Int / Int64 .Net Memory Allocations - c#

I have a large application which averages about 30 mb/sec in memory allocations (per performance monitor bytes allocated/sec measurement). I am trying to cut this down substantially, and the source of the allocations is not obvious.
To instrument things I have recorded my ETW traces for the CLR / GC, and have exported the AllocationTick event, which records every time an additional 100 kilobytes is allocated, and what the object type was that was most recently allocated. This produces a nice size sample set. Three object types account for 70% of my allocations, but they are a bit of a mystery.
System.Int64 30%
System.Int32 28%
System.Runtime.CompilerServices.CallSite'1[System.Func'3[System.Runtime.CompilerServices.CallSite,System.Object,System.Object]] 12%
The dataset was ~70 minutes and a million events, so I am quite confident in the numbers.
I am guessing this is somehow indicating that I am creating a lot of pointers on the heap in some unexpected way? (this is an x64 application)
I use some linq and foreach loops, but these should only be creating increment variables on the stack, not the heap.
I am running everything on top of the TPL / Dataflow library as well, which could be generating these.
I am looking for any advice on what may be causing so many heap allocations of int32/64, and perhaps some techniques to isolate these allocations (call stacks would be great, but may be performance prohibitive).

I am guessing this is somehow indicating that I am creating a lot of pointers on the heap in some unexpected way?
It sounds more likely that you're boxing a lot of int and long values to me.
The CallSite part sounds like you're using dynamic a lot (or in one very heavily-used part of the code), which can easily lead to more boxing than statically typed code.
I would try to isolate particular areas of the code which allocate a lot of your objects - if you can exercise just specific code paths, for example, that would give you a much clearer idea of which of those paths generates more garbage than you'd expect. Have a look at anywhere that uses dynamic and see whether you actually need to - although you shouldn't feel you have to remove all uses of dynamic by any means; there may well be one particuar "hot spot" that could be micro-optimized.
The other thing to consider is how much this allocation is actually costing you. You say you're trying to cut down on it substantially - do you really need to? If all of these objects are very short-lived, you may well find that you don't improve performance much by reducing the allocation rate. You should measure time spent in garbage collection to work out how effective this is likely to be.

Related

How to minimize the length of the GC collections?

I need an application that will run smoothly. I have many serial chunks of computations I need to consecutively perform in short periods of time each, so I don't mind the GC doing it's job and I even can take more frequent collections but what I need to minimize the length of each GC collection.
I would like (if possible) to have 1 milli max pause of thread activity due to the GC each time.
what is the best way to acheive this in .NET (I know that .NET it not the technology for such demands but if it will meet my demands when optimized the save of development hours and flexibility for future specs is good incentive to try it out)?
Right from the MSDN page:
https://msdn.microsoft.com/en-us/library/ms973837.aspx
The .NET garbage collector provides a high-speed allocation service
with good use of memory and no long-term fragmentation problems,
however it is possible to do things that will give you much less than
optimal performance. To get the best out of the allocator you should
consider practices such as the following:
Allocate all of the memory (or as much as possible) to be used with a given data structure at the same time. Remove temporary allocations
that can be avoided with little penalty in complexity.
Minimize the number of times object pointers get written, especially those writes made to older objects.
Reduce the density of pointers in your data structures.
Make limited use of finalizers, and then only on "leaf" objects, as much as possible. Break objects if necessary to help with this.
A regular practice of reviewing your key data structures and conducting memory usage profiles with tools like Allocation Profiler
will go a long way to keeping your memory usage effective and having
the garbage collector working its best for you.
As Ron mentioned in his comment. You have to be extra smart with .NET if you want a lot of control over the GC.

In managed code, what should I look after to keep good performance?

