I'd like to know if the next problem can be solved in a different way in NHibernate.
Let's say we've this domain:
public class A
{
public virtual B LastAssociationWithB { get; set; }
public virtual ICollection<B> CollectionAssociationOfB { get; set; }
}
public class B
{
public virtual DateTime DateAdded { get; set; }
}
The LastAssociationWithB property represents one of the B persistent objects associated in the CollectionAssociationOfB collection property.
Actually, LastAssociationWithB represents the last B persistent object added by date.
So, in the domain, when a new B is added to CollectionAssociationOfB, it's also assigned to LastAssociationWithB.
This is a good way of later turning code into less complex LINQ queries.
Anyway, my question is: do you know any other approach to this? For example, some kind of many-to-one association that produces a SQL join under the hoods so you wouldn't need to have an explicit 1:n relation in the A table but it would maintain the class property?
Or is my current approach the recommended way of solving this scenario?
Side note: in the real-world scenario that CollectionAssociationOfB is an ordered list as ordering is specified in the NHibernate mapping configuration.
You could specify the relationship using a formula:
whether this is better or not is debatable.. it depends on your circumstances - one the one hand it ensures consistency, but on the other hand it will probably have a performance penalty when querying - so it really depends on your own specific case.
Another alternative is to use a trigger on insert into B to update the column in A. This has the downside of moving logic into the database, but it would ensure consistency without the potential performance penalty.
You could also achieve the equivalent of a trigger by using an NHibernate event to intercept saving B and then updating A - with the benefit of the logic remaining in your code, but the downside that any direct updates to the database could introduce inconsistency.
Of course both trigger options obfuscate the logic somewhat, as opposed to having a method on A or B that does the logic. I would personally probably put a method in A to add a new B and update the association, but then you would need to ensure that no-one updates the B collection directly and bypasses your method.
Related
It is my first time in DDD. In company we don't have "domain master". I have only read about DDD I need to implement domain with DDD aproach.
So, I know that in domain there are no place for Database features. But if I would use my domain with Entity Framework and NOSQL database. With EF i need to make collections virtual and in constructor alloce as new. This is bad in DDD?
My code:
public abstract class Merchant : AggregateRoot
{
public Company Company { get; set; } // Entity
public string CIF { get; set; }
public string NIP { get; set; }
public string Status { get; set; }
public Address Address { get; set; } // Entity
public Group Group { get; set; } // Entity
public virtual ICollection<Brand> Brands { get; set; } // Brand is entity
protected Merchant()
{
this.Brands = new List<Brand>();
}
}
There are multiple shades of opinion about that issue in the DDD space.
To me, the primary measure of "persistence ignorance" is :
Will a change in my database break things in my domain layer, forcing
me to open up the domain model and modify stuff to fix it ?
If we look at your example, the answer is clearly no.
It would have been the case if you had for example data annotations in your entity class referring to table or column names, or if you relied on mapping by convention and changed the Merchant table name to Reseller in the DB. But having a default constructor and virtual property doesn't make your domain class more fragile in the face of database changes.
Then you have a secondary question, a less critical one IMO :
Is the ORM a hindrance in my implementing domain entities just the way I
want and as DDD-compliant as they need to be ?
This one is a bit more challenged. It might be, if the ORM forces you to add operations that can leave the domain object in an inconsistent state. I wouldn't consider a parameterless constructor as prone to that though, since it can be private and thus impossible to shoot yourself in the foot with. Same with setters.
Some consider that small traces such as the need for virtual and parameterless constructor violate DDD, because your entities are not pure any more, they contain oddities caused by the presence of an ORM. Therefore, you should create a second "persistence" model to leave the domain model untainted. I don't. I think most of the time it's not worth the tradeoff in terms of complexity - you can live with the small quirks as long as the first rule of persistence ignorance holds.
I would be more concerned about having public setters than a protected default constructor or a virtual property. The problem with that is can lead to an inconsistent state of the entity. For example, you may want to validate the address properties to make sure all the required properties are set and the postal code corresponds to the state/country. Another example would be status transitions; once the entity reaches a "final" status, it cannot be changed anymore.
