appropriate;
Though if you have IO bound code, Asynchrony is appropriate.
In this case, client.Query is clearly I/O, so the ideal consuming code would be asynchronous.
Since you said there was an async verison, you are best to use async/await pattern and/or some type of limit on concurrent tasks, another neat solution is to use ActionBlock Class in the TPL dataflow library.
Dataflow example
public static async Task DoWorkLoads(List<IPAddress> addresses)
{
var options = new ExecutionDataflowBlockOptions
{
MaxDegreeOfParallelism = 50
};
var block = new ActionBlock<IPAddress>(MyMethodAsync, options);
foreach (var ip in addresses)
block.Post(ip);
block.Complete();
await block.Completion;
}
...
public async Task MyMethodAsync(IpAddress ip)
{
try
{
var record = await client.Query(ip);
// note this is not thread safe best to lock it
results.Add(record);
}
catch (Exception)
{
// note this is not thread safe best to lock it
failed.Add(ip);
}
}
This approach gives you Asynchrony, it also gives you MaxDegreeOfParallelism, it doesn't waste resources, and lets IO be IO without chewing up unnecessary resources
*Disclaimer, DataFlow may not be where you want to be, however i just thought id give you some more information
Demo here
update
I just did some bench-marking with Parallel.Foreaceh and DataFlow
Run multiple times 10000 pings
Parallel.Foreach = 30 seconds
DataFlow = 10 seconds
I have a Windows Service that reads from multiple MessageQueue instances. Those messagequeues all run their own Task for reading messages. Normally, after reading a message, the work of an I/O database is done. I've found articles claiming it's a good idea to use async on I/O operations, because it would free up threads. I'm trying to simulate the performance boost of using async I/O opertations in a Console application.
The Console application
In my test environment, I have 10 queues. GetQueues() returns 10 different MessageQueue instances.
static void Main(string[] args)
{
var isAsync = Console.ReadLine() == "Y";
foreach (var queue in queueManager.GetQueues())
{
var temp = queue;
Task.Run(() => ReceiveMessagesForQueue(temp, isAsync));
}
while (true)
{
FillAllQueuesWithMessages();
ResetAndStartStopWatch();
while(!AllMessagesRead())
{
Thread.Sleep(10);
}
Console.WriteLine("All messages read in {0}ms", stopWatch.ElapsedMilliseconds);
}
}
static async Task ReceiveMessagesForQueue(MessageQueue queue, bool isAsync)
{
while (true)
{
var message = await Task.Factory.FromAsync<Message>(queue.BeginReceive(), queue.EndReceive);
if (isAsync)
await ProcessMessageAsync(message);
else
ProcessMessage(message);
}
}
Async message processing
Uses await on Task.Delay(), so should release current Thread
static async Task ProcessMessageAsync(Message message)
{
await Task.Delay(1000);
BurnCpu();
}
Sync message processing
waits on Task.Delay(), so shouldn't release current Thread
static void ProcessMessage(Message message)
{
Task.Delay(1000).Wait();
BurnCpu();
}
In the end, results are equal. Am I missing something here?
Edit 1
I'm measuring overall time using stopWatch.ElapsedMilliseconds. I Fill all queues using FillAllQueuesWithMessages() with 10, 100, 10000 or more messages.
Edit 2
ReceiveMessagesForQueue() returns Task instead of void now.
Edit 3 (fix)
This test does show me performance improvement now. I had to make BurnCpu() take more time. While Task.Delay() is being awaited, BurnCPU() can use the released thread to process.
Using async-await doesn't speed up the time it takes to execute a single operation, it just means that you don't have a thread waiting doing nothing.
In your case Task.Delay will take a second no matter what but here:
Task.Delay(1000).Wait();
You have a thread that sits and waits for the second to end while here:
await Task.Delay(1000);
You don't. You are still asynchronously waiting (hence, await) but no thread is being used which means better scalability.
In async-await you get the performance boost because your app can do the same with less threads, or do more with the same threads. To measure that you need to have a lot of async operations concurrently. Only then will you notice that the async option utilizes CPU resources better than the synchronous one.
