Related
What I want to achieve is very simple: I have a Windows Forms (.NET 3.5) application that uses a path for reading information. This path can be modified by the user, by using the options form I provide.
Now, I want to save the path value to a file for later use. This would be one of the many settings saved to this file. This file would sit directly in the application folder.
I understand three options are available:
ConfigurationSettings file (appname.exe.config)
Registry
Custom XML file
I read that the .NET configuration file is not foreseen for saving values back to it. As for the registry, I would like to get as far away from it as possible.
Does this mean that I should use a custom XML file to save configuration settings?
If so, I would like to see code example of that (C#).
I have seen other discussions on this subject, but it is still not clear to me.
If you work with Visual Studio then it is pretty easy to get persistable settings. Right click on the project in Solution Explorer and choose Properties. Select the Settings tab and click on the hyperlink if settings doesn't exist.
Use the Settings tab to create application settings. Visual Studio creates the files Settings.settings and Settings.Designer.settings that contain the singleton class Settings inherited from ApplicationSettingsBase. You can access this class from your code to read/write application settings:
Properties.Settings.Default["SomeProperty"] = "Some Value";
Properties.Settings.Default.Save(); // Saves settings in application configuration file
This technique is applicable both for console, Windows Forms, and other project types.
Note that you need to set the scope property of your settings. If you select Application scope then Settings.Default.<your property> will be read-only.
Reference: How To: Write User Settings at Run Time with C# - Microsoft Docs
If you are planning on saving to a file within the same directory as your executable, here's a nice solution that uses the JSON format:
using System;
using System.IO;
using System.Web.Script.Serialization;
namespace MiscConsole
{
class Program
{
static void Main(string[] args)
{
MySettings settings = MySettings.Load();
Console.WriteLine("Current value of 'myInteger': " + settings.myInteger);
Console.WriteLine("Incrementing 'myInteger'...");
settings.myInteger++;
Console.WriteLine("Saving settings...");
settings.Save();
Console.WriteLine("Done.");
Console.ReadKey();
}
class MySettings : AppSettings<MySettings>
{
public string myString = "Hello World";
public int myInteger = 1;
}
}
public class AppSettings<T> where T : new()
{
private const string DEFAULT_FILENAME = "settings.json";
public void Save(string fileName = DEFAULT_FILENAME)
{
File.WriteAllText(fileName, (new JavaScriptSerializer()).Serialize(this));
}
public static void Save(T pSettings, string fileName = DEFAULT_FILENAME)
{
File.WriteAllText(fileName, (new JavaScriptSerializer()).Serialize(pSettings));
}
public static T Load(string fileName = DEFAULT_FILENAME)
{
T t = new T();
if(File.Exists(fileName))
t = (new JavaScriptSerializer()).Deserialize<T>(File.ReadAllText(fileName));
return t;
}
}
}
The registry is a no-go. You're not sure whether the user which uses your application, has sufficient rights to write to the registry.
You can use the app.config file to save application-level settings (that are the same for each user who uses your application).
I would store user-specific settings in an XML file, which would be saved in Isolated Storage or in the SpecialFolder.ApplicationData directory.
Next to that, as from .NET 2.0, it is possible to store values back to the app.config file.
The ApplicationSettings class doesn't support saving settings to the app.config file. That's very much by design; applications that run with a properly secured user account (think Vista UAC) do not have write access to the program's installation folder.
You can fight the system with the ConfigurationManager class. But the trivial workaround is to go into the Settings designer and change the setting's scope to User. If that causes hardships (say, the setting is relevant to every user), you should put your Options feature in a separate program so you can ask for the privilege elevation prompt. Or forego using a setting.
I wanted to share a library I've built for this. It's a tiny library, but a big improvement (IMHO) over .settings files.
The library is called Jot (GitHub). Here is an old The Code Project article I wrote about it.
Here's how you'd use it to keep track of a window's size and location:
public MainWindow()
{
InitializeComponent();
_stateTracker.Configure(this)
.IdentifyAs("MyMainWindow")
.AddProperties(nameof(Height), nameof(Width), nameof(Left), nameof(Top), nameof(WindowState))
.RegisterPersistTrigger(nameof(Closed))
.Apply();
}
The benefit compared to .settings files: There's considerably less code, and it's a lot less error-prone since you only need to mention each property once.
With a settings files you need to mention each property five times: once when you explicitly create the property and an additional four times in the code that copies the values back and forth.
Storage, serialization, etc. are completely configurable. When the target objects are created by an IoC container, you can [hook it up][] so that it applies tracking automatically to all objects it resolves, so that all you need to do to make a property persistent is slap a [Trackable] attribute on it.
