How to compute hash of a large file chunk? - c#

I want to be able to compute the hashes of arbitrarily sized file chunks of a file in C#.
eg: Compute the hash of the 3rd gigabyte in 4gb file.
The main problem is that I don't want to load the entire file at memory, as there could be several files and the offsets could be quite arbitrary.
AFAIK, the HashAlgorithm.ComputeHash allows me to either use a byte buffer, of a stream. The stream would allow me to compute the hash efficiently, but for the entire file, not just for a specific chunk.
I was thinking to create aan alternate FileStream object and pass it to ComputeHash, where I would overload the FileStream methods and have read only for a certain chunk in a file.
Is there a better solution than this, preferably using the built in C# libraries ?
Thanks.

You should pass in either:
A byte array containing the chunk of data to compute the hash from
A stream that restricts access to the chunk you want to computer the hash from
The second option isn't all that hard, here's a quick LINQPad program I threw together. Note that it lacks quite a bit of error handling, such as checking that the chunk is actually available (ie. that you're passing in a position and length of the stream that actually exists and doesn't fall off the end of the underlying stream).
Needless to say, if this should end up as production code I would add a lot of error handling, and write a bunch of unit-tests to ensure all edge-cases are handled correctly.
You would construct the PartialStream instance for your file like this:
const long gb = 1024 * 1024 * 1024;
using (var fileStream = new FileStream(#"d:\temp\too_long_file.bin", FileMode.Open))
using (var chunk = new PartialStream(fileStream, 2 * gb, 1 * gb))
{
var hash = hashAlgorithm.ComputeHash(chunk);
}
Here's the LINQPad test program:
void Main()
{
var buffer = Enumerable.Range(0, 256).Select(i => (byte)i).ToArray();
using (var underlying = new MemoryStream(buffer))
using (var partialStream = new PartialStream(underlying, 64, 32))
{
var temp = new byte[1024]; // too much, ensure we don't read past window end
partialStream.Read(temp, 0, temp.Length);
temp.Dump();
// should output 64-95 and then 0's for the rest (64-95 = 32 bytes)
}
}
public class PartialStream : Stream
{
private readonly Stream _UnderlyingStream;
private readonly long _Position;
private readonly long _Length;
public PartialStream(Stream underlyingStream, long position, long length)
{
if (!underlyingStream.CanRead || !underlyingStream.CanSeek)
throw new ArgumentException("underlyingStream");
_UnderlyingStream = underlyingStream;
_Position = position;
_Length = length;
_UnderlyingStream.Position = position;
}
public override bool CanRead
{
get
{
return _UnderlyingStream.CanRead;
}
}
public override bool CanWrite
{
get
{
return false;
}
}
public override bool CanSeek
{
get
{
return true;
}
}
public override long Length
{
get
{
return _Length;
}
}
public override long Position
{
get
{
return _UnderlyingStream.Position - _Position;
}
set
{
_UnderlyingStream.Position = value + _Position;
}
}
public override void Flush()
{
throw new NotSupportedException();
}
public override long Seek(long offset, SeekOrigin origin)
{
switch (origin)
{
case SeekOrigin.Begin:
return _UnderlyingStream.Seek(_Position + offset, SeekOrigin.Begin) - _Position;
case SeekOrigin.End:
return _UnderlyingStream.Seek(_Length + offset, SeekOrigin.Begin) - _Position;
case SeekOrigin.Current:
return _UnderlyingStream.Seek(offset, SeekOrigin.Current) - _Position;
default:
throw new ArgumentException("origin");
}
}
public override void SetLength(long length)
{
throw new NotSupportedException();
}
public override int Read(byte[] buffer, int offset, int count)
{
long left = _Length - Position;
if (left < count)
count = (int)left;
return _UnderlyingStream.Read(buffer, offset, count);
}
public override void Write(byte[] buffer, int offset, int count)
{
throw new NotSupportedException();
}
}

You can use TransformBlock and TransformFinalBlock directly. That's pretty similar to what HashAlgorithm.ComputeHash does internally.
Something like:
using(var hashAlgorithm = new SHA256Managed())
using(var fileStream = new File.OpenRead(...))
{
fileStream.Position = ...;
long bytesToHash = ...;
var buf = new byte[4 * 1024];
while(bytesToHash > 0)
{
var bytesRead = fileStream.Read(buf, 0, (int)Math.Min(bytesToHash, buf.Length));
hashAlgorithm.TransformBlock(buf, 0, bytesRead, null, 0);
bytesToHash -= bytesRead;
if(bytesRead == 0)
throw new InvalidOperationException("Unexpected end of stream");
}
hashAlgorithm.TransformFinalBlock(buf, 0, 0);
var hash = hashAlgorithm.Hash;
return hash;
};

Your suggestion - passing in a restricted access wrapper for your FileStream - is the cleanest solution. Your wrapper should defer everything to the wrapped Stream except the Length and Position properties.
How? Simply create a class that inherits from Stream. Make the constructor take:
Your source Stream (in your case, a FileStream)
The chunk start position
The chunk end position
As an extension - this is a list of all the Streams that are available http://msdn.microsoft.com/en-us/library/system.io.stream%28v=vs.100%29.aspx#inheritanceContinued

To easily compute the hash of a chunk of a larger stream, use these two methods:
HashAlgorithm.TransformBlock
HashAlgorithm.TransformFinalBlock
Here's a LINQPad program that demonstrates:
void Main()
{
const long gb = 1024 * 1024 * 1024;
using (var stream = new FileStream(#"d:\temp\largefile.bin", FileMode.Open))
{
stream.Position = 2 * gb; // 3rd gb-chunk
byte[] buffer = new byte[32768];
long amount = 1 * gb;
using (var hashAlgorithm = SHA1.Create())
{
while (amount > 0)
{
int bytesRead = stream.Read(buffer, 0,
(int)Math.Min(buffer.Length, amount));
if (bytesRead > 0)
{
amount -= bytesRead;
if (amount > 0)
hashAlgorithm.TransformBlock(buffer, 0, bytesRead,
buffer, 0);
else
hashAlgorithm.TransformFinalBlock(buffer, 0, bytesRead);
}
else
throw new InvalidOperationException();
}
hashAlgorithm.Hash.Dump();
}
}
}

To answer your original question ("Is there a better solution..."):
Not that I know of.
This seems to be a very special, non-trivial task, so a little extra work might be involved anyway. I think your approach of using a custom Stream-class goes in the right direction, I'd probably do exactly the same.
And Gusdor and xander have already provided very helpful information on how to implement that — good job guys!

