I want to run a block of code (or method) in C#. In this block I use Web Service method. I want to run it asynchronously (to avoid freeze application) with time out. My code is:
SmsSender s = new SmsSender();
dataGrid.ItemsSource =
s.GetAllInboxMessagesDataSet().Tables[0].DefaultView;
before this I use thread.Abort. finally I find out that thread.Abrot is evil
please help me
If you are using C# 4.5 you can do it like that:
var cts = new CancellationTokenSource(3000); // Set timeout
var task = Task.Run(() =>
{
while (!cts.Token.IsCancellationRequested)
{
// Working...
}
}, cts.Token);
There are different solutions to the problem (not to freeze the main thread). My solution is to create one Task and within to create a second task for which i wait. The wrapper task is not blocked by wait or join and so the main thread is not blocked. With events i can notify the caller, that the worker task has timed out or not. The code looks like this:
// create asynchronous task. in order not to block the calling thread,
// create and start another task in this one and wait for its completion
var synchronize = new System.Threading.Tasks.Task(() =>
{
var worker = new System.Threading.Tasks.TaskFactory().StartNew(() =>
{
// do something work intensive
});
var workCompleted = worker.Wait(10000 /* timeout */);
if (!workCompleted)
{
// worker task has timed-out
}
});
Related
I have this C# code, it works but it won't wait until the method completed
foreach (var listBoxItem in visualListBox1.Items)
{
lblCursor.Text = "Processing.. " + listBoxItem;
Thread t = new Thread(() => extract_group(listBoxItem.ToString()));
t.IsBackground = false;
t.Name = "Group Scrapper";
t.Start();
}
How to wait until extract_group method is done before moving to the next listBoxItem?
I used t.join() but it made the UI unresponsive.
Using async/await helps you to not block main thread.
public async Task ExtractGroupAsync()
{
... (logic of the method)
... (you should use async methods here as well with await before executing those methods)
}
You execute this "ExtractGroup" task like:
var example = await ExtractGroupAsync();
It makes GUI unresponsive, because you are on GUI thread. Run whole code, in separate thread.
Note: when you want to access GUI elements from another thread, you should use invoke, for example:
t.Invoke(() => t.Name = "Group Scrapper");
If you want to stick with Thread I recommend using a WaitHandle e.g. AsyncManualResetEvent Class. This approach allows to make a thread wait without blocking CPU (e.g. spinlock).
Your provided example would become:
private static AsyncManualResetEvent mre = new AsyncManualResetEvent(false, true);
public async Task DoSomethingAsync(...)
{
foreach (var listBoxItem in visualListBox1.Items)
{
lblCursor.Text = "Processing.. " + listBoxItem;
Thread t = new Thread(() => ExtractGroup(listBoxItem.ToString()));
t.IsBackground = false;
t.Name = "Group Scrapper";
t.Start();
// Wait for signal to proceed without blocking resources
await mre.WaitAsync();
}
}
private void ExtractGroup(string groupName)
{
// Do something ...
// Signal handle to release all waiting threads (makes them continue).
// Subsequent calls to Set() or WaitOne() won't show effects until Rest() was called
mre.Set();
// Reset handle to make future call of WaitOne() wait again.
mre.Reset();
}
Another solution would be to go with the TPL and use Task instead of Thread:
public async Task DoWorkAsync()
{
foreach (var listBoxItem in visualListBox1.Items)
{
lblCursor.Text = "Processing.. " + listBoxItem;
// Wait for signal to proceed without blocking resources
await Task.Run(() => ExtractGroup(listBoxItem.ToString()));
}
}
The issue with your code sample is, that you are currently on the main thread, the UI thread. Calling Thread.Join() does what you think it does: it blocks the waiting thread until the running thread completes. But as mentioned, the waiting thread is the UI thread, so the UI becomes unresponsive and can even deadlock in some scenario. When you use async/await your invocations become asynchronous and hence awaitable without blocking the UI thread.
Updated to explain things more clearly
I've got an application that runs a number of tasks. Some are created initially and other can be added later. I need need a programming structure that will wait on all the tasks to complete. Once the all the tasks complete some other code should run that cleans things up and does some final processing of data generated by the other tasks.
I've come up with a way to do this, but wouldn't call it elegant. So I'm looking to see if there is a better way.
What I do is keep a list of the tasks in a ConcurrentBag (a thread safe collection). At the start of the process I create and add some tasks to the ConcurrentBag. As the process does its thing if a new task is created that also needs to finish before the final steps I also add it to the ConcurrentBag.
Task.Wait accepts an array of Tasks as its argument. I can convert the ConcurrentBag into an array, but that array won't include any Tasks added to the Bag after Task.Wait was called.