I am originally a native C++ programmer, in C++ every process in your program is bound to your code, i.e, nothing happens unless you want it to happen. And every bit of memory is allocated (and deallocated) according to what you wrote. So, performance is all your responsibility, if you do good, you get great performance.
(Note: Please don't complain about the code one haven't written himself such as STL, it's a C++ unmanaged code after all, that is the significant part).
But in managed code, such as code in Java and C#, you don't control every process, and memory is "hidden", or not under your control, to some extent. And that makes performance something relatively unknown, mostly you fear bad performance.
So my question is: What issues and Bold Lines should I look after and keep in mind to achieve a good performance in managed code?
I could think only of some practices such as:
Being aware of boxing and unboxing.
Choosing the correct Collection that best suites your needs and has the lowest operation cost.
But these never seem to be enough and even convincing! In fact perhaps I shouldn't have mentioned them.
Please note I am not asking for a C++ VS C# (or Java) code comparing, I just mentioned C++ to explain the problem.
There is no single answer here. The only way to answer this is: profile. Measure early and often. The bottlenecks are usually not where you expect them. Optimize the things that actually hurt. We use mvc-mini-profiler for this, but any similar tool will work.
You seem to be focusing on GC; now, that can sometimes be an issue, but usually only in specific cases; for the majority of systems the generational GC works great.
Obviously external resources will be slow; caching may be critical: in odd scenarios with very-long-lived data there are tricks you can do with structs to avoid long GEN-2 collects; serialization (files, network, etc), materialization (ORM), or just bad collection/algorithn choice may be the biggest issue - you cannot know until you measure.
Two things though:
make sure you understand what IDisposable and "using" mean
don't concatenate strings in loops; mass concatenation is the job of StringBuilder
Reusing large objects is very important in my experience.
Objects on the large object heap are implicitly generation 2, and thus require a full GC to clean up. And that's expensive.
The main thing to keep in mind with performance with managed languages is that your code can change structure at runtime to be better optimized.
For example the default JVM most people use is Sun's Hotspot VM which will actually optimize your code as it runs by converting parts of the program to native code, in-lining on the fly and other optimizations (such as the CLR or other managed runtimes) which you will never get using C++.
Additionally Hotspot will also detect which parts of you're code are used the most and optimize accordingly.
So as you can see optimising performance on a managed system is slightly harder than on an un-managed system because you have an intermediate layer that can make code faster without your intervention.
I am going to invoke the law of premature optimization here and say that you should first create the correct solution then, if performance becomes an issue, go back and measure what is actually slow before attempting to optimize.
I would suggest understanding better garbage collection algorithms. You can find good books on that matter, e.g. The Garbage Collection Handbook (by Richard Jones, Antony Hosking, Eliot Moss).
Then, your question is practically related to particular implementation, and perhaps even to a specific version of it. For instance, Mono used (e.g. in version 2.4) to use Boehm's garbage collector, but now uses a copying generational one.
And don't forget that some GC techniques can be remarkably efficient. Remember A.Appel's old paper Garbage Collection can be faster than stack allocation (but today, the cache performance matters much much more, so details are different).
I think that being aware of boxing (& unboxing) and allocation is enough. Some compilers are able to optimize these (by avoiding some of them).
Don't forget that GC performance can vary widely. There are good GCs (for your application) and bad ones.
And some GC implementations are quite fast. For example the one inside Ocaml
I would not bother that much: premature optimization is evil.
(and C++ memory management, even with smart pointers, or with ref-counters, can often be viewed as a poor man's garbage collection technique; and you don't have full control on what C++ is doing -unless you re-implement your ::operator new using operating system specific system calls-, so you don't really know a priori its performance)
.NET Generics don't specialize on reference types, which severely limits how much inlining can be done. It may (in certain performance hotspots) make sense to forgo a generic container type in favor of a specific implementation that will be better optimized. (Note: this doesn't mean to use .NET 1.x containers with element type object).
you must :
using large objects is very important in my experience.
Objects on the large object heap are implicitly generation 2, and thus require a full GC to clean up. And that's expensive.

.net collections memory optimization - will this method work?