Related

How can I stream a massive object directly to S3, without a MemoryStream or local file?

I am trying to write a massive object to AWS S3 (e.g. 25 GB).
Currently I can get it working in two ways:
Write the content to a file on local disk, then send the file to S3 using multi-part upload
Write the content to a MemoryStream, then send that stream to S3 using multi-part upload
However, I don't like either approach, because I need to reserve a large amount of disk space or memory for the operation. I am generating this content in code, so I was hoping to open a stream to an S3 object, and generate the content directly to that object. But I can't see how to make that work.
Is it possible to build a massive object in S3 without representing the entire object in a local file or memory first?
(Note: My question is very similar to this question, but that question doesn't have a useful answer.)
I was able to get it working by breaking the overall payload into chunks, and sending each individual chunk as a separate MemoryStream.
Technically this solution still uses a MemoryStream, but that's OK, since I can control how much memory is used by adjusting the chunk size. For my test, I created a 25GB file while keeping memory usage well below that (~2 GB IIRC).
Here is my solution:
private const string BucketName = "YOUR-BUCKET-NAME-HERE";
private static readonly RegionEndpoint BucketRegion = RegionEndpoint.USEast1;
private const string Key = "massive-file-test";
// We're going to send 100 chunks of 256 MB each, for a total of 25 GB.
// The content will be the asterisk ("*") repeated for the desired size.
private const int ChunkSizeMb = 256;
private const int TotalSizeGb = 25;
public static void Main(string[] args)
{
Console.WriteLine($"Writing object to {BucketName}, {Key}");
int totalChunks = TotalSizeGb * 1024 / ChunkSizeMb;
int chunkSizeBytes = ChunkSizeMb * 1024 * 1024;
string payload = new String('*', chunkSizeBytes);
// Initiate the request.
InitiateMultipartUploadRequest initiateRequest = new InitiateMultipartUploadRequest
{
BucketName = BucketName,
Key = Key
};
List<UploadPartResponse> uploadResponses = new List<UploadPartResponse>();
IAmazonS3 s3Client = new AmazonS3Client(BucketRegion);
InitiateMultipartUploadResponse initResponse = s3Client.InitiateMultipartUpload(initiateRequest);
// Open a stream to build the input.
for (int i = 0; i < totalChunks; i++)
{
// Write the next chunk to the input stream.
Console.WriteLine($"Writing chunk {i} of {totalChunks}");
using (var stream = ToStream(payload))
{
// Write the next chunk to s3.
UploadPartRequest uploadRequest = new UploadPartRequest
{
BucketName = BucketName,
Key = Key,
UploadId = initResponse.UploadId,
PartNumber = i + 1,
PartSize = chunkSizeBytes,
InputStream = stream,
};
uploadResponses.Add(s3Client.UploadPart(uploadRequest));
}
}
// Complete the request.
CompleteMultipartUploadRequest completeRequest = new CompleteMultipartUploadRequest
{
BucketName = BucketName,
Key = Key,
UploadId = initResponse.UploadId
};
completeRequest.AddPartETags(uploadResponses);
s3Client.CompleteMultipartUpload(completeRequest);
Console.WriteLine("Script is complete. Press any key to exit...");
Console.ReadKey();
}
private static Stream ToStream(string s)
{
var stream = new MemoryStream();
var writer = new StreamWriter(stream);
writer.Write(s);
writer.Flush();
stream.Position = 0;
return stream;
}
Here is what AnonCoward started, finished off by adding seeking - it's a trivial op for a stream that does nothing except write asterisks to its buffer. If you were generating more complex data it would be hard work but for seeking all you need to do is set the position and say "yep, done that" because no matter where you seek to in the stream the behavior of creating asterisks is always the same
class AsteriskGeneratingStream : Stream
{
long _pos = 0;
long _length = 0;
public AsteriskGeneratingStream(long length)
{
_length = length;
}
public override long Length => _length;
public override int Read(byte[] buffer, int offset, int count)
{
// Create the data as needed
if (count + _pos > _length)
count = (int)(_length - _pos);
for (int i = offset; i < count; i++)
buffer[i] = (byte)'*';
_pos += count;
return count;
}
public override bool CanRead => true;
public override long Seek(long offset, SeekOrigin origin)
{
if(origin == SeekOrigin.Begin) //lets just trust that the caller will be sensible and not set e.g. negative offset
_pos = offset;
else if(origin == SeekOrigin.Current)
_pos += offset;
else if(origin == SeekOrigin.End)
_pos = _length + offset;
return _pos;
}
public override bool CanSeek => true;
public override bool CanWrite => false;
public override long Position { get => _pos; set => _pos = value; }
public override void Flush() { }
public override void SetLength(long value) { _length = value; }
public override void Write(byte[] buffer, int offset, int count) { throw new NotImplementedException(); }
}
class Program
{
static void Main(string[] args)
{
long objectSize = 25L * 1024 * 1024;
var s3 = new AmazonS3Client(Amazon.RegionEndpoint.USWest1);
var xfer = new TransferUtility(s3,new TransferUtilityConfig
{
MinSizeBeforePartUpload = 5L * 1024 * 1024
});
var helper = new AsteriskGeneratingStream(objectSize);
xfer.Upload(helper, "bucket-name", "object-key");
}
}
Note, I can't guarantee it'll work right off the bat because I'm on a cellphone and can't test this via c# fiddle but let's see how it blows up! 😀
If you can create the object on the fly, or at least cache fairly small segments, you can create a stream that serves the data up to S3. Note, that unless you can also create any part of the object out of order, you need to prevent the AWS SDK from using a multi-part upload, which will slow down the transfer speed.
class DataStream : Stream
{
long _pos = 0;
long _length = 0;
public DataStream(long length)
{
_length = length;
}
public override long Length => _length;
public override int Read(byte[] buffer, int offset, int count)
{
// Create the data as needed, on demand
// For this example, just cycle through 0 to 256 in the data over and over again
if (count + _pos > _length)
{
count = (int)(_length - _pos);
}
for (int i = 0; i < count; i++)
{
buffer[i + offset] = (byte)((_pos + i) % 256);
}
_pos += count;
return count;
}
public override bool CanRead => true;
// Stub out all other methods. For a seekable stream
// Seek() and Postion need to be implemented, along with CanSeek changed
public override long Seek(long offset, SeekOrigin origin) { throw new NotImplementedException(); }
public override bool CanSeek => false;
public override bool CanWrite => false;
public override long Position { get => _pos; set => throw new NotImplementedException(); }
public override void Flush() { throw new NotImplementedException(); }
public override void SetLength(long value) { throw new NotImplementedException(); }
public override void Write(byte[] buffer, int offset, int count) { throw new NotImplementedException(); }
}
class Program
{
static void Main(string[] args)
{
long objectSize = 25L * 1024 * 1024;
var s3 = new AmazonS3Client(Amazon.RegionEndpoint.USWest1);
// Prevent a multi-part upload, which requires a seekable stream
var xfer = new TransferUtility(s3, new TransferUtilityConfig
{
MinSizeBeforePartUpload = objectSize + 1
});
var helper = new DataStream(objectSize);
xfer.Upload(helper, "bucket-name", "object-key");
}
}