It's highly configurable, and you can configure:
- when data is persisted and applied globally or for each tracked object
- how it's serialized
- where it's stored (e.g. file, database, online, isolated storage, registry)
- rules that can cancel applying/persisting data for a property
Trust me, the library is top notch!
The registry/configurationSettings/XML argument still seems very active. I've used them all, as the technology has progressed, but my favourite is based on Threed's system combined with Isolated Storage.
The following sample allows storage of an objects named properties to a file in isolated storage. Such as:
AppSettings.Save(myobject, "Prop1,Prop2", "myFile.jsn");
Properties may be recovered using:
AppSettings.Load(myobject, "myFile.jsn");
It is just a sample, not suggestive of best practices.
internal static class AppSettings
{
internal static void Save(object src, string targ, string fileName)
{
Dictionary<string, object> items = new Dictionary<string, object>();
Type type = src.GetType();
string[] paramList = targ.Split(new char[] { ',' });
foreach (string paramName in paramList)
items.Add(paramName, type.GetProperty(paramName.Trim()).GetValue(src, null));
try
{
// GetUserStoreForApplication doesn't work - can't identify.
// application unless published by ClickOnce or Silverlight
IsolatedStorageFile storage = IsolatedStorageFile.GetUserStoreForAssembly();
using (IsolatedStorageFileStream stream = new IsolatedStorageFileStream(fileName, FileMode.Create, storage))
using (StreamWriter writer = new StreamWriter(stream))
{
writer.Write((new JavaScriptSerializer()).Serialize(items));
}
}
catch (Exception) { } // If fails - just don't use preferences
}
internal static void Load(object tar, string fileName)
{
Dictionary<string, object> items = new Dictionary<string, object>();
Type type = tar.GetType();
try
{
// GetUserStoreForApplication doesn't work - can't identify
// application unless published by ClickOnce or Silverlight
IsolatedStorageFile storage = IsolatedStorageFile.GetUserStoreForAssembly();
using (IsolatedStorageFileStream stream = new IsolatedStorageFileStream(fileName, FileMode.Open, storage))
using (StreamReader reader = new StreamReader(stream))
{
items = (new JavaScriptSerializer()).Deserialize<Dictionary<string, object>>(reader.ReadToEnd());
}
}
catch (Exception) { return; } // If fails - just don't use preferences.
foreach (KeyValuePair<string, object> obj in items)
{
try
{
tar.GetType().GetProperty(obj.Key).SetValue(tar, obj.Value, null);
}
catch (Exception) { }
}
}
}
A simple way is to use a configuration data object, save it as an XML file with the name of the application in the local Folder and on startup read it back.
Here is an example to store the position and size of a form.
The configuration dataobject is strongly typed and easy to use:
[Serializable()]
public class CConfigDO
{
private System.Drawing.Point m_oStartPos;
private System.Drawing.Size m_oStartSize;
public System.Drawing.Point StartPos
{
get { return m_oStartPos; }
set { m_oStartPos = value; }
}
public System.Drawing.Size StartSize
{
get { return m_oStartSize; }
set { m_oStartSize = value; }
}
}
A manager class for saving and loading:
public class CConfigMng
{
private string m_sConfigFileName = System.IO.Path.GetFileNameWithoutExtension(System.Windows.Forms.Application.ExecutablePath) + ".xml";
private CConfigDO m_oConfig = new CConfigDO();
public CConfigDO Config
{
get { return m_oConfig; }
set { m_oConfig = value; }
}
// Load configuration file
public void LoadConfig()
{
if (System.IO.File.Exists(m_sConfigFileName))
{
System.IO.StreamReader srReader = System.IO.File.OpenText(m_sConfigFileName);
Type tType = m_oConfig.GetType();
System.Xml.Serialization.XmlSerializer xsSerializer = new System.Xml.Serialization.XmlSerializer(tType);
object oData = xsSerializer.Deserialize(srReader);
m_oConfig = (CConfigDO)oData;
srReader.Close();
}
}
// Save configuration file
public void SaveConfig()
{
System.IO.StreamWriter swWriter = System.IO.File.CreateText(m_sConfigFileName);
Type tType = m_oConfig.GetType();
if (tType.IsSerializable)
{
System.Xml.Serialization.XmlSerializer xsSerializer = new System.Xml.Serialization.XmlSerializer(tType);
xsSerializer.Serialize(swWriter, m_oConfig);
swWriter.Close();
}
}
}
Now you can create an instance and use in your form's load and close events:
private CConfigMng oConfigMng = new CConfigMng();
private void Form1_Load(object sender, EventArgs e)
{
// Load configuration
oConfigMng.LoadConfig();
if (oConfigMng.Config.StartPos.X != 0 || oConfigMng.Config.StartPos.Y != 0)
{
Location = oConfigMng.Config.StartPos;
Size = oConfigMng.Config.StartSize;
}
}
private void Form1_FormClosed(object sender, FormClosedEventArgs e)
{
// Save configuration
oConfigMng.Config.StartPos = Location;
oConfigMng.Config.StartSize = Size;
oConfigMng.SaveConfig();
}
And the produced XML file is also readable:
<?xml version="1.0" encoding="utf-8"?>
<CConfigDO xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<StartPos>
<X>70</X>
<Y>278</Y>
</StartPos>
<StartSize>
<Width>253</Width>
<Height>229</Height>
</StartSize>
</CConfigDO>
Yes, it is possible to save the configuration - but it pretty much depends on the way you choose to do it. Let me describe the technical differences so you can understand the options you have:
First, you need to distinguish, whether you want to use applicationSettings or AppSettings in your *.exe.config(aka App.config in Visual Studio) file - there are fundamental differences, being described here.