Just like almost any other big .NET application, my current C# project contains many .net collections .
Sometimes I don't know, from the beginning, what the size of a Collection (List/ObservableCollection/Dictionary/etc.) is going to be.
But there are many times when I do know what it is going to be.
I often get an OutOfMemoryException and I've been told it can happen not only because process size limits, but also because of fragmentation.
So my question is this - will setting collection's size (using the capacity argument in the constructor) every time I know its expected size help me prevent at least some of the fragmentation problems ?
This quote is from the msdn :
If the size of the collection can be
estimated, specifying the initial
capacity eliminates the need to
perform a number of resizing
operations while adding elements to
the List.
But still, I don't want to start changing big parts of my code for something that might not be the real problem.
Has it ever helped any of you to solve out of memory problems ?
Specifying an initial size will rarely if ever get rid of an OutOfMemory issue - unless your collection size is millions of object in which case you should really not keep such a collection.
Resizing a collection involves defining a completely new array with a new additional size and then copying the memory. If you are already close to out of memory, yes, this can cause an out of memory since the new array cannot be allocated.
However, 99 out of 100, you have a memory leak in your app and collection resizing issues is only a symptom of it.
If you are hitting OOM, then you may be being overly aggressive with the data, but to answer the question:
Yes, this may help some - as if it has to keep growing the collections by doubling, it could end up allocating and copying twice as much memory for the underlying array (or more precicely, for the earlier smaller copies that are discarded). Most of these intermediate arrays will be collected promptly, but when they get big you are using the "large object heap", which is harder to compact.
Starting with the correct size prevents all the intermediate copies of the array.
However, it also depends what is in the array matters. Typically, for classes, there is more data in each object (plus overheads for references etc) - meaning the list is not necessarily the biggest culprit for memory use; you might be burning up most of the memory on objects.
Note that x64 will allow more overall space, but arrays are limited to 2GB - and if each reference doubles in size this halves the maximum effective length of the array.
Personally I would look at breaking the huge sets into smaller chains of lists; jagged lists, for example.
.NET has a compating garbage collector, so you probably won't run into fragmentation problems on the normal .NET heap. You can however get memory fragmentation if you're using lots of unmanaged memory (e.g. through GDI+, COM, etc.). Also, the large object heap isn't compacted, so that can get fragmented, too. IIRC an object is put into the LOH if it's bigger than 80kb. So if you have many collections that contain more than 20k objects, you might get fragmentation problems.
But instead of guessing where the problem might be, it might be better to narrow the problem down some more: When do you get the OutOfMemoryExceptions? How much memory is the application using at that time? Using a tool like WinDbg or memory profilers you should be able to find out how much of that memory is on the LOH.
That said, it's always a good idea to set the capacity of List and other data structures in advance if you know it. Otherwise, the List will double it's capacity everytime you add an item and hit the capacity limit which means lots of unnecessary allocation and copy operations.
In order to solve this, you have to understand the basics and pinpoint the problem in your code.
It is always a good idea to set the initial capacity, if you have a sensible estimate. If you only have an approximate guess, allocate more.
Fragmentation can only occur on the LOH (objects over 80 kB). To prevent it , try to allocate blocks of the same size. Paradoxically, the solution might be to sometimes allocate more memory than you actually need.
The answer is that, yes pre-defining a size on collections will increase performance and memory optimization and reduce fragmentation. See my answer here to see why - If I set the initial size of a .NET collection and then add some items OVER this initial size, how does the collection determine the next resize?
However, without analyzing a memory dump or memory profiling on the app, it's impossible to say exactly what the cause of the OOM is. Thus, impossible to conjecture if this optimization will solve the problem.