Gzip only after a threshold reached?

I have a requirement to archive all the data used to build a report everyday. I compress most of the the data using gzip, as some of the datasets can be very large (10mb+). I write each individual protobuf graph to a file. I also whitelist a fixed set of known small object types and added some code to detect if the file is gzipped or not, when I read it. This is because a small file, when compressed can actually be bigger then uncompressed.
Unfortunately, just due to the nature of the data, I may only have a few elements of a larger object type, and the whitelist approach can be problematic.
Is there anyway to write an object to a stream, and only if it reaches a threshold (like 8kb), then compress it? I don't know the size of the object beforehand, and sometimes I have an object graph with an IEnumerable<T> that might be considerable in size.
Edit:
The code is fairly basic. I did skim over the fact that I store this in a filestream db table. That shouldn't really matter for the implementation purpose. I removed some of the extraneous code.
public Task SerializeModel<T>(TransactionalDbContext dbConn, T Item, DateTime archiveDate, string name)
{
var continuation = (await dbConn
.QueryAsync<PathAndContext>(_getPathAndContext, new {archiveDate, model=name})
.ConfigureAwait(false))
.First();
var useGzip = !_whitelist.Contains(typeof(T));
using (var fs = new SqlFileStream(continuation.Path, continuation.Context, FileAccess.Write,
FileOptions.SequentialScan | FileOptions.Asynchronous, 64*1024))
using (var buffer = useGzip ? new GZipStream(fs, CompressionLevel.Optimal) : default(Stream))
{
_serializerModel.Serialize(stream ?? fs, item);
}
dbConn.Commit();
}
During the serialization, you can use an intermediate stream to accomplish what you are asking for. Something like this will do the job
class SerializationOutputStream : Stream
{
Stream outputStream, writeStream;
byte[] buffer;
int bufferedCount;
long position;
public SerializationOutputStream(Stream outputStream, int compressTreshold = 8 * 1024)
{
writeStream = this.outputStream = outputStream;
buffer = new byte[compressTreshold];
}
public override long Seek(long offset, SeekOrigin origin) { throw new NotSupportedException(); }
public override void SetLength(long value) { throw new NotSupportedException(); }
public override int Read(byte[] buffer, int offset, int count) { throw new NotSupportedException(); }
public override bool CanRead { get { return false; } }
public override bool CanSeek { get { return false; } }
public override bool CanWrite { get { return writeStream != null && writeStream.CanWrite; } }
public override long Length { get { throw new NotSupportedException(); } }
public override long Position { get { return position; } set { throw new NotSupportedException(); } }
public override void Write(byte[] buffer, int offset, int count)
{
if (count <= 0) return;
var newPosition = position + count;
if (this.buffer == null)
writeStream.Write(buffer, offset, count);
else
{
int bufferCount = Math.Min(count, this.buffer.Length - bufferedCount);
if (bufferCount > 0)
{
Array.Copy(buffer, offset, this.buffer, bufferedCount, bufferCount);
bufferedCount += bufferCount;
}
int remainingCount = count - bufferCount;
if (remainingCount > 0)
{
writeStream = new GZipStream(outputStream, CompressionLevel.Optimal);
try
{
writeStream.Write(this.buffer, 0, this.buffer.Length);
writeStream.Write(buffer, offset + bufferCount, remainingCount);
}
finally { this.buffer = null; }
}
}
position = newPosition;
}
public override void Flush()
{
if (buffer == null)
writeStream.Flush();
else if (bufferedCount > 0)
{
try { outputStream.Write(buffer, 0, bufferedCount); }
finally { buffer = null; }
}
}
protected override void Dispose(bool disposing)
{
try
{
if (!disposing || writeStream == null) return;
try { Flush(); }
finally { writeStream.Close(); }
}
finally
{
writeStream = outputStream = null;
buffer = null;
base.Dispose(disposing);
}
}
}
and use it like this
using (var stream = new SerializationOutputStream(new SqlFileStream(continuation.Path, continuation.Context, FileAccess.Write,
FileOptions.SequentialScan | FileOptions.Asynchronous, 64*1024)))
_serializerModel.Serialize(stream, item);
datasets can be very large (10mb+)
On most devices, that is not very large. Is there a reason you can't read in the entire object before deciding whether to compress? Note also the suggestion from #Niklas to read in one buffer's worth of data (e.g. 8K) before deciding whether to compress.
This is because a small file, when compressed can actually be bigger then uncompressed.
The thing that makes a small file potentially larger is the ZIP header, in particular the dictionary. Some ZIP libraries allow you to use a custom dictionary known while compressing and uncompressing. I used SharpZipLib for this many years back.
It is more effort, in terms of coding and testing, to use this approach. If you feel that the benefit is worthwhile, it may provide the best approach.
Note no matter what path you take, you will physically store data using multiples of the block size of your storage device.
if the object is 1 byte or 100mb I have no idea
Note that protocol buffers is not really designed for large data sets
Protocol Buffers are not designed to handle large messages. As a general rule of thumb, if you are dealing in messages larger than a megabyte each, it may be time to consider an alternate strategy.
That said, Protocol Buffers are great for handling individual messages within a large data set. Usually, large data sets are really just a collection of small pieces, where each small piece may be a structured piece of data.
If your largest object can comfortably serialize into memory, first serialize it into a MemoryStream, then either write that MemoryStream to your final destination, or run it through a GZipStream and then to your final destination. If the largest object cannot comfortably serialize into memory, I'm not sure what further advice to give.

