Implementing a custom clone/copy capability: abstract or interface? - c#

As I've learned that it is not advised to implement ICloneable (due to the fact that it does not differentiate between Deep Copy or Shallow Copy), I'm trying to determine whether I should implement it as an abstract or an interface.
I feel that my implementation would stay largely the same, e.g. a binary deep copy and a MemberwiseClone shallow copy, so to that end I felt that an abstract method would be ideal. However, my understanding is also that C# does not do Multiple Inheritance, thus if I ever need to use another abstract class, then I no longer can.
In that case, I feel that implementing a custom ICloneable (e.g. ICustomCloneable) would be the better option, but if the implementation is effectively the same across many classes, I feel like I'm not adequately taking advantage of code reuse.
That being said, is it valid to use an interface to keep the abstract inheritance clear for more important things in my cloneable classes? Or is there another way to do this?
Alternatively, is it valid (read: not smelly) for an abstract to implement another abstract? This would be my guess as to getting around the single-inheritance that prevents me from implementing the CloneCapable class as well as another abstract, but it sounds like it might be questionable. e.g.:
public abstract class CloneCapable
{
public object ShallowCopy()
{
// implementation
}
public object DeepCopy()
{
// implementation
}
}
public abstract class ClassA : CloneCapable {}
// abstract-abstract since I can't do ClassB : ClassA, CloneCapable
public abstract class ClassB : ClassA {}

I would definitely make this an interface. The reason being is that, interfaces are supposed to be very general, and that's why we can implement multiple interfaces. If there is some boiler-plate code you want to write, there's nothing stopping you taking advantage of both interfaces and abstract classes.
public interface ICustomCloneable<T>
{
T ShallowCopy();
T DeepCopy();
}
public abstract class CustomCloneable<T> ICustomCloneable<T> where T : class
{
public T ShallowCopy() { return ShallowCopy(this); }
public T DeepCopy() { return DeepCopy(this); }
// static helpers
public static object ShallowCopy(T obj) { /* boilerplate implementation */ }
public static object DeepCopy(T obj) { /* boilerplate implementation */ }
}
public class ClassA : CustomCloneable<ClassA> { /* Use boilerplate functionality */ }
public class ClassB : SomeOtherClass, ICustomCloneable<ClassB>
{
// implement ICustomCloneable using static helpers
public ClassB ShallowCopy() { return CustomCloneable<ClassB>.ShallowCopy(this); }
public ClassB DeepCopy() { return CustomCloneable<ClassB>.DeepCopy(this); }
}
I've used generics here, but there's no reason you need to... It might even be desirable not to. This approach allows you to write boilerplate code, but not be tied down by it:
public class ClassC : ICustomCloneable<ClassC>
{
public ClassC ShallowCopy() { /* Do special cloning for ClassC */ }
public ClassC DeepCopy() { /* Do special cloning for ClassC */ }
}

I was thinking that creating an interface was the way to go, but then I found this question and the first answer. That is a fine way to do the cloning, but I thought that that might go very well with a Custom Extension Method so I wrote the fallowing code, based on the code in the first post and on the MS help page:
Some classes to play with:
[Serializable]
public abstract class Base
{
public abstract int m1();
}
[Serializable]
public class derived : Base
{
public int a = 42;
public override int m1()
{
throw new NotImplementedException();
}
}
A class with an extension method based on code samples from both linkes
//Extension methods must be defined in a static class
public static class StringExtension
{
// This is the extension method.
// The first parameter takes the "this" modifier
// and specifies the type for which the method is defined.
public static T MyCloneExtension<T>(this T t)
{
// Code in this function was copied from https://stackoverflow.com/questions/78536/deep-cloning-objects-in-c-sharp
if (!typeof(T).IsSerializable)
{
throw new ArgumentException("The type must be serializable.", "source");
}
// Don't serialize a null object, simply return the default for that object
if (Object.ReferenceEquals(t, null))
{
return default(T);
}
IFormatter formatter = new BinaryFormatter();
Stream stream = new MemoryStream();
using (stream)
{
formatter.Serialize(stream, t);
stream.Seek(0, SeekOrigin.Begin);
return (T)formatter.Deserialize(stream);
}
}
}
and finally a call to clone an object
derived d = new derived();
derived d2 = d.MyCloneExtension<derived>();

Related

How to require an implementation of an abstract class in C#?