Quantifying the Performance of Garbage Collection vs. Explicit Memory Management

I found this article here:
Quantifying the Performance of Garbage Collection vs. Explicit Memory Management
http://www.cs.umass.edu/~emery/pubs/gcvsmalloc.pdf
In the conclusion section, it reads:
Comparing runtime, space consumption,
and virtual memory footprints over a
range of benchmarks, we show that the
runtime performance of the
best-performing garbage collector is
competitive with explicit memory
management when given enough memory.
In particular, when garbage collection
has five times as much memory as
required, its runtime performance
matches or slightly exceeds that of
explicit memory management. However,
garbage collection’s performance
degrades substantially when it must
use smaller heaps. With three times as
much memory, it runs 17% slower on
average, and with twice as much
memory, it runs 70% slower. Garbage
collection also is more susceptible to
paging when physical memory is scarce.
In such conditions, all of the garbage
collectors we examine here suffer
order-of-magnitude performance
penalties relative to explicit memory
management.
So, if my understanding is correct: if I have an app written in native C++ requiring 100 MB of memory, to achieve the same performance with a "managed" (i.e. garbage collector based) language (e.g. Java, C#), the app should require 5*100 MB = 500 MB?
(And with 2*100 MB = 200 MB, the managed app would run 70% slower than the native app?)
Do you know if current (i.e. latest Java VM's and .NET 4.0's) garbage collectors suffer the same problems described in the aforementioned article? Has the performance of modern garbage collectors improved?
Thanks.
if I have an app written in native C++
requiring 100 MB of memory, to achieve
the same performance with a "managed"
(i.e. garbage collector based)
language (e.g. Java, C#), the app
should require 5*100 MB = 500 MB? (And
with 2*100 MB = 200 MB, the managed
app would run 70% slower than the
native app?)
Only if the app is bottlenecked on allocating and deallocating memory. Note that the paper talks exclusively about the performance of the garbage collector itself.
You seem to be asking two things:
have GC's improved since that research was performed, and
can I use the conclusions of the paper as a formula to predict required memory.
The answer to the first is that there have been no major breakthroughs in GC algorithms that would invalidate the general conclusions:
GC'ed memory management still requires significantly more virtual memory.
If you try to constrain the heap size the GC performance drops significantly.
If real memory is restricted, the GC'ed memory management approach results in substantially worse performance due to paging overheads.
However, the conclusions cannot really be used as a formula:
The original study was done with JikesRVM rather than a Sun JVM.
The Sun JVM's garbage collectors have improved in the ~5 years since the study.
The study does not seem to take into account that Java data structures take more space than equivalent C++ data structures for reasons that are not GC related.
On the last point, I have seen a presentation by someone that talks about Java memory overheads. For instance, it found that the minimum representation size of a Java String is something like 48 bytes. (A String consists of two primitive objects; one an Object with 4 word-sized fields and the other an array with a minimum of 1 word of content. Each primitive object also has 3 or 4 words of overhead.) Java collection data structures similarly use far more memory than people realize.
These overheads are not GC-related per se. Rather they are direct and indirect consequences of design decisions in the Java language, JVM and class libraries. For example:
Each Java primitive object header1 reserves one word for the object's "identity hashcode" value, and one or more words for representing the object lock.
The representation of a String has to use a separate "array of characters" because of JVM limitations. Two of the three other fields are an attempt to make the substring operation less memory intensive.
The Java collection types use a lot of memory because collection elements cannot be directly chained. So for example, the overheads of a (hypothetical) singly linked list collection class in Java would be 6 words per list element. By contrast an optimal C/C++ linked list (i.e. with each element having a "next" pointer) has an overhead of one word per list element.
1 - In fact, the overheads are less than this on average. The JVM only "inflates" a lock following use & contention, and similar tricks are used for the identity hashcode. The fixed overhead is only a few bits. However, these bits add up to a measurably larger object header ... which is the real point here.
Michael Borgwardt is kind of right about if the application is bottlenecked on allocating memory. This is according to Amdahl's law.
However, I have used C++, Java, and VB .NET. In C++ there are powerful techniques available that allocate memory on the stack instead of the heap. Stack allocation is easily a hundreds of times faster than heap allocation. I would say that use of these techniques could remove maybe one allocation in eight, and use of writable strings one allocation in four.
It's no joke when people claim highly optimized C++ code can trounce the best possible Java code. It's the flat out truth.
Microsoft claims the overhead in using any of the .NET family of languages over C++ is about two to one. I believe that number is just about right for most things.
HOWEVER, managed environments carry a particular benefit in that when dealing with inferior programmers you don't have to worry about one module trashing another module's memory and the resulting crash being blamed on the wrong developer and the bug difficult to find.
At least as I read it, your real question is whether there have been significant developments in garbage collection or manual memory management since that paper was published that would invalidate its results. The answer to that is somewhat mixed. On one hand, the vendors who provide garbage collectors do tune them so their performance tends to improve over time. On the other hand, there hasn't been anything like a major breakthroughs such as major new garbage collection algorithms.
Manual heap managers generally improve over time as well. I doubt most are tuned with quite the regularity of garbage collectors, but in the course of 5 years, probably most have had at least a bit of work done.
In short, both have undoubtedly improved at least a little, but in neither case have there been major new algorithms that change the fundamental landscape. It's doubtful that current implementations will give a difference of exactly 17% as quoted in the article, but there's a pretty good chance that if you repeated the tests today, you'd still get a difference somewhere around 15-20% or so. The differences between then and now are probably smaller than the differences between some of the different algorithms they tested at that time.
I am not sure how relivent your question still is today. A performance critical application shouldn't spend a sigificant portion of its time doing object creation (as the micro-benchmark is very likely to do) and the performance on modern systems is more likely to be determined by how well the application fits into the CPUs cache, rather than how much main memory it uses.
BTW: There are lots of ticks you can do in C++ which support this which are not available in Java.
If you are worried about the cost of GC or object creation, you can take steps to minimise how many objects you create. This is generally a good idea where performance is critical in any language.
The cost of main memory isn't as much of an issue as it used to me. A machine with 48 GB is relatively cheap these days. An 8 core server with 48 GB of main memory can be leased for £9/day. Try hiring a developer for £9/d. ;) However, what is still relatively expensive is CPU cache memory. It is fairly hard to find a system with more than 16 MB of CPU cache. c.f. 48,000 MB of main memory. A system performs much better when an application is using its CPU cache and this is the amount of memory to consider if performance is critical.
First note that its now 2019 and a lot of things has improved.
As long as you dont trigger GC, allocation would be like as simple as incrementing a pointer. In C++ its much more if you dont implement your own mechanism to allocate in chunks.
And if you use smart shared pointers each change to refercence count will required locked increment (xaddl instruction) is slow itself and requires processors communicate to invalidate and resynch their cacheline.
What is more, with GC you get more locality with at least three ways. First when it allocates a new segment, it zero's memory and warms cachelines. Second it compacts heap and cause data to stay closer togeter and lastly all threads use its own heap.
In conclusion, although its hard to test and compare with every scenario and GC implementation ive read somewhere on SO that its proven GC performs better than manual memory management.