IEnumerable to Stream

I would like to do something roughly equivalent to the code example below. I want to generate and serve a stream of data without necessarily having the entire data set in memory at any one time.
It seems like I would need some implementation of Stream that accepts an IEnumerable<string> (or IEnumerable<byte>) in its constructor. Internally this Stream would only walk the IEnumerable as the Stream is being read or as needed. But I don't know of any Stream implementation like this.
Am I on the right track? Do you know of any way to do something like this?
public FileStreamResult GetResult()
{
IEnumerable<string> data = GetDataForStream();
Stream dataStream = ToStringStream(Encoding.UTF8, data);
return File(dataStream, "text/plain", "Result");
}
private IEnumerable<string> GetDataForStream()
{
StringBuilder sb;
for (int i = 0; i < 10000; i++)
{
yield return i.ToString();
yield return "\r\n";
}
}
private Stream ToStringStream(Encoding encoding, IEnumerable<string> data)
{
// I have to write my own implementation of stream?
throw new NotImplementedException();
}
Here's a read-only Stream implementation that uses an IEnumerable<byte> as input:
public class ByteStream : Stream, IDisposable
{
private readonly IEnumerator<byte> _input;
private bool _disposed;
public ByteStream(IEnumerable<byte> input)
{
_input = input.GetEnumerator();
}
public override bool CanRead => true;
public override bool CanSeek => false;
public override bool CanWrite => false;
public override long Length => 0;
public override long Position { get; set; } = 0;
public override int Read(byte[] buffer, int offset, int count)
{
int i = 0;
for (; i < count && _input.MoveNext(); i++)
buffer[i + offset] = _input.Current;
return i;
}
public override long Seek(long offset, SeekOrigin origin) => throw new InvalidOperationException();
public override void SetLength(long value) => throw new InvalidOperationException();
public override void Write(byte[] buffer, int offset, int count) => throw new InvalidOperationException();
public override void Flush() => throw new InvalidOperationException();
void IDisposable.Dispose()
{
if (_disposed)
return;
_input.Dispose();
_disposed= true;
}
}
What you then still need is a function that converts IEnumerable<string> to IEnumerable<byte>:
public static IEnumerable<byte> Encode(IEnumerable<string> input, Encoding encoding)
{
byte[] newLine = encoding.GetBytes(Environment.NewLine);
foreach (string line in input)
{
byte[] bytes = encoding.GetBytes(line);
foreach (byte b in bytes)
yield return b;
foreach (byte b in newLine)
yield return b;
}
}
And finally, here's how to use this in your controller:
public FileResult GetResult()
{
IEnumerable<string> data = GetDataForStream();
var stream = new ByteStream(Encode(data, Encoding.UTF8));
return File(stream, "text/plain", "Result.txt");
}
I created a class called ProducerConsumerStream that does this. The producer writes data to the stream and the consumer reads. There's a buffer in the middle so that the producer can "write ahead" a little bit. You can define the size of the buffer.
Anyway, if it's not exactly what you're looking for, I suspect it will give you a good idea of how it's done. See Building a new type of stream.
Update
The link went stale, so I've copied my code here. The original article is still available on the Wayback machine at https://web.archive.org/web/20151210235510/http://www.informit.com/guides/content.aspx?g=dotnet&seqNum=852
First, the ProducerConsumerStream class:
using System;
using System.IO;
using System.Threading;
using System.Diagnostics;
namespace Mischel.IO
{
// This class is safe for 1 producer and 1 consumer.
public class ProducerConsumerStream : Stream
{
private byte[] CircleBuff;
private int Head;
private int Tail;
public bool IsAddingCompleted { get; private set; }
public bool IsCompleted { get; private set; }
// For debugging
private long TotalBytesRead = 0;
private long TotalBytesWritten = 0;
public ProducerConsumerStream(int size)
{
CircleBuff = new byte[size];
Head = 1;
Tail = 0;
}
[Conditional("JIM_DEBUG")]
private void DebugOut(string msg)
{
Console.WriteLine(msg);
}
[Conditional("JIM_DEBUG")]
private void DebugOut(string fmt, params object[] parms)
{
DebugOut(string.Format(fmt, parms));
}
private int ReadBytesAvailable
{
get
{
if (Head > Tail)
return Head - Tail - 1;
else
return CircleBuff.Length - Tail + Head - 1;
}
}
private int WriteBytesAvailable { get { return CircleBuff.Length - ReadBytesAvailable - 1; } }
private void IncrementTail()
{
Tail = (Tail + 1) % CircleBuff.Length;
}
public override int Read(byte[] buffer, int offset, int count)
{
if (disposed)
{
throw new ObjectDisposedException("The stream has been disposed.");
}
if (IsCompleted)
{
throw new EndOfStreamException("The stream is empty and has been marked complete for adding.");
}
if (count == 0)
{
return 0;
}
lock (CircleBuff)
{
DebugOut("Read: requested {0:N0} bytes. Available = {1:N0}.", count, ReadBytesAvailable);
while (ReadBytesAvailable == 0)
{
if (IsAddingCompleted)
{
IsCompleted = true;
return 0;
}
Monitor.Wait(CircleBuff);
}
// If Head < Tail, then there are bytes available at the end of the buffer
// and also at the front of the buffer.
// If reading from Tail to the end doesn't fulfill the request,
// and there are still bytes available,
// then read from the start of the buffer.
DebugOut("Read: Head={0}, Tail={1}, Avail={2}", Head, Tail, ReadBytesAvailable);
IncrementTail();
int bytesToRead;
if (Tail > Head)
{
// When Tail > Head, we know that there are at least
// (CircleBuff.Length - Tail) bytes available in the buffer.
bytesToRead = CircleBuff.Length - Tail;
}
else
{
bytesToRead = Head - Tail;
}
// Don't read more than count bytes!
bytesToRead = Math.Min(bytesToRead, count);
Buffer.BlockCopy(CircleBuff, Tail, buffer, offset, bytesToRead);
Tail += (bytesToRead - 1);
int bytesRead = bytesToRead;
// At this point, either we've exhausted the buffer,
// or Tail is at the end of the buffer and has to wrap around.
if (bytesRead < count && ReadBytesAvailable > 0)
{
// We haven't fulfilled the read.
IncrementTail();