So I have a two step wait process in a do while loop. In the body of the loop I do a simple Task.Wait on the array generated from the Bag. When it completes it means all the original tasks are done. Then in the while test I do a quick 1 millisecond test of a new array generated from the ConcurrentBag. If no new tasks were added, or any new tasks also completed it will return true, so the not condition exits the loop.
If it returns false (because a new task was added that didn't complete) we go back and do a non-timed Task.Wait. Then rinse and repeat until all new and old tasks are done.
// defined on the class, perhaps they should be properties
CancellationTokenSource Source = new CancellationTokenSource();
CancellationToken Token = Source.Token;
ConcurrentBag<Task> ToDoList = new ConcurrentBag<Task>();
public void RunAndWait() {
// start some tasks add them to the list
for (int i = 0; i < 12; i++)
{
Task task = new Task(() => SillyExample(Token), Token);
ToDoList.Add(task);
task.Start();
}
// now wait for those task, and any other tasks added to ToDoList to complete
try
{
do
{
Task.WaitAll(ToDoList.ToArray(), Token);
} while (! Task.WaitAll(ToDoList.ToArray(), 1, Token));
}
catch (OperationCanceledException e)
{
// any special handling of cancel we might want to do
}
// code that should only run after all tasks complete
}
Is there a more elegant way to do this?
I'd recommend using a ConcurrentQueue and removing items as you wait for them. Due to the first-in-first-out nature of queues, if you get to the point where there's nothing left in the queue, you know that you've waited for all the tasks that have been added up to that point.
ConcurrentQueue<Task> ToDoQueue = new ConcurrentQueue<Task>();
...
while(ToDoQueue.Count > 0 && !Token.IsCancellationRequested)
{
Task task;
if(ToDoQueue.TryDequeue(out task))
{
task.Wait(Token);
}
}
Here's a very cool way using Microsoft's Reactive Framework (NuGet "Rx-Main").
var taskSubject = new Subject<Task>();
var query = taskSubject.Select(t => Observable.FromAsync(() => t)).Merge();
var subscription =
query.Subscribe(
u => { /* Each Task Completed */ },
() => Console.WriteLine("All Tasks Completed."));
Now, to add tasks, just do this:
taskSubject.OnNext(Task.Run(() => { }));
taskSubject.OnNext(Task.Run(() => { }));
taskSubject.OnNext(Task.Run(() => { }));
And then to signal completion:
taskSubject.OnCompleted();
It is important to note that signalling completion doesn't complete the query immediately, it will wait for all of the tasks to finish too. Signalling completion just says that you will no longer add any new tasks.
Finally, if you want to cancel, then just do this:
subscription.Dispose();
I'm writing a Windows Service that will kick off multiple worker threads that will listen to Amazon SQS queues and process messages. There will be about 20 threads listening to 10 queues.
The threads will have to be always running and that's why I'm leaning towards to actually using actual threads for the worker loops rather than threadpool threads.
Here is a top level implementation. Windows service will kick off multiple worker threads and each will listen to it's queue and process messages.
protected override void OnStart(string[] args)
{
for (int i = 0; i < _workers; i++)
{
new Thread(RunWorker).Start();
}
}
Here is the implementation of the work
public async void RunWorker()
{
while(true)
{
// .. get message from amazon sqs sync.. about 20ms
var message = sqsClient.ReceiveMessage();
try
{
await PerformWebRequestAsync(message);
await InsertIntoDbAsync(message);
}
catch(SomeExeception)
{
// ... log
//continue to retry
continue;
}
sqsClient.DeleteMessage();
}
}
I know I can perform the same operation with Task.Run and execute it on the threadpool thread rather than starting individual thread, but I don't see a reason for that since each thread will always be running.
Do you see any problems with this implementation? How reliable would it be to leave threads always running in this fashion and what can I do to make sure that each thread is always running?
One problem with your existing solution is that you call your RunWorker in a fire-and-forget manner, albeit on a new thread (i.e., new Thread(RunWorker).Start()).
RunWorker is an async method, it will return to the caller when the execution point hits the first await (i.e. await PerformWebRequestAsync(message)). If PerformWebRequestAsync returns a pending task, RunWorker returns and the new thread you just started terminates.
I don't think you need a new thread here at all, just use AmazonSQSClient.ReceiveMessageAsync and await its result. Another thing is that you shouldn't be using async void methods unless you really don't care about tracking the state of the asynchronous task. Use async Task instead.