Reasons for seeing high "% Time in GC" in Perf Mon

While monitoring our application in Perf Mon I noticed that the % of Time In GC is anywhere from 20 - 60% while our application is performing a long running process (varies between 30 seconds to 1.5 minutes). This seems a bit excessive to me. This raises two important questions.
Am I correct that this excessive?
How can I figure out why route causes GC spikes?
Yes, this does sound excessive. Reducing the amount of GC would probably be the single best step you could take to reducing the runtime of your application (if that is your goal).
A high "% time in GC" is typically caused by allocating and then throwing away thousands or millions of objects. A good way to find out what's going on is to use a memory profiler tool.
Microsoft provides the free CLR Profiler. This will show you every allocation, but will make your app run 10-60 times slower. You may need to run it on less input data so that it can finish analyzing in a reasonable amount of time.
A great commercial tool is SciTech's .NET Memory Profiler. This imposes much less runtime overhead, and there is a free trial available. By taking multiple snapshots while your process is running, you can find out what type of objects are being frequently allocated (and then destroyed).
Once you've identified the source of the allocations, you then need to examine the code and figure out how those allocations can be reduced. While there are no one-size-fits-all answers, some things I've encountered in the past include:
String.Split can create hundreds of small short-lived strings. If you're doing a lot of string manipulation, it can help to process the string by walking it character-by-character.
Creating arrays or lists of thousands of small classes (say, under 24 bytes in size) can be expensive; if those classes can be treated as value types, it can (sometimes) greatly improve things to change them to structs.
Creating thousands of small arrays can increase memory usage a lot (because each array has a small amount of overhead); sometimes these can be replaced with one large array and indexes into a sub-section of it.
Having a lot of finalizable objects (particularly if they're not being disposed) can put a lot of pressure on the garbage collector; ensure that you're correctly disposing all IDisposable objects, and note that your own types should (almost) never have finalizers.
Microsoft has an article with Garbage Collection Guidelines for improving performance.
Am I correct that this excessive?
Yes, you are correct
How can I figure out why route causes GC spikes?
1.- Do take a look at PerfView
PerfView is a performance-analysis tool that helps isolate CPU- and
memory-related performance issues.
See Also: Improving Managed Code Performance
2.- See if GC.Collect or GC.WaitForPendingFinalizers is being called anywhere in your code or third party library. The latter can cause high CPU utilization.
Another reason could be lots of gen-1 or gen-2 collections, each of which takes MUCH more time and is caused by hanging on to objects a longer time.
I've seen this happen in web apps when buggy objects hang onto actual page objects - forcing the page to live as long as the other objects referring to them.
Breaking the link between objects and pages (in this case) caused GC to drop to very low values. Our site now has 100+ hits/second and GC time is typically 1% or less.

Categories

Resources