Both provide different ways of saving changes:
The AppSettings allow you to read and write directly into the config file via config.Save(ConfigurationSaveMode.Modified);, where config is defined as: config = ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None);
The applicationSettings allow to read, but if you write changes (via Properties.Settings.Default.Save();) it will be written on a per-user basis, stored in a special place (e.g. C:\Documents and Settings\USERID\Local Settings\Application Data\FIRMNAME\WindowsFormsTestApplicati_Url_tdq2oylz33rzq00sxhvxucu5edw2oghw\1.0.0.0). As Hans Passant mentioned in his answer, this is because a user usually has restricted rights to Program Files and cannot write to it without invoking the UAC prompt. A disadvantage is if you're adding configuration keys in the future you need to synchronize them with every user profile.
But there are a couple of other alternative options:
Since .NET Core (and .NET 5 and 6) a 3rd option is the appsettings.json file which uses Microsoft's configuration abstraction (and also the secrets.json file which is stored in your user profile rather than in the assemblies directories). But usually WinForms isn't using it, so I am mentioning it just for completeness. However, here are some references how to read and write the values. Alternatively you can use Newtonsoft JSON to read and write the appsettings.json file, but it is not limited to that: you can also create your own json files with that method.
As mentioned in the question, there is a 4th option: If you treat the configuration file as XML document, you can load, modify and save it by using the System.Xml.Linq.XDocument class. It is not required to use a custom XML file, you can read the existing config file; for querying elements, you can even use Linq queries. I have given an example here, check out the function GetApplicationSetting there in the answer.
A 5th option is to store settings in the registry. How you can do it is described here.
Last not least, there is a 6th option: You can store values in the environment (system environment or environment of your account). In Windows settings (the cogwheel in the Windows menu), type in "environment" in the search bar and add or edit them there. To read them, use var myValue = Environment.GetEnvironmentVariable("MyVariable");. Note that your application usually needs to be restarted to get the updated environment settings.
If you require encryption to protect your values, check out this answer. It describes how to use Microsoft's DPAPI to store values encrypted.
And if you want to support your own files, whether XML or JSON, it might be useful to know the directory of the assembly running:
var assemblyDLL = System.Reflection.Assembly.GetExecutingAssembly();
var assemblyDirectory = System.IO.Path.GetDirectoryName(assemblyDLL.Location);
You can use assemblyDirectory as base directory to store your files.
I don't like the proposed solution of using web.config or app.config. Try reading your own XML. Have a look at XML Settings Files – No more web.config.
"Does this mean that I should use a custom XML file to save configuration settings?" No, not necessarily. We use SharpConfig for such operations.
For instance, if a configuration file is like that
[General]
# a comment
SomeString = Hello World!
SomeInteger = 10 # an inline comment
We can retrieve values like this
var config = Configuration.LoadFromFile("sample.cfg");
var section = config["General"];
string someString = section["SomeString"].StringValue;
int someInteger = section["SomeInteger"].IntValue;
It is compatible with .NET 2.0 and higher. We can create configuration files on the fly and we can save it later.
Source: http://sharpconfig.net/
GitHub: https://github.com/cemdervis/SharpConfig
Other options, instead of using a custom XML file, we can use a more user friendly file format: JSON or YAML file.
If you use .NET 4.0 dynamic, this library is really easy to use
(serialize, deserialize, nested objects support and ordering output
as you wish + merging multiple settings to one) JsonConfig (usage is equivalent to ApplicationSettingsBase)
For .NET YAML configuration library... I haven't found one that is as
easy to use as JsonConfig
You can store your settings file in multiple special folders (for all users and per user) as listed here Environment.SpecialFolder Enumeration and multiple files (default read only, per role, per user, etc.)