// Tail is always equal to 0 here.
bytesToRead = Math.Min((count - bytesRead), (Head - Tail));
Buffer.BlockCopy(CircleBuff, Tail, buffer, offset + bytesRead, bytesToRead);
bytesRead += bytesToRead;
Tail += (bytesToRead - 1);
}
TotalBytesRead += bytesRead;
DebugOut("Read: returning {0:N0} bytes. TotalRead={1:N0}", bytesRead, TotalBytesRead);
DebugOut("Read: Head={0}, Tail={1}, Avail={2}", Head, Tail, ReadBytesAvailable);
Monitor.Pulse(CircleBuff);
return bytesRead;
}
}
public override void Write(byte[] buffer, int offset, int count)
{
if (disposed)
{
throw new ObjectDisposedException("The stream has been disposed.");
}
if (IsAddingCompleted)
{
throw new InvalidOperationException("The stream has been marked as complete for adding.");
}
lock (CircleBuff)
{
DebugOut("Write: requested {0:N0} bytes. Available = {1:N0}", count, WriteBytesAvailable);
int bytesWritten = 0;
while (bytesWritten < count)
{
while (WriteBytesAvailable == 0)
{
Monitor.Wait(CircleBuff);
}
DebugOut("Write: Head={0}, Tail={1}, Avail={2}", Head, Tail, WriteBytesAvailable);
int bytesToCopy = Math.Min((count - bytesWritten), WriteBytesAvailable);
CopyBytes(buffer, offset + bytesWritten, bytesToCopy);
TotalBytesWritten += bytesToCopy;
DebugOut("Write: {0} bytes written. TotalWritten={1:N0}", bytesToCopy, TotalBytesWritten);
DebugOut("Write: Head={0}, Tail={1}, Avail={2}", Head, Tail, WriteBytesAvailable);
bytesWritten += bytesToCopy;
Monitor.Pulse(CircleBuff);
}
}
}
private void CopyBytes(byte[] buffer, int srcOffset, int count)
{
// Insert at head
// The copy might require two separate operations.
// copy as much as can fit between Head and end of the circular buffer
int offset = srcOffset;
int bytesCopied = 0;
int bytesToCopy = Math.Min(CircleBuff.Length - Head, count);
if (bytesToCopy > 0)
{
Buffer.BlockCopy(buffer, offset, CircleBuff, Head, bytesToCopy);
bytesCopied = bytesToCopy;
Head = (Head + bytesToCopy) % CircleBuff.Length;
offset += bytesCopied;
}
// Copy the remainder, which will go from the beginning of the buffer.
if (bytesCopied < count)
{
bytesToCopy = count - bytesCopied;
Buffer.BlockCopy(buffer, offset, CircleBuff, Head, bytesToCopy);
Head = (Head + bytesToCopy) % CircleBuff.Length;
}
}
public void CompleteAdding()
{
if (disposed)
{
throw new ObjectDisposedException("The stream has been disposed.");
}
lock (CircleBuff)
{
DebugOut("CompleteAdding: {0:N0} bytes written.", TotalBytesWritten);
IsAddingCompleted = true;
Monitor.Pulse(CircleBuff);
}
}
public override bool CanRead { get { return true; } }
public override bool CanSeek { get { return false; } }
public override bool CanWrite { get { return true; } }
public override void Flush() { /* does nothing */ }
public override long Length { get { throw new NotImplementedException(); } }
public override long Position
{
get { throw new NotImplementedException(); }
set { throw new NotImplementedException(); }
}
public override long Seek(long offset, SeekOrigin origin)
{
throw new NotImplementedException();
}
public override void SetLength(long value)
{
throw new NotImplementedException();
}
private bool disposed = false;
protected override void Dispose(bool disposing)
{
if (!disposed)
{
base.Dispose(disposing);
disposed = true;
}
}
}
}
And an example of how to use it:
class Program
{
static readonly string TestText = "This is a test of the emergency broadcast system.";
static readonly byte[] TextBytes = Encoding.UTF8.GetBytes(TestText);
const int Megabyte = 1024 * 1024;
const int TestBufferSize = 12;
const int ProducerBufferSize = 4;
const int ConsumerBufferSize = 5;
static void Main(string[] args)
{
Console.WriteLine("TextBytes contains {0:N0} bytes.", TextBytes.Length);
using (var pcStream = new ProducerConsumerStream(TestBufferSize))
{
Thread ProducerThread = new Thread(ProducerThreadProc);
Thread ConsumerThread = new Thread(ConsumerThreadProc);
ProducerThread.Start(pcStream);
Thread.Sleep(2000);
ConsumerThread.Start(pcStream);
ProducerThread.Join();
ConsumerThread.Join();
}
Console.Write("Done. Press Enter.");
Console.ReadLine();
}
static void ProducerThreadProc(object state)
{
Console.WriteLine("Producer: started.");
var pcStream = (ProducerConsumerStream)state;
int offset = 0;
while (offset < TestText.Length)
{
int bytesToWrite = Math.Min(ProducerBufferSize, TestText.Length - offset);
pcStream.Write(TextBytes, offset, bytesToWrite);
offset += bytesToWrite;
}
pcStream.CompleteAdding();
Console.WriteLine("Producer: {0:N0} total bytes written.", offset);
Console.WriteLine("Producer: exit.");
}
static void ConsumerThreadProc(object state)
{
Console.WriteLine("Consumer: started.");
var instream = (ProducerConsumerStream)state;
int testOffset = 0;
var inputBuffer = new byte[TextBytes.Length];
int bytesRead;
do
{
int bytesToRead = Math.Min(ConsumerBufferSize, inputBuffer.Length - testOffset);
bytesRead = instream.Read(inputBuffer, testOffset, bytesToRead);
//Console.WriteLine("Consumer: {0:N0} bytes read.", bytesRead);
testOffset += bytesRead;
} while (bytesRead != 0);
Console.WriteLine("Consumer: {0:N0} total bytes read.", testOffset);
// Compare bytes read with TextBytes
for (int i = 0; i < TextBytes.Length; ++i)
{
if (inputBuffer[i] != TextBytes[i])
{
Console.WriteLine("Read error at position {0}", i);
break;
}
}
Console.WriteLine("Consumer: exit.");
}
}
I had the same problem. In my case a third party package only accepts streams but I have an IEnumerable, and couldn't find an answer online so I wrote my own, which I'll share:
public class IEnumerableStringReader : TextReader
{
private readonly IEnumerator<string> _enumerator;
private bool eof = false; // is set to true when .MoveNext tells us there is no more data.
private char[] curLine = null;
private int curLinePos = 0;
private bool disposed = false;
public IEnumerableStringReader(IEnumerable<string> input)
{
_enumerator = input.GetEnumerator();
}
private void GetNextLine()
{
if (eof) return;
eof = !_enumerator.MoveNext();
if (eof) return;
curLine = $"{_enumerator.Current}\r\n" // IEnumerable<string> input implies newlines exist betweent he lines.
.ToCharArray();
curLinePos = 0;
}
public override int Peek()