While you can create separate validators for entities and use them before you persist the entities, it defeats the purpose of a rich domain model.
There are a few ways to get around it. You can create DTO objects that mirror the database schema and use hydrators to populate the entities (with protected/internal property setters) from those DTOs assuming the data in the database is always in the consistent state. All the new changes will have to go through entity methods to get validated. Then you would hydrate the DTOs based on the latest entity data and persist it.
CQRS with event sourcing is a more advanced alternative of this that persists all changes as an immutable log/event-store rather than (only) the latest data snapshot. But that is not something that is necessary for every domain scenario.
For a project we are starting to look at persistence features and how we want to implement this. Currently we are looking at keeping Clean Architecture in mind, probably going for Onion Architecture. As such, we want to define a new outer layer which in which the persistence layer resides.
We're looking at various ORM solutions (we seem to be converging to Entity Framework) using SQLite as data store and we are hitting a snag: How should be manage ID's and deal with add/removal in some collection or move some instance between different collections.
In the core of our 'onion', we want to keep our POCO objects. As such, we do not want some kind of 'ID' property to be added in our business objects. Only inside the persistence layer do we want to have classes with object ID's. Because of this separation:
how should removing a business object from some collection cause a row to be deleted from the SQLite database?
More complex (at least I think it is), how should a POCO instance moved from 1 collection to another cause a foreign key of a SQLite databaserow to be changed? (Instead of removing the row and recreating it with the same values)
Looking around the internet I've yet to find an implementation somewhere that demonstrates a persistence layer in a Clean Architecture design. Plenty of high level diagrams and "depend only inward", but no source code examples to give a demonstration.
Some possible solutions that we came up with so far:
Have some lookup between POCO instances and their representative 'database model objects' (which have ID's etc) within the persistence layer. When saving the project state, business model objects will be matched with this database model objects and update the state for the matches accordingly. Then the object is persisted.
When loading a project, the persistence layer returns decorator objects of business objects that add an ID to the business object, which is only visible within the persistence layer by casting the objects to that decorator class. However, this prevents us from defining sealed POCO objects and seems to break the Clean Architecture design philosophy.
Option 1 seems costly in memory due to effectively doubling the business objects in memory. Option 2 seems the most elegant, but as I've written: it feels that it breaks Clean Architecture.
Are there better alternatives to there? Should we just go for Option 2 and take Clean Architecture more as guidelines than rule? Can someone point us to a working example in code (I did find a iOs example at https://github.com/luisobo/clean-architecture, but as I'm not literate in the language it cannot do much with it).
As others have mentioned in the comments, IDs are a natural part of applications and are usually required in other parts than persistence. So trying to avoid IDs at all costs is going to produce awkward designs.
Identity Design
However, identity design (where to use which IDs, what information to put in IDs, user defined vs system generated, etc.) is something that is very important and requires thought.
A good starting point to determine what requires an ID and what not is the Value Object / Entity distinction of domain-driven design.
Value objects are things that consist of other values and don't change - so you don't need an ID.
Entities have a lifecycle and change over time. So their value alone is not enough to identify them - they need an explicit ID.
As you see here, reasoning is very different from the technical point of view that you take in your question. This does not mean you should ignore constraints imposed by frameworks (e.g. entity framework), however.
If you want an in-depth discussion about identity design, I can recommend "Implementing DDD" by Vaughn Vernon (Section "Unique Identity" in Chapter 5 - Entities).
Note: I don't mean to recommend that you use DDD because of this. I just think that DDD has some nice guidelines about ID design. Whether or not to use DDD in this project is an entirely different question.
First of all, everything in the real world have ids. You have your social security number. Cars have their registration number. Items in shops have an EAN code (and a production identity). Without ids nothing in the world would work (a bit exaggerated, but hopefully you get my point).
It's the same with applications.
If your business objects do not have any natural keys (like a social security number) you MUST have a way to identify them. You application will otherwise fail as soon as you copy your object or transfer it over the process boundry. Because then it's a new object. It's like when you cloned the sheep Dolly. Is it the same sheep? No, it's Mini-Dolly.