Sample for getting path of special folder: C# getting the path of
%AppData%
If you choose to use multiple settings, you can merge those settings: For example, merging settings for default + BasicUser + AdminUser. You can use your own rules: the last one overrides the value, etc.
As far as I can tell, .NET does support persisting settings using the built-in application settings facility:
The Application Settings feature of Windows Forms makes it easy to create, store, and maintain custom application and user preferences on the client computer. With Windows Forms application settings, you can store not only application data such as database connection strings, but also user-specific data, such as user application preferences. Using Visual Studio or custom managed code, you can create new settings, read them from and write them to disk, bind them to properties on your forms, and validate settings data prior to loading and saving.
- http://msdn.microsoft.com/en-us/library/k4s6c3a0.aspx
Sometimes you want to get rid of those settings kept in the traditional web.config or app.config file. You want more fine grained control over the deployment of your settings entries and separated data design. Or the requirement is to enable adding new entries at runtime.
I can imagine two good options:
The strongly typed version and
The object oriented version.
The advantage of the strongly typed version are the strongly typed settings names and values. There is no risk of intermixing names or data types. The disadvantage is that more settings have to be coded, cannot be added at runtime.
With the object oriented version the advantage is that new settings can be added at runtime. But you do not have strongly typed names and values. Must be careful with string identifiers. Must know data type saved earlier when getting a value.
You can find the code of both fully functional implementations HERE.
public static class SettingsExtensions
{
public static bool TryGetValue<T>(this Settings settings, string key, out T value)
{
if (settings.Properties[key] != null)
{
value = (T) settings[key];
return true;
}
value = default(T);
return false;
}
public static bool ContainsKey(this Settings settings, string key)
{
return settings.Properties[key] != null;
}
public static void SetValue<T>(this Settings settings, string key, T value)
{
if (settings.Properties[key] == null)
{
var p = new SettingsProperty(key)
{
PropertyType = typeof(T),
Provider = settings.Providers["LocalFileSettingsProvider"],
SerializeAs = SettingsSerializeAs.Xml
};
p.Attributes.Add(typeof(UserScopedSettingAttribute), new UserScopedSettingAttribute());
var v = new SettingsPropertyValue(p);
settings.Properties.Add(p);
settings.Reload();
}
settings[key] = value;
settings.Save();
}
}
I am trying to use WebConfigurationManager.AppSettings[string] to read/write values to be stored in a configuration file on the server. I thought that it read/wrote it to the Web.config file, or maybe app.config. However, I ran the following test code - which the first time through (as desired) it throws an exception and but writes 'NOTSet' to that configuration entry - this allows me go easily go edit the file and change it to the correct value.
After running it a 2nd time, I can see the value returned is "NOTSet" - exactly as I would like. The code is working exactly as planned.
Except - Where is it written? I did a 'baregrep NOTSet .' - which recursively searched the ENTIRE project source directory and ONLY found the line in code that set the var - which means it was not written to anything in the entire project tree - not web.config, app.config or any other file.
I sighed, and said it must be in the registry - I searched the whole registry for anything with that value, then tried the key value - nothing.
Yet, running the program IS pulling the value that was set on the last run! Where did my data go? I want to be able to edit the value- and more importantly, have a FILE that I can copy to the production web server with all the GUIDs set correctly.
public enum Guids
{
IncidentSourceEnumPortal,
WorkItemClass,
WorkItemManagementPack
}
public class GuidConsts
{
static readonly Dictionary<Guids, Guid> GuidList = new Dictionary<Guids, Guid>();
public static Guid Guids(Guids guidId)
{
if (!GuidList.ContainsKey(guidId))
{
string id = WebConfigurationManager.AppSettings[guidId.ToString()];
Guid newGuid;
if ( (id == null) || Guid.TryParse(id, out newGuid))
{
WebConfigurationManager.AppSettings[guidId.ToString()] = "NOTSet";
throw new Exception(String.Format("Invalid guid - not found in Config: {0}", guidId));
}
GuidList.Add(guidId, newGuid);
return newGuid;
}
return GuidList[guidId];
}
}
To save the web.config file you need to call Configuration.Save() to persist changes. They are not automatically saved when you change a value:
https://msdn.microsoft.com/en-us/library/ms134088%28v=vs.110%29.aspx
Writing to web.config on the fly is not really advisable anyway, for one thing it will cause the app pool to be restarted potentially resulting in loss of session state across your application and probably other application-wide things you don't want to happen.
What I want to achieve is very simple: I have a Windows Forms (.NET 3.5) application that uses a path for reading information. This path can be modified by the user, by using the options form I provide.
Now, I want to save the path value to a file for later use. This would be one of the many settings saved to this file. This file would sit directly in the application folder.