{
if (disposed) throw new ObjectDisposedException("The stream has been disposed.");
if (curLine == null || curLinePos == curLine.Length) GetNextLine();
if (eof) return -1;
return curLine[curLinePos];
}
public override int Read()
{
if (disposed) throw new ObjectDisposedException("The stream has been disposed.");
if (curLine == null || curLinePos == curLine.Length) GetNextLine();
if (eof) return -1;
return curLine[curLinePos++];
}
public override int Read(char[] buffer, int index, int count)
{
if (disposed) throw new ObjectDisposedException("The stream has been disposed.");
if (count == 0) return 0;
int charsReturned = 0;
int maxChars = Math.Min(count, buffer.Length - index); // Assuming we dont run out of input chars, we return count characters if we can. If the space left in the buffer is not big enough we return as many as will fit in the buffer.
while (charsReturned < maxChars)
{
if (curLine == null || curLinePos == curLine.Length) GetNextLine();
if (eof) return charsReturned;
int maxCurrentCopy = maxChars - charsReturned;
int charsAtTheReady = curLine.Length - curLinePos; // chars available in current line
int copySize = Math.Min(maxCurrentCopy, charsAtTheReady); // stop at end of buffer.
// cant use Buffer.BlockCopy because it's byte based and we're dealing with chars.
Array.ConstrainedCopy(curLine, curLinePos, buffer, index, copySize);
index += copySize;
curLinePos += copySize;
charsReturned += copySize;
}
return charsReturned;
}
public override string ReadLine()
{
if (curLine == null || curLinePos == curLine.Length) GetNextLine();
if (eof) return null;
if (curLinePos > 0) // this is necessary in case the client uses both Read() and ReadLine() calls
{
var tmp = new string(curLine, curLinePos, (curLine.Length - curLinePos) - 2); // create a new string from the remainder of the char array. The -2 is because GetNextLine appends a crlf.
curLinePos = curLine.Length; // so next call will re-read
return tmp;
}
// read full line.
curLinePos = curLine.Length; // so next call will re-read
return _enumerator.Current; // if all the client does is call ReadLine this (faster) code path will be taken.
}
protected override void Dispose(bool disposing)
{
if (!disposed)
{
_enumerator.Dispose();
base.Dispose(disposing);
disposed = true;
}
}
}
In my case, I want to use it as input to Datastreams.Csv:
using (var tr = new IEnumerableStringReader(input))
using (var reader = new CsvReader(tr))
{
while (reader.ReadRecord())
{
// do whatever
}
}
Using the EnumerableToStream Nuget package, you would implement your method like so:
using EnumerableToStream;
private Stream ToStringStream(Encoding encoding, IEnumerable<string> data)
{
return data.ToStream(encoding);
}
I had the same requirement and ended up rolling my own implementation which I have been using for a while now. Getting all the nitty-gritty details just right took some time and effort. For instance, you want your IEnumerable to be disposed after the stream is read to the end and you don't want multibyte characters to be partially written to the buffer.
In this particular implementation, reading the stream does zero allocations, unlike other implementations using encoding.GetBytes(line).
After seeing this question, I decided to release the code as a Nuget package. Hope it saves you a few hours. The source code is on GitHub.
Steve Sadler wrote a perfectly working answer. However, he makes it way more difficult than needed
According to the reference source of TextReader you'll need only override Peek and Read:
A subclass must minimally implement the Peek() and Read() methods.
So first I write a function that converts IEnumerable<string> into IEnumerable<char> where a new line is added at the end of each string:
private static IEnumerable<char> ReadCharacters(IEnumerable<string> lines)
{
foreach (string line in lines)
{
foreach (char c in line + Environment.NewLine)
{
yield return c;
}
}
}
Environment.NewLine is the part that adds the new line at the end of each string.
Now the class is failry straightforward:
class EnumStringReader : TextReader
{
public EnumStringReader(IEnumerable<string> lines)
{
this.enumerator = ReadCharacters(lines).GetEnumerator();
this.dataAvailable = this.enumerator.MoveNext();
}
private bool disposed = false;
private bool dataAvailable;
private readonly IEnumerator<char> enumerator;
The constructor takes a sequence of lines to read. It uses this sequence and the earlier written function to convert the sequence into a sequence of characters with the added Environment.NewLine.
It gets the enumerator of the converted sequence, and moves to the first character. It remembers whether there is a first character in DataAvailable
Now we are ready to Peek: if no data available: return -1, otherwise return the current character as int. Do not move forward:
public override int Peek()
{
this.ThrowIfDisposed();
return this.dataAvailable ? this.enumerator.Current : -1;
}
Read: if no data available, return -1, otherwise return the current character as int. Move forward to the next character and remember whether there is data available:
public override int Read()
{
this.ThrowIfDisposed();
if (this.dataAvailable)
{
char nextChar = this.enumerator.Current;
this.dataAvailable = this.enumerator.MoveNext();
return (int)nextChar;
}
else
{
return -1;
}
}
Don't forget to override Dispose(bool) where you dispose the enumerator.
That is all that is needed. All other functions will use these two.
Now to fill your stream with the lines:
IEnumerable<string> lines = ...
using (TextWriter writer = System.IO.File.CreateText(...))
{
using (TextReader reader = new EnumStringReader(lines);
{
// either write per char:
while (reader.Peek() != -1)
{
char c = (char)reader.Read();
writer.Write(c);
}
// or write per line:
string line = reader.ReadLine();
// line is without newLine!
while (line != null)
{
writer.WriteLine(line);
line = reader.ReadLine();
}
// or write per block
buffer buf = new char[4096];
int nrRead = reader.ReadBlock(buf, 0, buf.Length)
while (nrRead > 0)
{
writer.Write(buf, 0, nrRead);
nrRead = reader.ReadBlock(buf, 0, buf.Length);
}
}
}