I want to build a class that would have a property, in which there is an instance of a class, which implements an abstract class. Here's and example.
public class MyClass {
public MyDerivedClassA derived;
public void mainClassUtility () {
derived.foo();
}
}
public abstract class MyAbstractBaseClass {
public abstract void foo();
}
public class MyDerivedClassA : MyAbstractBaseClass {
public override void foo(){
return;
}
}
public class MyDerivedClassB : MyAbstractBaseClass
{
public override void foo()
{
return;
}
}
Basically, I want to make sure the object I'm using is derived from an abstract class and implements all the methods I will need to use. There will be many implementations of the abstract class and depending on the current state of the program, MyClass might be using different implementations of the ABC. I want to write the program in a way, that no matter what implementation of the ABC is currently being used, there is a way to call it's methods by MyClass. What would be the best solution to this problem?
Unless I'm misunderstanding the question, you're pretty much there. Have MyClass expect a property of the abstract base class and you should be all set.
using System;
public class Program
{
public static void Main()
{
var myClassOne = new MyClass(new MyDerivedClassA());
var myClassTwo = new MyClass(new MyDerivedClassB());
myClassOne.mainClassUtility();
myClassTwo.mainClassUtility();
}
public class MyClass
{
public MyAbstractBaseClass Derived;
public MyClass(MyAbstractBaseClass derived)
{
Derived = derived;
}
public void mainClassUtility ()
{
Derived.foo();
}
}
public abstract class MyAbstractBaseClass
{
public abstract void foo();
}
public class MyDerivedClassA : MyAbstractBaseClass
{
public override void foo()
{
Console.WriteLine("I am MyDerivedClassA");
return;
}
}
public class MyDerivedClassB : MyAbstractBaseClass
{
public override void foo()
{
Console.WriteLine("I am MyDerivedClassB");
return;
}
}
}
How to require an implementation of an abstract class in C#?
You can not instantiate a abstract class - and thus can not use it for most cases. Except as variable/argument/generic type argument. You need to make a concrete (non-abstract) class that inherits from it. You can only use the abstract class as a variable/argument type. To guarantee that only stuff that inherits from it can be used there.
Basically, I want to make sure the object I'm using is derived from an abstract class and implements all the methods I will need to use.
Then use the abstract class as type argument. It means only instaces of the abstract class (of wich there can be no instance) or instances of classes that inherit from it (that somebody else writes) can be used at that place.
Note that Abstract classes and Interfaces overlap in nearly all uses. There is a miriad small differences, but I do not think they mater. The only big difference I can see, is one of exclusivity:
a class can implement as many Interfaces as it wants.
You can only inherit from one abstract class. that means it is for a primary, exclusive purpose. That way you prevent some dumb ideas, like someone trying to make a Windows Form that is also a DBConnection.