The other part is that when you build complex structures you are violating the law of Demeter. For instance like:
public class ForumPost
{
public int Id { get; set; }
public string Title { get; set; }
public string Body { get; set; }
public User Creator { get; set; }
}
public class User
{
public string Id { get; set; }
public string FirstName { get; set; }
}
When you use that code and invoke:
post.User.FirstName = "Arnold";
postRepos.Update(post);
what do you expect to happen? Should your forum post repos suddenly be responsible of changes made in the user?
That's why ORMs are so sucky. They violate good architecture.
Back to ids. A good design is instead to use a user id. Because then we do not break law of Demeter and still got a good separation of concern.
public class ForumPost
{
public int Id { get; set; }
public string Title { get; set; }
public string Body { get; set; }
public int CreatorId { get; set; }
}
So the conclusion is:
Do not abandon ids, as it introduces complexity when trying to identify the real object from all the copies of it that you will get.
Using ids when referencing different entities helps you keep a good design with distinct responsibilities.
I have a very specific need for auditing.
Consider the following class (I changed the name of my classes and trimmed unnecessary code for the sake of simplicity)
[Audited]
public class Client
{
[NotAudited]
public virtual IList<Order> Orders {get; set;}
}
The Client entity should only be audited when the Orders property is NOT empty.
Is that at all possible ? If so, how I would I do it ?
If you want to turn off auditing in runtime based on some state, you can make your own custom subclass of AuditEventListenerand pass an instance of that type into IntegrateWithEnvers method.
In your subclass, you can override OnPostDelete, OnPostInsert, OnPostRecreateCollection, OnPostUpdate, OnPreRemoveCollection and OnPreUpdateCollection. In your case, you should probably check evt.Entity and evt.AffectedOwnerOrNull. If you want to audit, simply call base method, if you don't want to audit do nothing in your implementation.
Note however that you should probably just doing this if you just use Envers for simple logging. If you use it to recreate historical instances, "removing" auditing for some historical events may cause problems when loading historical instances. If that's the case for you it's only safe to do this if an entity either has or hasn't got Orders for all its lifetime.
I'm reading through Pro ASP.NET MVC 3 Framework that just came out, and am a bit confused about how to handle the retrieval of aggregate objects from a data store. The book uses Entity framework, but I an considering using a mini-ORM (Dapper or PetaPoco). As an example, the book uses the following objects:
public class Member {
public string name { get; set; }
}
public class Item {
public int id { get; set; }
public List<Bid> bids { get; set; }
}
public class Bid {
public int id { get; set; }
public Member member { get; set; }
public decimal amount { get; set; }
}
As far as I'm into the book, they just mention the concept of aggregates and move on. So I am assuming you would then implement some basic repository methods, such as:
List<Item> GetAllItems()
List<Bid> GetBidsById(int id)
GetMemberById(int id)
Then, if you wanted to show a list of all items, their bids, and the bidding member, you'd have something like
List<Item> items = Repository.GetAllItems();
foreach (Item i in items) {
i.Bids = Repository.GetBidsById(i.id);
}
foreach (Bid b in items.Bids) {
b.Member = Repository.GetMemberById(b.id);
}
If this is correct, isn't this awfully inefficient, since you could potentially issue thousands of queries in a few seconds? In my non-ORM thinking mind, I would have written a query like
SELECT
item.id,
bid.id,
bid.amount,
member.name
FROM
item
INNER JOIN bid
ON item.id = bid.itemId
INNER JOIN member
ON bid.memberId = member.id
and stuck it in a DataTable. I know it's not pretty, but one large query versus a few dozen little ones seems a better alternative.
If this is not correct, then can someone please enlighten me as to the proper way of handling aggregate retrieval?
If you use Entity Framework for you Data Access Layer, read the Item entity and use the .Include() fluent method to bring the Bids and Members along for the ride.
An aggregate is a collection of related data. The aggregate root is the logical entry point of that data. In your example, the aggregate root is an Item with Bid data. You could also look at the Member as an aggregate root with Bid data.