I understand three options are available:
ConfigurationSettings file (appname.exe.config)
Registry
Custom XML file
I read that the .NET configuration file is not foreseen for saving values back to it. As for the registry, I would like to get as far away from it as possible.
Does this mean that I should use a custom XML file to save configuration settings?
If so, I would like to see code example of that (C#).
I have seen other discussions on this subject, but it is still not clear to me.
If you work with Visual Studio then it is pretty easy to get persistable settings. Right click on the project in Solution Explorer and choose Properties. Select the Settings tab and click on the hyperlink if settings doesn't exist.
Use the Settings tab to create application settings. Visual Studio creates the files Settings.settings and Settings.Designer.settings that contain the singleton class Settings inherited from ApplicationSettingsBase. You can access this class from your code to read/write application settings:
Properties.Settings.Default["SomeProperty"] = "Some Value";
Properties.Settings.Default.Save(); // Saves settings in application configuration file
This technique is applicable both for console, Windows Forms, and other project types.
Note that you need to set the scope property of your settings. If you select Application scope then Settings.Default.<your property> will be read-only.
Reference: How To: Write User Settings at Run Time with C# - Microsoft Docs
If you are planning on saving to a file within the same directory as your executable, here's a nice solution that uses the JSON format:
using System;
using System.IO;
using System.Web.Script.Serialization;
namespace MiscConsole
{
class Program
{
static void Main(string[] args)
{
MySettings settings = MySettings.Load();
Console.WriteLine("Current value of 'myInteger': " + settings.myInteger);
Console.WriteLine("Incrementing 'myInteger'...");
settings.myInteger++;
Console.WriteLine("Saving settings...");
settings.Save();
Console.WriteLine("Done.");
Console.ReadKey();
}
class MySettings : AppSettings<MySettings>
{
public string myString = "Hello World";
public int myInteger = 1;
}
}
public class AppSettings<T> where T : new()
{
private const string DEFAULT_FILENAME = "settings.json";
public void Save(string fileName = DEFAULT_FILENAME)
{
File.WriteAllText(fileName, (new JavaScriptSerializer()).Serialize(this));
}
public static void Save(T pSettings, string fileName = DEFAULT_FILENAME)
{
File.WriteAllText(fileName, (new JavaScriptSerializer()).Serialize(pSettings));
}
public static T Load(string fileName = DEFAULT_FILENAME)
{
T t = new T();
if(File.Exists(fileName))
t = (new JavaScriptSerializer()).Deserialize<T>(File.ReadAllText(fileName));
return t;
}
}
}
The registry is a no-go. You're not sure whether the user which uses your application, has sufficient rights to write to the registry.
You can use the app.config file to save application-level settings (that are the same for each user who uses your application).
I would store user-specific settings in an XML file, which would be saved in Isolated Storage or in the SpecialFolder.ApplicationData directory.
Next to that, as from .NET 2.0, it is possible to store values back to the app.config file.
The ApplicationSettings class doesn't support saving settings to the app.config file. That's very much by design; applications that run with a properly secured user account (think Vista UAC) do not have write access to the program's installation folder.
You can fight the system with the ConfigurationManager class. But the trivial workaround is to go into the Settings designer and change the setting's scope to User. If that causes hardships (say, the setting is relevant to every user), you should put your Options feature in a separate program so you can ask for the privilege elevation prompt. Or forego using a setting.
I wanted to share a library I've built for this. It's a tiny library, but a big improvement (IMHO) over .settings files.
The library is called Jot (GitHub). Here is an old The Code Project article I wrote about it.
Here's how you'd use it to keep track of a window's size and location:
public MainWindow()
{
InitializeComponent();
_stateTracker.Configure(this)
.IdentifyAs("MyMainWindow")
.AddProperties(nameof(Height), nameof(Width), nameof(Left), nameof(Top), nameof(WindowState))
.RegisterPersistTrigger(nameof(Closed))
.Apply();
}
The benefit compared to .settings files: There's considerably less code, and it's a lot less error-prone since you only need to mention each property once.
With a settings files you need to mention each property five times: once when you explicitly create the property and an additional four times in the code that copies the values back and forth.
Storage, serialization, etc. are completely configurable. When the target objects are created by an IoC container, you can [hook it up][] so that it applies tracking automatically to all objects it resolves, so that all you need to do to make a property persistent is slap a [Trackable] attribute on it.
It's highly configurable, and you can configure:
- when data is persisted and applied globally or for each tracked object
- how it's serialized
- where it's stored (e.g. file, database, online, isolated storage, registry)
- rules that can cancel applying/persisting data for a property
Trust me, the library is top notch!
The registry/configurationSettings/XML argument still seems very active. I've used them all, as the technology has progressed, but my favourite is based on Threed's system combined with Isolated Storage.