Implement copy/deepcopy on multiple base classes

not sure if this maybe is a codeReview post but here we go:
My goal is to re-implement the way objects are copied within our application. We have multiple base classes:
CoreList<T> // for all list classes
BasicReference // for all reference classes
CoreObject // for all "normal" domain objects
All classes inherit from these base classes. Right now the copy method is implemented on the CoreObject class and will go through the object tree via reflection, looking at each property type and select the correct way to copy the type and finally returning always CoreObject.
There are some problems which I don't like about that approach, which is why I would like to change it:
After copying an domain object you always have to cast it "back" to the original type, for example: Animal = animal.Copy() as Animal;
All logic to copy each type is within the CoreObject class even though it should not know about other base classes.
So my first attempt was to introduce a interface:
public interface IObjectCopy<out T>
{
T Copy();
}
Which then should be implemented on all base classes. Then every class is responsible for the way it is copied. For example (pseudo code):
public class CoreObject : IObjectCopy<CoreObject>
{
public virtual GerCoreObject Copy()
{
foreach (var prop in properties)
{
if (prop.IsNoSimpleType)
{
(prop as IObjectCopy).Copy()
}
}
}
That solves the copy-responsibility problem, in addition inherited classes can take care of the copy logic themselves.
Unfortunately that does not solve the return type, I still have to cast it to the correct type. I did not think of a better solution to solve this. Any ideas?
This problem could be solved in OO using covariant return types. Unfortunately C# does not support covariant return types like Java and C++, requiring it to always break type safety.
Without breaking type safety (casting) in C# this is unfortunately not possible.
Here are two possible options:
//explicit interface implementation
public class Animal : CoreObject, IObjectCopy<Animal>
{
Animal IObjectCopy<Animal>.Copy()
{
return (Animal) base.Copy();
}
}
//does not require an explicit cast
IObjectCopy<Animal> animalCopy = myAnimal;
Animal copiedAnimal = animalCopy.Copy();
//second option: shadow the original method and cast inside the object
public class Animal : CoreObject, IObjectCopy<Animal>
{
public new Animal Copy()
{
return (Animal) base.Copy();
}
}
Animal copy = myAnimal.Copy();
Another option using bounded quantification:
public class CoreObject : IObjectCopy<CoreObject>
{
public CoreObject Copy()
{
return Copy<CoreObject>();
}
protected T Copy<T>()
where T : CoreObject, new()
{
T t = new T();
//implement copy logic:
return t;
}
}
public class Animal : CoreObject, IObjectCopy<Animal>
{
public new Animal Copy()
{
return Copy<Animal>();
}
}
If I understood it correctly, you need Curiously recurring template pattern
public class BaseClass<T> where T : BaseClass<T>
{
public virtual T Clone()
{
// Perform cloning with reflection.
return clone as T;
}
}
Then you just define your class as:
public class EndObject : BaseClass<EndObject>
{
}
EndObject e;
e.Clone() // Will return EndObject type

Overriding (shadowing, overloading?) methods with different return types in a C# hierarchy

I'm writing an SDK which has an OOP structure for implementing data types;
first an interface
then an abstract implementation
finally an abstract generic implementation
People can choose to implement either the interface, or derive from either of the classes.
public interface IGoo
{
IGoo Duplicate();
...
}
public abstract class Goo : IGoo
{
IGoo IGoo.Duplicate() {
return Duplicate();
}
abstract public Goo Duplicate();
...
}
public abstract class Goo<T> : Goo
{
abstract public Goo<T> Duplicate(); ??????
...
}
I'd like to re-implement the Duplicate method so that it always returns the most specific type possible. I.e. when you call Duplicate on an IGoo instance, you get another IGoo. If you call it on Goo, you get Goo, if you call it on -say- Goo<int>, you get Goo<int>. And all Duplicate() methods always call the most specific implementation.
Is this possible? Is it only possible when you can implement an interface explicitly? In which case, should I not make Goo<int> derive from Goo, but have it implement IGoo instead and type all the low-level functionality twice?
What about the following?
public interface IObj
{
IObj Duplicate();
}
public abstract class Obj : IObj
{
public Obj()
{
}
public virtual IObj Duplicate()
{
return this;
}
}
public abstract class ObjT<T> : Obj
{
public ObjT()
{
}
public override IObj Duplicate()
{
return this;
}
}
public class ObjImpl : Obj
{
}
public class ObjTImpl : ObjT<int>
{
}
I understand that you want it to return the most specific type possible in any inheriting class but it actually is. It's boxing the inheriting type into the interface (or a raw object if you where to return objects instead of interface types. If you run the following test in a console app you will see the proper type is represented:
namespace TestConsole
{
class Program
{
static void Main(string[] args)
{
ObjImpl a = new ObjImpl();
ObjTImpl b = new ObjTImpl();
Console.WriteLine(a.Duplicate().GetType());
Console.WriteLine(b.Duplicate().GetType());
Console.ReadLine();
}
}
}
// outputs:
// ObjImpl
// ObjTImpl
The idea of redefining abstracts of abstracts goes against the purpose of abstract polymorphism. If the derived types do not intend to implement the inherited abstract member, they should not be inheriting it.
Although the example I gave above would require casting to access any child class-specific members, it would be the proper way to do it in this approach. The runtime needs to know what types it should expect to deal with.
There is always dynamics you could play around with but to be honest I haven't played around with dynamics with generics and inheritance as I suspect I would make my compiler cry, and when it cries, I cry, a little bit deep down inside... lol
It is only possible when you implement the interface explicitly. That's because the return type of a method is not part of its signature - which the compiler checks when overloading. Therefore, otherwise identical methods which only differ in their return type are syntactically not possible.

