Wait until all Task finish in unit test - c#

I have this class I want to unit test:
public class SomeClass
{
public void Foo()
{
Bar();
}
private void Bar()
{
Task.Factory.StartNew(() =>
{
// Do something that takes some time (e.g. an HTTP request)
});
}
}
And this is how my unit test looks like:
[TestMethod]
public void TestFoo()
{
// Arrange
var obj = new SomeClass();
// Act
obj.Foo();
obj.Foo();
obj.Foo();
// Assert
/* I need something to wait on all tasks to finish */
Assert.IsTrue(...);
}
So, I need to make the unit test thread wait until all tasks started in the Bar method have finished their job before starting my assertions.
IMPORTANT: I cannot change SomeClass
How can I do that?

One way to solve this problem is to define your own task scheduler in such a way that would allow you to keep track of the completion of your nested tasks. For example, you could define a scheduler that executes tasks synchronously, as below:
class SynchronousTaskScheduler : TaskScheduler
{
protected override void QueueTask(Task task)
{
this.TryExecuteTask(task);
}
protected override bool TryExecuteTaskInline(Task task, bool wasPreviouslyQueued)
{
return this.TryExecuteTask(task);
}
protected override IEnumerable<Task> GetScheduledTasks()
{
yield break;
}
}
Subsequently, create an instance of this synchronous task scheduler, and use it to execute a root task which, in turn, spawns all of your "hidden" tasks. Since nested tasks inherit the current task scheduler from their parent, all your inner tasks will also get run on our synchronous scheduler, implying that our outermost StartNew call will only return when all tasks complete.
TaskScheduler scheduler = new SynchronousTaskScheduler();
Task.Factory.StartNew(() =>
{
// Arrange
var obj = new SomeClass();
// Act
obj.Foo();
obj.Foo();
obj.Foo();
},
CancellationToken.None,
TaskCreationOptions.None,
scheduler);
// Assert
/* I need something to wait on all tasks to finish */
Assert.IsTrue(...);
A downside to this approach is that you will lose all concurrency from your tasks; however, you could fix this by enhancing the custom scheduler to one which is concurrent but still allows you to track executing tasks.

Task.WaitAll(the, list, of, task, objects, you, need, to, wait, on);
If it's a void async method then you can't do it. The design is broken. They're only for fire and forget.

Not sure if you are allowed to make this change but I got it to work doing this:
namespace ParallelProgramming.Playground
{
public class SomeClass
{
public Task Foo()
{
return Bar();
}
private static Task Bar()
{
return Task.Factory.StartNew(() =>
{
Console.WriteLine("I fired off. Thread ID: {0}", Thread.CurrentThread.ManagedThreadId);
Thread.Sleep(5000);
return true; //or whatever else you want.
});
}
}
[TestClass]
public class StackOverflow
{
[TestMethod]
public void TestFoo()
{
// Arrange
var obj = new SomeClass();
var results = new ConcurrentBag<Task>();
var waitForMe = Task.Factory.StartNew(() =>
{
// Act
results.Add(obj.Foo());
results.Add(obj.Foo());
results.Add(obj.Foo());
return true;
});
Task.WaitAll(waitForMe);
// Assert
/* I need something to wait on all tasks to finish */
Assert.IsTrue(waitForMe.Result);
Assert.AreEqual(3, results.Count);
}
}
}