The following sample allows storage of an objects named properties to a file in isolated storage. Such as:
AppSettings.Save(myobject, "Prop1,Prop2", "myFile.jsn");
Properties may be recovered using:
AppSettings.Load(myobject, "myFile.jsn");
It is just a sample, not suggestive of best practices.
internal static class AppSettings
{
internal static void Save(object src, string targ, string fileName)
{
Dictionary<string, object> items = new Dictionary<string, object>();
Type type = src.GetType();
string[] paramList = targ.Split(new char[] { ',' });
foreach (string paramName in paramList)
items.Add(paramName, type.GetProperty(paramName.Trim()).GetValue(src, null));
try
{
// GetUserStoreForApplication doesn't work - can't identify.
// application unless published by ClickOnce or Silverlight
IsolatedStorageFile storage = IsolatedStorageFile.GetUserStoreForAssembly();
using (IsolatedStorageFileStream stream = new IsolatedStorageFileStream(fileName, FileMode.Create, storage))
using (StreamWriter writer = new StreamWriter(stream))
{
writer.Write((new JavaScriptSerializer()).Serialize(items));
}
}
catch (Exception) { } // If fails - just don't use preferences
}
internal static void Load(object tar, string fileName)
{
Dictionary<string, object> items = new Dictionary<string, object>();
Type type = tar.GetType();
try
{
// GetUserStoreForApplication doesn't work - can't identify
// application unless published by ClickOnce or Silverlight
IsolatedStorageFile storage = IsolatedStorageFile.GetUserStoreForAssembly();
using (IsolatedStorageFileStream stream = new IsolatedStorageFileStream(fileName, FileMode.Open, storage))
using (StreamReader reader = new StreamReader(stream))
{
items = (new JavaScriptSerializer()).Deserialize<Dictionary<string, object>>(reader.ReadToEnd());
}
}
catch (Exception) { return; } // If fails - just don't use preferences.
foreach (KeyValuePair<string, object> obj in items)
{
try
{
tar.GetType().GetProperty(obj.Key).SetValue(tar, obj.Value, null);
}
catch (Exception) { }
}
}
}
A simple way is to use a configuration data object, save it as an XML file with the name of the application in the local Folder and on startup read it back.
Here is an example to store the position and size of a form.
The configuration dataobject is strongly typed and easy to use:
[Serializable()]
public class CConfigDO
{
private System.Drawing.Point m_oStartPos;
private System.Drawing.Size m_oStartSize;
public System.Drawing.Point StartPos
{
get { return m_oStartPos; }
set { m_oStartPos = value; }
}
public System.Drawing.Size StartSize
{
get { return m_oStartSize; }
set { m_oStartSize = value; }
}
}
A manager class for saving and loading:
public class CConfigMng
{
private string m_sConfigFileName = System.IO.Path.GetFileNameWithoutExtension(System.Windows.Forms.Application.ExecutablePath) + ".xml";
private CConfigDO m_oConfig = new CConfigDO();
public CConfigDO Config
{
get { return m_oConfig; }
set { m_oConfig = value; }
}
// Load configuration file
public void LoadConfig()
{
if (System.IO.File.Exists(m_sConfigFileName))
{
System.IO.StreamReader srReader = System.IO.File.OpenText(m_sConfigFileName);
Type tType = m_oConfig.GetType();
System.Xml.Serialization.XmlSerializer xsSerializer = new System.Xml.Serialization.XmlSerializer(tType);
object oData = xsSerializer.Deserialize(srReader);
m_oConfig = (CConfigDO)oData;
srReader.Close();
}
}
// Save configuration file
public void SaveConfig()
{
System.IO.StreamWriter swWriter = System.IO.File.CreateText(m_sConfigFileName);
Type tType = m_oConfig.GetType();
if (tType.IsSerializable)
{
System.Xml.Serialization.XmlSerializer xsSerializer = new System.Xml.Serialization.XmlSerializer(tType);
xsSerializer.Serialize(swWriter, m_oConfig);
swWriter.Close();
}
}
}
Now you can create an instance and use in your form's load and close events:
private CConfigMng oConfigMng = new CConfigMng();
private void Form1_Load(object sender, EventArgs e)
{
// Load configuration
oConfigMng.LoadConfig();
if (oConfigMng.Config.StartPos.X != 0 || oConfigMng.Config.StartPos.Y != 0)
{
Location = oConfigMng.Config.StartPos;
Size = oConfigMng.Config.StartSize;
}
}
private void Form1_FormClosed(object sender, FormClosedEventArgs e)
{
// Save configuration
oConfigMng.Config.StartPos = Location;
oConfigMng.Config.StartSize = Size;
oConfigMng.SaveConfig();
}
And the produced XML file is also readable:
<?xml version="1.0" encoding="utf-8"?>
<CConfigDO xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<StartPos>
<X>70</X>
<Y>278</Y>
</StartPos>
<StartSize>
<Width>253</Width>
<Height>229</Height>
</StartSize>
</CConfigDO>
Yes, it is possible to save the configuration - but it pretty much depends on the way you choose to do it. Let me describe the technical differences so you can understand the options you have:
First, you need to distinguish, whether you want to use applicationSettings or AppSettings in your *.exe.config(aka App.config in Visual Studio) file - there are fundamental differences, being described here.