You may use your data access layer to retrieve the object graph of each aggregate and transforming the data for your use in the view. You may even ensure you eager fetch all of the data from the children. It is possible to transform the data using a tool like AutoMapper.
However, I believe that it is better to use your data access layer to project the domain objects into the data structure you need for the view, whether it be ORM or DataSet. Again, to use your example, would you actually retrieve the entire object graph suggested? Do I need all items including their bids and members? Or do I need a list of items, number of bids, plus member name and amount for the current winning bid? When I need more data about a particular item, I can go retrieve that when the request is made.
In short, your intuition was spot-on that it is inefficient to retrieve all that data, when a projection would suffice. I would just urge you to limit the projection even further and retrieve only the data you require for the current view.
This would be handled in different ways depending on your data access strategy. If you were using NHibernate or Entity Framework, you can have the ORM automatically populate these properties for you eagerly, lazy load them, etc. Entity Framework calls them "Navigation Properties", I'm not sure that NHibernate has a specific name for these "child properties" or "child collections".
In old-school ADO.NET, you might do something like create a stored procedure that returns multiple result sets (one for the main object and other result sets for your child collections or related objects), which would let you avoid calling the database multiple times. You could then iterate over the results sets and hydrate your object with all its relationships with one database call, and inside of a single repository method.
Where ever in your system you do the data retrieval, you would program your orm of choice to do an eager fetch of the related objects (aggregates).
Using what kind of data access method depends on your project.
Convenience vs performance.
Using EF or Linq to SQL really boosts the coding speed. When talking about performance, you really should care about every sql statement you deliver to the database.
No ORM can do both.
You can treat the read (query) and the write (command) side of the model separately.
When you want to mutate the state of your Aggregate, you load the Aggregate Root (AR) via a repository, mutate its state using the intention revealing public methods on the AR, then save the AR with the repository back again.
On the read side however, you can be as flexible as you want. I don't know Entity Framework, but with NHibernate you could use the QueryOver API to generate flexible queries to populate DTO's designed to be consumed by the client, whether it be a service or a View. If you want more performance you could go with Dapper. You could even use Stored Procs that projects itself to a DTO, that way you can be as efficient in the DB layer as possible.
Basically, I need to set a property to the results of a query that uses data from the parent object.
With the domain model below, I need to set the C property of EntityB using data from both EntityA and EntityB.
Also, I need to set the A property of EntityB to be the actual instance of EntityA that is its parent.
Query:
Set EntityB.C = (select * from EntityC where SomeProperty = EntityB.SomeProperty and AnotherProperty = EntityB.A.AnotherProperty);
SomeProperty and AnotherProperty are not just keys.
class EntityA
{
public IList<EntityB> B
{
get;
set;
}
}
class EntityB
{
public EntityA A
{
get;
set;
}
public EntityC C
{
get;
set;
}
}
class EntityC
{
...
}
I need a way to execute code (to run the query and assign to property) for each entity returned. I came close using the onload method of an interceptor, but I am looking for another way. Perhaps using a Result Transformer or a Projection?
First of all, if you're using NHibernate properly, the properties and associations should be automatically done for you by the framework. If they're not, then you don't have it set up correctly...
As for doing a query in a property... this is usually not recommended (abstract it into a utility class, or at the very least a function call), but I do remember seeing some way on here how to do it.
There are actually two questions.
Question 1: How to have a property that is loaded by some query?
Ask your self if it really needs to be in the entity. Consider to have a DTO (data transfer object) that holds data from different entities and queries instead.
If you're sure that you need this property in the entity, take a look at formulas for single ended properties and filters for collections.
I can't provide more detailed information, because your question is highly general, and it depends on the actual problem. But you should find a solution by starting with the given links.
Question 2: How can I have a property pointing to the parent?
Very easy: By just implementing the property and map the collection of children (B) "inverse=true". Implement your entities the way that they consistently point to the correct parent.
Why is NH not doing this for you? Because NH's responsibility is only to persist your entities to the database. NH does not make any changes on the data by its own. This is responsibility of your business logic.
Note: your application should also be able to run without NH, eg in a unit test. So relations should be managed in your code.