How to add seek and position capabilities to CryptoStream

I was trying to use CryptoStream with AWS .NET SDk it failed as seek is not supported on CryptoStream. I read somewhere with content length known we should be able to add these capabilities to CryptoStream. I would like to know how to do this; any sample code will be useful too.
I have a method like this which is passed with a FieStream and returns a cryptoStream. I assign the returned Stream object to InputStream of AWS SDk PutObjectRequest object.
public static Stream GetEncryptStream(Stream existingStream,
SymmetricAlgorithm cryptoServiceProvider,
string encryptionKey, string encryptionIV)
{
Stream existingStream = this.dataStream;
cryptoServiceProvider.Key = ASCIIEncoding.ASCII.GetBytes(encryptionKey);
cryptoServiceProvider.IV = ASCIIEncoding.ASCII.GetBytes(encryptionIV);
CryptoStream cryptoStream = new CryptoStream(existingStream,
cryptoServiceProvider.CreateEncryptor(), CryptoStreamMode.Read);
return cryptoStream ;
}
Generally with encryption there isn't a 1:1 mapping between input bytes and output bytes, so in order to seek backwards (in particular) it would have to do a lot of work - perhaps even going right back to the start and moving forwards processing the data to consume [n] bytes from the decrypted stream. Even if it knew where each byte mapped to, the state of the encryption is dependent on the data that came before it (it isn't a decoder ring ;p), so again - it would either have to read from the start (and reset back to the initialisation-vector), or it would have to track snapshots of positions and crypto-states, and go back to the nearest snapshot, then walk forwards. Lots of work and storage.
This would apply to seeking relative to either end, too.
Moving forwards from the current position wouldn't be too bad, but again you'd have to process the data - not just jump the base-stream's position.
There isn't a good way to implement this that most consumers could use - normally if you get a true from CanSeek that means "random access", but that is not efficient in this case.
As a workaround - consider copying the decrypted data into a MemoryStream or a file; then you can access the fully decrypted data in a random-access fashion.
It is so simple, just generate a long key with the same size as data by the position of the stream (stream.Position) and use ECB or any other encryption methods you like and then apply XOR. It is seekable, very fast and 1 to 1 encryption, which the output length is exactly same as the input length. It is memory efficient and you can use it on huge files. I think this method is used in modern WinZip AES encryption too. The only thing that you MUST be careful is the salt
Use a unique salt for each stream otherwise there is no encryption.
public class SeekableAesStream : Stream
{
private Stream baseStream;
private AesManaged aes;
private ICryptoTransform encryptor;
public bool autoDisposeBaseStream { get; set; } = true;
/// <param name="salt">//** WARNING **: MUST be unique for each stream otherwise there is NO security</param>
public SeekableAesStream(Stream baseStream, string password, byte[] salt)
{
this.baseStream = baseStream;
using (var key = new PasswordDeriveBytes(password, salt))
{
aes = new AesManaged();
aes.KeySize = 128;
aes.Mode = CipherMode.ECB;
aes.Padding = PaddingMode.None;
aes.Key = key.GetBytes(aes.KeySize / 8);
aes.IV = new byte[16]; //useless for ECB
encryptor = aes.CreateEncryptor(aes.Key, aes.IV);
}
}
private void cipher(byte[] buffer, int offset, int count, long streamPos)
{
//find block number
var blockSizeInByte = aes.BlockSize / 8;
var blockNumber = (streamPos / blockSizeInByte) + 1;
var keyPos = streamPos % blockSizeInByte;
//buffer
var outBuffer = new byte[blockSizeInByte];
var nonce = new byte[blockSizeInByte];
var init = false;
for (int i = offset; i < count; i++)
{
//encrypt the nonce to form next xor buffer (unique key)
if (!init || (keyPos % blockSizeInByte) == 0)
{
BitConverter.GetBytes(blockNumber).CopyTo(nonce, 0);
encryptor.TransformBlock(nonce, 0, nonce.Length, outBuffer, 0);
if (init) keyPos = 0;
init = true;
blockNumber++;
}
buffer[i] ^= outBuffer[keyPos]; //simple XOR with generated unique key
keyPos++;
}
}
public override bool CanRead { get { return baseStream.CanRead; } }
public override bool CanSeek { get { return baseStream.CanSeek; } }
public override bool CanWrite { get { return baseStream.CanWrite; } }
public override long Length { get { return baseStream.Length; } }
public override long Position { get { return baseStream.Position; } set { baseStream.Position = value; } }
public override void Flush() { baseStream.Flush(); }
public override void SetLength(long value) { baseStream.SetLength(value); }
public override long Seek(long offset, SeekOrigin origin) { return baseStream.Seek(offset, origin); }
public override int Read(byte[] buffer, int offset, int count)
{
var streamPos = Position;
var ret = baseStream.Read(buffer, offset, count);
cipher(buffer, offset, count, streamPos);
return ret;
}
public override void Write(byte[] buffer, int offset, int count)
{
cipher(buffer, offset, count, Position);
baseStream.Write(buffer, offset, count);
}
protected override void Dispose(bool disposing)
{
if (disposing)
{
encryptor?.Dispose();
aes?.Dispose();
if (autoDisposeBaseStream)
baseStream?.Dispose();
}
base.Dispose(disposing);
}
}
Usage:
static void test()
{
var buf = new byte[255];
for (byte i = 0; i < buf.Length; i++)
buf[i] = i;
//encrypting
var uniqueSalt = new byte[16]; //** WARNING **: MUST be unique for each stream otherwise there is NO security
var baseStream = new MemoryStream();
var cryptor = new SeekableAesStream(baseStream, "password", uniqueSalt);
cryptor.Write(buf, 0, buf.Length);
//decrypting at position 200
cryptor.Position = 200;
var decryptedBuffer = new byte[50];
cryptor.Read(decryptedBuffer, 0, 50);
}
As an extension to Mark Gravell's answer, the seekability of a cipher depends on the Mode Of Operation you're using for the cipher. Most modes of operation aren't seekable, because each block of ciphertext depends in some way on the previous one. ECB is seekable, but it's almost universally a bad idea to use it. CTR mode is another one that can be accessed randomly, as is CBC.
All of these modes have their own vulnerabilities, however, so you should read carefully and think long and hard (and preferably consult an expert) before choosing one.