Both provide different ways of saving changes:
The AppSettings allow you to read and write directly into the config file via config.Save(ConfigurationSaveMode.Modified);, where config is defined as: config = ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None);
The applicationSettings allow to read, but if you write changes (via Properties.Settings.Default.Save();) it will be written on a per-user basis, stored in a special place (e.g. C:\Documents and Settings\USERID\Local Settings\Application Data\FIRMNAME\WindowsFormsTestApplicati_Url_tdq2oylz33rzq00sxhvxucu5edw2oghw\1.0.0.0). As Hans Passant mentioned in his answer, this is because a user usually has restricted rights to Program Files and cannot write to it without invoking the UAC prompt. A disadvantage is if you're adding configuration keys in the future you need to synchronize them with every user profile.
But there are a couple of other alternative options:
Since .NET Core (and .NET 5 and 6) a 3rd option is the appsettings.json file which uses Microsoft's configuration abstraction (and also the secrets.json file which is stored in your user profile rather than in the assemblies directories). But usually WinForms isn't using it, so I am mentioning it just for completeness. However, here are some references how to read and write the values. Alternatively you can use Newtonsoft JSON to read and write the appsettings.json file, but it is not limited to that: you can also create your own json files with that method.
As mentioned in the question, there is a 4th option: If you treat the configuration file as XML document, you can load, modify and save it by using the System.Xml.Linq.XDocument class. It is not required to use a custom XML file, you can read the existing config file; for querying elements, you can even use Linq queries. I have given an example here, check out the function GetApplicationSetting there in the answer.
A 5th option is to store settings in the registry. How you can do it is described here.
Last not least, there is a 6th option: You can store values in the environment (system environment or environment of your account). In Windows settings (the cogwheel in the Windows menu), type in "environment" in the search bar and add or edit them there. To read them, use var myValue = Environment.GetEnvironmentVariable("MyVariable");. Note that your application usually needs to be restarted to get the updated environment settings.
If you require encryption to protect your values, check out this answer. It describes how to use Microsoft's DPAPI to store values encrypted.
And if you want to support your own files, whether XML or JSON, it might be useful to know the directory of the assembly running:
var assemblyDLL = System.Reflection.Assembly.GetExecutingAssembly();
var assemblyDirectory = System.IO.Path.GetDirectoryName(assemblyDLL.Location);
You can use assemblyDirectory as base directory to store your files.
I don't like the proposed solution of using web.config or app.config. Try reading your own XML. Have a look at XML Settings Files – No more web.config.
"Does this mean that I should use a custom XML file to save configuration settings?" No, not necessarily. We use SharpConfig for such operations.
For instance, if a configuration file is like that
[General]
# a comment
SomeString = Hello World!
SomeInteger = 10 # an inline comment
We can retrieve values like this
var config = Configuration.LoadFromFile("sample.cfg");
var section = config["General"];
string someString = section["SomeString"].StringValue;
int someInteger = section["SomeInteger"].IntValue;
It is compatible with .NET 2.0 and higher. We can create configuration files on the fly and we can save it later.
Source: http://sharpconfig.net/
GitHub: https://github.com/cemdervis/SharpConfig
Other options, instead of using a custom XML file, we can use a more user friendly file format: JSON or YAML file.
If you use .NET 4.0 dynamic, this library is really easy to use
(serialize, deserialize, nested objects support and ordering output
as you wish + merging multiple settings to one) JsonConfig (usage is equivalent to ApplicationSettingsBase)
For .NET YAML configuration library... I haven't found one that is as
easy to use as JsonConfig
You can store your settings file in multiple special folders (for all users and per user) as listed here Environment.SpecialFolder Enumeration and multiple files (default read only, per role, per user, etc.)
Sample for getting path of special folder: C# getting the path of
%AppData%
If you choose to use multiple settings, you can merge those settings: For example, merging settings for default + BasicUser + AdminUser. You can use your own rules: the last one overrides the value, etc.