More info about freeing threads here There Is No Thread
You're still running each task in its own thread from the thread pool - as you're using the default task scheduler. If you want to see performance imporvement, you'll need to make sure several tasks are performed on the same thread.
Also, with 20 parallel tasks, you're probably not going to see any difference. Try it with 2,000 tasks.
I have about 5 million items to update. I don't really care about the response (A response would be nice to have so I can log it, but I don't want a response if that will cost me time.) Having said that, is this code optimized to run as fast as possible? If there are 5 million items, would I run the risk of getting any task cancelled or timeout errors? I get about 1 or 2 responses back every second.
var tasks = items.Select(async item =>
{
await Update(CreateUrl(item));
}).ToList();
if (tasks.Any())
{
await Task.WhenAll(tasks);
}
private async Task<HttpResponseMessage> Update(string url)
{
var client = new HttpClient();
var response = await client.SendAsync(url).ConfigureAwait(false);
//log response.
}
UPDATE:
I am actually getting TaskCanceledExceptions. Did my system run out of threads? What could I do to avoid this?
You method will kick off all tasks at the same time, which may not be what you want. There wouldn't be any threads involved because with async operations There is no thread, but there may be number of concurrent connection limits.
There may be better tools to do this but if you want to use async/await one option is to use Stephen Toub's ForEachAsync as documented in this article. It allows you to control how many simultaneous operations you want to execute, so you don't overrun your connection limit.
Here it is from the article:
public static class Extensions
{
public static async Task ExecuteInPartition<T>(IEnumerator<T> partition, Func<T, Task> body)
{
using (partition)
while (partition.MoveNext())
await body(partition.Current);
}
public static Task ForEachAsync<T>(this IEnumerable<T> source, int dop, Func<T, Task> body)
{
return Task.WhenAll(
from partition in Partitioner.Create(source).GetPartitions(dop)
select ExecuteInPartition(partition, body));
}
}
Usage:
public async Task UpdateAll()
{
// Allow for 100 concurrent Updates
await items.ForEachAsync(100, async t => await Update(t));
}
A much better approach would be to use TPL Dataflow's ActionBlock with MaxDegreeOfParallelism and a single HttpClient:
Task UpdateAll(IEnumerable<Item> items)
{
var block = new ActionBlock<Item>(
item => UpdateAsync(CreateUrl(item)),
new ExecutionDataflowBlockOptions {MaxDegreeOfParallelism = 1000});
foreach (var item in items)
{
block.Post(item);
}
block.Complete();
return block.Completion;
}
async Task UpdateAsync(string url)
{
var response = await _client.SendAsync(url).ConfigureAwait(false);
Console.WriteLine(response.StatusCode);
}
A single HttpClient can be used concurrently for multiple requests, and so it's much better to only create and disposing a single instance instead of 5 million.
There are numerous problems in firing so many request at the same time: The machine's network stack, the target web site, timeouts and so forth. The ActionBlock caps that number with the MaxDegreeOfParallelism (which you should test and optimize for your specific case). It's important to note that TPL may choose a lower number when it deems it to be appropriate.
When you have a single async call at the end of an async method or lambda expression, it's better for performance to remove the redundant async-await and just return the task (i.e return block.Completion;)
Complete will notify the ActionBlock to not accept any more items, but finish processing items it already has. When it's done the Completion task will be done so you can await it.
I suspect you are suffering from outgoing connection management preventing large numbers of simultaneous connections to the same domain. The answers given in this extensive Q+A might give you some avenues to investigate.
What is limiting the # of simultaneous connections my ASP.NET application can make to a web service?
In terms of your code structure, I'd personally try and use a dynamic pool of connections. You know that you cant actually get 5m connections simultaneously so trying to attempt it will just fail to work - you may as well deal with a reasonable and configured limit of (for instance) 20 connections and use them in a pool. In this way you can tune up or down.
alternatively you could investigate HTTP Pipelining (which I've not used) which is intended specifically for the job you are doing (batching up Http requests). http://en.wikipedia.org/wiki/HTTP_pipelining