How to require subtypes of an abstract class to implement a static instantiator?

public abstract class A
{
// constructors omitted
public abstract A Create(SomeData data);
}
public class B : A
{
// constructors omitted
public override A Create(SomeData data)
{
return new B(data);
}
}
What I want is to be able to make the Create method static, so that I can get an instance of B without having to create a useless instance with an empty constructor. (If you're wondering why, A is actually a generic type of the form A<TFoo, TBar>, where TBar corresponds to the derived types. As we all know, you can't instantiate a generic type using a constructor that takes any arguments.)
I am already aware that static methods are decoupled from the object hierarchy, only relying on the name of the type. That means I can't have Create as an abstract method that I force all descendants to implement. Is there another way I can implement this pattern?
Something like this might work, depends on your requirements
public abstract class A
{
public string Data { get; set; }
public static T Create<T>(string data) where T : A, new()
{
return new T() { Data = data };
}
}
public class B : A { }
then can do
A foo = A.Create<B>("foo");
There is simply no way to do this. Inheritance is based off of instance methods in C# and has no equivalent feature for static methods. Another way to implement this pattern though is to require a lambda in lieu of a static method.
For example (you mentioned the actual type was A<TFoo, TBar>)
void UseIt<TFoo, TBar>(A<TFoo, TBar> p, Func<SomeData, TBar> func) {
TBar b = func();
...
}
The consumer doesn't care if Create is static, instance or even called create. Generally all they care about is having a function which takes a SomeData and returns a TBar. Delegates fit this pattern exactly.

How do I create a method or property in C# that is public, yet not inheritable?

Here is an example. I have two classes, one inherited, and both have a function with the same name, but different arguments:
public class MyClass
{
//public class members
public MyClass()
{
//constructor code
}
public void Copy(MyClass classToCopy)
{
//copy code
}
}
public class InheritedClass : MyClass
{
//public class members
public InheritedClass():base()
{
//constructor code
}
public void Copy(InheritedClass inheritedClassToCopy)
{
//copy code
}
}
My question is how do I make the base class' copy method (MyClass.Copy) non-inheritable or non-visible in InheritedClass? I don't want to be able to do this:
MyClass a;
InheritedClass b;
b.Copy(a);
Does this make sense, or should I keep this functionality in there? Can what I'm asking even be done?
Does this make sense, or should I keep this functionality in there? Can what I'm asking even be done?
Trying to hide a public method like this when used by a base class is problematic. You're purposely trying to violate the Liskov substitution principle.
You can't do what you are wanting to do here; C# does not allow negative variance in inherited members. (almost no languages truly do, actually)
It may be that you don't want an inherited class here at all, though; what you may really want is an interface. Or... your two classes here may not have the correct relationship; perhaps they should both instead be common siblings of a third class, which is their parent.
You can use explicit interface implementation to hide this method from the inheritor. But you will need to add an interface of course and you will need to cast your type to the interface to call your method:
public interface MyInterface
{
void Copy(MyClass classToCopy)
}
public class MyClass : MyInterface
{
void MyInterface.Copy(MyClass classToCopy)
{
//copy code
}
}
This is not possible. An inherited class inherits all public and protected members, methods and properties. Using the sealed modifier with make it non-overridable, but still accessible to your inherited class.
What everyone else said, but if I am inferring your goal correctly, it is to make sure that InheritedClass users never use the MyClass method. In that case, exclude it from MyClass and make two classes that inherit it.
Make MyBaseClass abstract if it should not be instantiated (most likely).
(Edited -- you probably would want to include copy code for anything that's part of the base class in the base class)
public abstract class MyBaseClass
{
public MyClass()
{
//constructor code
}
protected void Copy(MyBaseClass classToCopy)
{
//copy code
}
// other methods that all inherited classes can use
}
public class MyClass: MyBaseClass
{
public MyClass():base()
{
//constructor code
}
public void Copy(MyClass myClassToCopy)
{
base.Copy(myClassToCopy);
//specific copy code for this extensions in this class
}
}
public class InheritedClass : MyBaseClass
{
public InheritedClass():base()
{
//constructor code
}
public void Copy(InheritedClass inheritedClassToCopy)
{
base.Copy(myClassToCopy);
//specific copy code for this extensions in this class
}
}

Categories

Resources