Suggestions for a thread safe non-blocking buffer manager

I've created a simple buffer manager class to be used with asyncroneous sockets. This will protect against memory fragmentation and improve performance. Any suggestions for further improvements or other approaches?
public class BufferManager
{
private int[] free;
private byte[] buffer;
private readonly int blocksize;
public BufferManager(int count, int blocksize)
{
buffer = new byte[count * blocksize];
free = new int[count];
this.blocksize = blocksize;
for (int i = 0; i < count; i++)
free[i] = 1;
}
public void SetBuffer(SocketAsyncEventArgs args)
{
for (int i = 0; i < free.Length; i++)
{
if (1 == Interlocked.CompareExchange(ref free[i], 0, 1))
{
args.SetBuffer(buffer, i * blocksize, blocksize);
return;
}
}
args.SetBuffer(new byte[blocksize], 0, blocksize);
}
public void FreeBuffer(SocketAsyncEventArgs args)
{
int offset = args.Offset;
byte[] buff = args.Buffer;
args.SetBuffer(null, 0, 0);
if (buffer == buff)
free[offset / blocksize] = 1;
}
}
Edit:
The orignal answer below addresses a code construction issue of overly tight coupling. However, considering the solution as whole I would avoid using just one large buffer and handing over slices of it in this way. You expose your code to buffer overrun (and shall we call it buffer "underrun" issues). Instead I would manage an array of byte arrays each being a discrete buffer. Offset handed over is always 0 and size is always the length of the buffer. Any bad code that attempts to read/write parts beyond the boundaries will be caught.
Original answer
You've coupled the class to SocketAsyncEventArgs where in fact all it needs is a function to assign the buffer, change SetBuffer to:-
public void SetBuffer(Action<byte[], int, int> fnSet)
{
for (int i = 0; i < free.Length; i++)
{
if (1 == Interlocked.CompareExchange(ref free[i], 0, 1))
{
fnSet(buffer, i * blocksize, blocksize);
return;
}
}
fnSet(new byte[blocksize], 0, blocksize);
}
Now you can call from consuming code something like this:-
myMgr.SetBuffer((buf, offset, size) => myArgs.SetBuffer(buf, offset, size));
I'm not sure that type inference is clever enough to resolve the types of buf, offset, size in this case. If not you will have to place the types in the argument list:-
myMgr.SetBuffer((byte[] buf, int offset, int size) => myArgs.SetBuffer(buf, offset, size));
However now your class can be used to allocate a buffer for all manner of requirements that also use the byte[], int, int pattern which is very common.
Of course you need to decouple the free operation to but thats:-
public void FreeBuffer(byte[] buff, int offset)
{
if (buffer == buff)
free[offset / blocksize] = 1;
}
This requires you to call SetBuffer on the EventArgs in consuming code in the case for SocketAsyncEventArgs. If you are concerned that this approach reduces the atomicity of freeing the buffer and removing it from the sockets use, then sub-class this adjusted buffer manager and include SocketAsyncEventArgs specific code in the sub-class.
I've created a new class with a completely different approach.
I have a server class that receives byte arrays. It will then invoke different delegates handing them the buffer objects so that other classes can process them. When those classes are done they need a way to push the buffers back to the stack.
public class SafeBuffer
{
private static Stack bufferStack;
private static byte[][] buffers;
private byte[] buffer;
private int offset, lenght;
private SafeBuffer(byte[] buffer)
{
this.buffer = buffer;
offset = 0;
lenght = buffer.Length;
}
public static void Init(int count, int blocksize)
{
bufferStack = Stack.Synchronized(new Stack());
buffers = new byte[count][];
for (int i = 0; i < buffers.Length; i++)
buffers[i] = new byte[blocksize];
for (int i = 0; i < buffers.Length; i++)
bufferStack.Push(new SafeBuffer(buffers[i]));
}
public static SafeBuffer Get()
{
return (SafeBuffer)bufferStack.Pop();
}
public void Close()
{
bufferStack.Push(this);
}
public byte[] Buffer
{
get
{
return buffer;
}
}
public int Offset
{
get
{
return offset;
}
set
{
offset = value;
}
}
public int Lenght
{
get
{
return buffer.Length;
}
}
}

Categories

Resources