As far as I can tell, .NET does support persisting settings using the built-in application settings facility:
The Application Settings feature of Windows Forms makes it easy to create, store, and maintain custom application and user preferences on the client computer. With Windows Forms application settings, you can store not only application data such as database connection strings, but also user-specific data, such as user application preferences. Using Visual Studio or custom managed code, you can create new settings, read them from and write them to disk, bind them to properties on your forms, and validate settings data prior to loading and saving.
- http://msdn.microsoft.com/en-us/library/k4s6c3a0.aspx
Sometimes you want to get rid of those settings kept in the traditional web.config or app.config file. You want more fine grained control over the deployment of your settings entries and separated data design. Or the requirement is to enable adding new entries at runtime.
I can imagine two good options:
The strongly typed version and
The object oriented version.
The advantage of the strongly typed version are the strongly typed settings names and values. There is no risk of intermixing names or data types. The disadvantage is that more settings have to be coded, cannot be added at runtime.
With the object oriented version the advantage is that new settings can be added at runtime. But you do not have strongly typed names and values. Must be careful with string identifiers. Must know data type saved earlier when getting a value.
You can find the code of both fully functional implementations HERE.
public static class SettingsExtensions
{
public static bool TryGetValue<T>(this Settings settings, string key, out T value)
{
if (settings.Properties[key] != null)
{
value = (T) settings[key];
return true;
}
value = default(T);
return false;
}
public static bool ContainsKey(this Settings settings, string key)
{
return settings.Properties[key] != null;
}
public static void SetValue<T>(this Settings settings, string key, T value)
{
if (settings.Properties[key] == null)
{
var p = new SettingsProperty(key)
{
PropertyType = typeof(T),
Provider = settings.Providers["LocalFileSettingsProvider"],
SerializeAs = SettingsSerializeAs.Xml
};
p.Attributes.Add(typeof(UserScopedSettingAttribute), new UserScopedSettingAttribute());
var v = new SettingsPropertyValue(p);
settings.Properties.Add(p);
settings.Reload();
}
settings[key] = value;
settings.Save();
}
}
I'm having trouble setting application properties at runtime. My application connects to a database and so I have stored the location of the database, which is used to generate the connection string.
The database is stored on a usb stick and so when plugged into different computers it checks to see if the database exists in the saved location, then if it isn't there, it prompts the user to select it in an OpenFileDialog.
I then try to store it as a setting, which gets saved while the application is open, but as soon as the application is closed the setting reverts to it's default value.
Here's how I try to set the dbLocation setting.
DBce_TEST2.Properties.Settings.Default.dbLocation = fileName;
This is how the getter and setter looks. The get part was generated by visual studio, and I added the set part which is where the problem lies (I think).
[global::System.Configuration.UserScopedSettingAttribute()]
[global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
[global::System.Configuration.DefaultSettingValueAttribute("E:\\C# Projects\\DBce_TEST2\\TestDB2.sdf")]
public string dbLocation {
get {
return ((string)(this["dbLocation"]));
}
set
{
this["dbLocation"] = value; //most likely error here
}
}
Setting the property isn't enough. You need to save it, too:
DBce_TEST2.Properties.Settings.Default.dbLocation = fileName;
DBce_TEST2.Properties.Settings.Default.Save();
I store the directory path of a folder in Properties.Settings.Default.Temporary and I allow the user to change this value and other settings using a PropertyGrid.
When the user decides to reset the Settings, I would like to change Properties.Settings.Default.Temporary to the value of System.IO.Path.GetTempPath() by using Properties.Settings.Default.Reset()
I know about System.Configuration.DefaultSettingValueAttribute. Something like this:
[global::System.Configuration.DefaultSettingValueAttribute(System.IO.Path.GetTempPath())]
does not work.
I also read Storing default value in Application settings (C#), which described a related problem, but I wonder if there is a way to solve my problem in the way described above.
The DefaultSettingValueAttribute.Value property is a string, therefore you cannot pass a function call to be called when the value is used. In fact there is no ability to pass code to an attribute: only literals are possible.
Instead in your applications code where you reset the settings, follow this by setting and settings that you want to have values that are not literals at compile time (eg. dependent on the execution environment).
I just had an idea for a workaround myself:
[global::System.Configuration.UserScopedSettingAttribute()]
[global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
[global::System.Configuration.DefaultSettingValueAttribute(null)]
public string TemporaryDirectory
{
get
{
if (this["TemporaryDirectory"] == null)
{
return System.IO.Path.GetTempPath();
}
return ((string)this["TemporaryDirectory"]);
}
set
{
if (System.IO.Directory.Exists(value) == false)
{
throw new System.IO.DirectoryNotFoundException("Directory does not exist.");
}
this["TemporaryDirectory"] = value;
}
}
I don't know, if this has any side effects, but so far it seems to work. I am sorry that I had this idea shortly after posting. I should've thought about the problem a bit longer.