Your code might look like this:
List<Task> _workers = new List<Task>();
CancellationTokenSource _cts = new CancellationTokenSource();
protected override void OnStart(string[] args)
{
for (int i = 0; i < _MAX_WORKERS; i++)
{
_workers.Add(RunWorkerAsync(_cts.Token));
}
}
public async Task RunWorkerAsync(CancellationToken token)
{
while(true)
{
token.ThrowIfCancellationRequested();
// .. get message from amazon sqs sync.. about 20ms
var message = await sqsClient.ReceiveMessageAsync().ConfigureAwait(false);
try
{
await PerformWebRequestAsync(message);
await InsertIntoDbAsync(message);
}
catch(SomeExeception)
{
// ... log
//continue to retry
continue;
}
sqsClient.DeleteMessage();
}
}
Now, to stop all pending workers, you could simple do this (from the main "request dispatcher" thread):
_cts.Cancel();
try
{
Task.WaitAll(_workers.ToArray());
}
catch (AggregateException ex)
{
ex.Handle(inner => inner is OperationCanceledException);
}
Note, ConfigureAwait(false) is optional for Windows Service, because there's no synchronization context on the initial thread, by default. However, I'd keep it that way to make the code independent of the execution environment (for cases where there is synchronization context).
Finally, if for some reason you cannot use ReceiveMessageAsync, or you need to call another blocking API, or simply do a piece of CPU intensive work at the beginning of RunWorkerAsync, just wrap it with Task.Run (as opposed to wrapping the whole RunWorkerAsync):
var message = await Task.Run(
() => sqsClient.ReceiveMessage()).ConfigureAwait(false);
Well, for one I'd use a CancellationTokenSource instantiated in the service and passed down to the workers. Your while statement would become:
while(!cancellationTokenSource.IsCancellationRequested)
{
//rest of the code
}
This way you can cancel all your workers from the OnStop service method.
Additionally, you should watch for:
If you're playing with thread states from outside of the thread, then a ThreadStateException, or ThreadInterruptedException or one of the others might be thrown. So, you want to handle a proper thread restart.
Do the workers need to run without pause in-between iterations? I would throw in a sleep in there (even a few ms's) just so they don't keep the CPU up for nothing.
You need to handle ThreadStartException and restart the worker, if it occurs.
Other than that there's no reason why those 10 treads can't run for as long as the service runs (days, weeks, months at a time).
I have inherited a C#/XAML/Win 8 application. There is some code which is set to run every n seconds.
The code that sets that up is:
if(!_syncThreadStarted)
{
await Task.Run(() => SyncToDatabase());
_syncThreadStarted = true;
}
The above code is ran once.
And then inside SyncToDatabase() we have:
while (true)
{
DatabaseSyncer dbSyncer = new DatabaseSyncer();
await dbSyncer.DeserializeAndUpdate();
await Task.Delay(10); // after elapsed time re-run above code
}
The method DeserializeAndUpdate queries a in-memory collection of objects and pushes those objects to a web service.
Sometimes the send request to the web service takes longer than expected meaning duplicate items are sent.
Question: Is there a way to have a thread or some type of thread pool/background worker which I can stop/abort/destroy inside the method SyncToDatabase() , and then initialize/start it once we are done? This will ensure no subsequent requests are fired while a previous request is still pending.
Edit: I am not very knowledgeable when it comes to Threads, but the logic I want is:
Create thread which runs some method every x seconds, and when it starts that thread stop the "running every x seconds" part, after thread has complete start the "run every x seconds" part again.
E.g. if the thread kicks off at 10:01:30AM and does not complete until 10:01:39AM (9 seconds) the next thread should start at 10:01:44AM (5 seconds after work completed) - does that make sense? I do not want 2 or more threads running at the same time.
Here is my code for the above:
var period = TimeSpan.FromSeconds(5);
var completed = true;
ThreadPoolTimer syncTimer = ThreadPoolTimer.CreatePeriodicTimer(async (source) =>
{
// stop further threads from starting (in case this work takes longer than var period)
syncTimer.Cancel();
DatabaseSyncer dbSyncer = new DatabaseSyncer();
await dbSyncer.DeserializeAndUpdate(); // makes webservices calls
Dispatcher.RunAsync(CoreDispatcerPriority.High, async () =>
{
// Update UI
}
completed = true;
}, period,
(source) =>
{
if(!completed)
{
syncTimer.Cancel(); // not sure if this is correct...
}
}
Thanks,
Andrew)
This is not specific to Windows 8. Usually Task.Run is used for CPU-bound work, to offload it to a pool thread and keep the UI (or the core service loop) responsive. In your case, as far as I can tell, the main payload is dbSyncer.DeserializeAndUpdate, which is already asynchronous and most likely network-IO bound, rather than CPU-bound.
Besides, the author of the original code does _syncThreadStarted = true after await Task.Run(() => SyncToDatabase()). That doesn't make sense, because the work on the pool thread would have been already done by the time _syncThreadStarted = true is executed, thanks to the await.
To cancel the loop inside SyncToDatabase you could use Task Cancellation Pattern. Is SyncToDatabase itself an async method? I presume so, because there's an await in the while loop. Given that, the code which calls it could look something like this:
if(_syncTask != null && !_syncTask.IsCompleted)
{
_ct.Cancel();
// here you may want to make sure that the pending task has been fully shut down,
// keeping possible re-entrancy in mind
// See: https://stackoverflow.com/questions/18999827/a-pattern-for-self-cancelling-and-restarting-task
_syncTask = null;
}
_ct = new CancellationTokenSource();
// _syncTask = SyncToDatabase(ct.Token); // do not await
// edited to run on another thread, as requested by the OP
var _syncTask = Task.Run(async () => await SyncToDatabase(ct.Token), ct.Token);
_syncThreadStarted = true;
And SyncToDatabase could look like:
async Task SyncToDatabase(CancellationToken token)
{
while (true)
{
token.ThrowIfCancellationRequested();
DatabaseSyncer dbSyncer = new DatabaseSyncer();
await dbSyncer.DeserializeAndUpdate();
await Task.Delay(10, token); // after elapsed time re-run above code
}
}
Check this answer for more details on how to cancel and restart a task.
I may have misunderstood the question, but the execution of SynchToDatabase() will wait on the completion of await dbSyncer.DeserializeAndUpdaet() (due to the await keyword, go figure ;)) before executing the continuation, which will then delay for 10 ms (do you want 10ms or did you mean 10 seconds? Parameter for Task.Delay is in milliseconds), then loop back to re-execute the DbSyncer method, so I don't see the problem.
here is sample code for starting multiple task
Task.Factory.StartNew(() =>
{
//foreach (KeyValuePair<string, string> entry in dicList)
Parallel.ForEach(dicList,
entry =>
{
//create and add the Progress in UI thread
var ucProgress = (Progress)fpPanel.Invoke(createProgress, entry);
//execute ucProgress.Process(); in non-UI thread in parallel.
//the .Process(); must update UI by using *Invoke
ucProgress.Process();
System.Threading.Thread.SpinWait(5000000);
});
});
.ContinueWith(task =>
{
//to handle exceptions use task.Exception member
var progressBar = (ProgressBar)task.AsyncState;
if (!task.IsCancelled)
{
//hide progress bar here and reset pb.Value = 0
}
},
TaskScheduler.FromCurrentSynchronizationContext() //update UI from UI thread
);
when we start multiple task using Task.Factory.StartNew() then we can use .ContinueWith() block to determine when each task finish. i mean ContinueWith block fire once for each task completion. so i just want to know is there any mechanism in TPL library. if i start 10 task using Task.Factory.StartNew() so how do i notify after when 10 task will be finish. please give some insight with sample code.
if i start 10 task using Task.Factory.StartNew() so how do i notify after when 10 task will be finish
Three options:
The blocking Task.WaitAll call, which only returns when all the given tasks have completed
The async Task.WhenAll call, which returns a task which completes when all the given tasks have completed. (Introduced in .NET 4.5.)
TaskFactory.ContinueWhenAll, which adds a continuation task which will run when all the given tasks have completed.
if i start 10 task using Task.Factory.StartNew() so how do i notify after when 10 task will be finish
You can use Task.WaitAll. This call will block current thread until all tasks are finished.
Side note: you seem to be using Task, Parallel and Thread.SpinWait, which makes your code complex. I would spend a bit of time analysing if that complexity is really necessary.
You can use the WaitAll(). Example :
Func<bool> DummyMethod = () =>{
// When ready, send back complete!
return true;
};
// Create list of tasks
System.Threading.Tasks.Task<bool>[] tasks = new System.Threading.Tasks.Task<bool>[2];
// First task
var firstTask = System.Threading.Tasks.Task.Factory.StartNew(() => DummyMethod(), TaskCreationOptions.LongRunning);
tasks[0] = firstTask;
// Second task
var secondTask = System.Threading.Tasks.Task.Factory.StartNew(() => DummyMethod(), TaskCreationOptions.LongRunning);
tasks[1] = secondTask;
// Launch all
System.Threading.Tasks.Task.WaitAll(tasks);
Another solution:
After the completion of all the operation inside Parallel.For(...) it return an onject of ParallelLoopResult, Documentation:
For returns a System.Threading.Tasks.ParallelLoopResult object when
all threads have completed. This return value is useful when you are
stopping or breaking loop iteration manually, because the
ParallelLoopResult stores information such as the last iteration that
ran to completion. If one or more exceptions occur on one of the
threads, a System.AggregateException will be thrown.
The ParallelLoopResult class has a IsCompleted property that is set to false when a Stop() of Break() method has been executed.
Example:
ParallelLoopResult result = Parallel.For(...);
if (result.IsCompleted)
{
//Start another task
}
Note that it advised to use it only when breaking or stoping the loop manually (otherwise just use WaitAll, WhenAll etc).