Related

Simulating CancellationToken.IsCancellationRequested when unit testing

I would like to test a task that is supposed to run continuously until killed. Suppose the following method is being tested:
public class Worker
{
public async Task Run(CancellationToken cancellationToken)
{
while (!cancellationToken.IsCancellationRequested)
{
try
{
// do something like claim a resource
}
catch (Exception e)
{
// catch exceptions and print to the log
}
finally
{
// release the resource
}
}
}
}
And a test case
[TestCase]
public async System.Threading.Tasks.Task Run_ShallAlwaysReleaseResources()
{
// Act
await domainStateSerializationWorker.Run(new CancellationToken());
// Assert
// assert that resource release has been called
}
The problem is that the task never terminates, because cancellation is never requested. Ultimately I would like to create a CancellationToken stub like MockRepository.GenerateStub<CancellationToken>() and tell it on which call to IsCancellationRequested return true, but CancellationToken is not a reference type so it is not possible.
So the question is how to make a test where Run executes for n iterations and then terminates? Is it possible without refactoring Run?
This depends on what is running within Run. If there is some injected dependency
For example
public interface IDependency {
Task DoSomething();
}
public class Worker {
private readonly IDependency dependency;
public Worker(IDependency dependency) {
this.dependency = dependency;
}
public async Task Run(CancellationToken cancellationToken) {
while (!cancellationToken.IsCancellationRequested) {
try {
// do something like claim a resource
await dependency.DoSomething();
} catch (Exception e) {
// catch exceptions and print to the log
} finally {
// release the resource
}
}
}
}
Then that can be mocked and monitored to count how many times some member has been invoked.
[TestClass]
public class WorkerTests {
[TestMethod]
public async Task Sohuld_Cancel_Run() {
//Arrange
int expectedCount = 5;
int count = 0;
CancellationTokenSource cts = new CancellationTokenSource();
var mock = new Mock<IDependency>();
mock.Setup(_ => _.DoSomething())
.Callback(() => {
count++;
if (count == expectedCount)
cts.Cancel();
})
.Returns(() => Task.FromResult<object>(null));
var worker = new Worker(mock.Object);
//Act
await worker.Run(cts.Token);
//Assert
mock.Verify(_ => _.DoSomething(), Times.Exactly(expectedCount));
}
}
The best you can do without changing your code is cancelling after a specific amount of time. The CancellationTokenSource.CancelAfter() method makes this easy:
[TestCase]
public async System.Threading.Tasks.Task Run_ShallAlwaysReleaseResources()
{
// Signal cancellation after 5 seconds
var cts = new TestCancellationTokenSource();
cts.CancelAfter(TimeSpan.FromSeconds(5));
// Act
await domainStateSerializationWorker.Run(cts.Token);
// Assert
// assert that resource release has been called
}
The way your code is written (checking IsCancellationRequested only once per iteration) means that the cancellation will happen after some number of complete iterations. It just won't be the same number each time.
If you want to cancel after a specific number of iterations, then your only option is to modify your code to keep track of how many iterations have happened.
I thought I might be able to create a new class that inherits from CancellationTokenSource to keep track of how many times IsCancellationRequested has been tested, but it's just not possible to do.

How can I get the result of my work in a Task

I need to do a work in a Task (infinite loop for monitoring) but how can I get the result of this work?
My logic to do this stuff i wrong? This is a scope problem I think.
There is an example simplified:
The variable is "first" and I want "edit"
namespace my{
public class Program{
public static void Main(string[] args){
Logic p = new Logic();
Task t = new Task(p.process);
t.Start();
Console.WriteLine(p.getVar());// result="first"
}
}
public class Logic{
public string test = "first";
public void process(){
while(true){
//If condition here
this.test = "edit";
}
}
public String getVar(){
return this.test;
}
}
}
It can be done using custom event. In your case it can be something like:
public event Action<string> OnValueChanged;
Then attach to it
p.OnValueChanged += (newValue) => Console.WriteLine(newValue);
And do not forget to fire it
this.test = "edit";
OnValueChanged?.Invoke(this.test);
Tasks aren't threads, they don't need a .Start call to start them. All examples and tutorials show the use of Task.Run or Task.StartNew for a reason - tasks are a promise that a function will execute at some point in the future and produce a result. They will run on threads pulled from a ThreadPool when a Task Scheduler decides they should. Creating cold tasks and calling .Start doesn't guarantee they will start, it simply makes the code a lot more difficult to read.
In the simplest case, polling eg a remote HTTP endpoint could be as simple as :
public static async Task Main()
{
var client=new HttpClient(serverUrl);
while(true)
{
var response=await client.GetAsync(relativeServiceUrl);
if(!response.IsSuccessStatusCode)
{
//That was an error, do something with it
}
await Task.Delay(1000);
}
}
There's no need to start a new Task because GetAsync is asynchronous. WCF and ADO.NET also provide asynchronous execution methods.
If there's no asynchronous method to call, or if we need to perform some heavey work before the async call, we can use Task.Run to start a method in parallel and await for it to finish:
public bool CheckThatService(string serviceUrl)
{
....
}
public static async Task Main()
{
var url="...";
//...
while(true)
{
var ok=Task.Run(()=>CheckThatService(url));
if(!ok)
{
//That was an error, do something with it
}
await Task.Delay(1000);
}
}
What if we want to test multiple systems in parallel? We can start multiple tasks in parallel, await all of them to complete and check their results:
public static async Task Main()
{
var urls=new[]{"...","..."};
//...
while(true)
{
var tasks=urls.Select(url=>Task.Run(()=>CheckThatService(url));
var responses=await Task.WhenAll(tasks);
foreach(var response in responses)
{
///Check the value, due something
}
await Task.Delay(1000);
}
}
Task.WhenAll returns an array with the results in the order the tasks were created. This allows checking the index to find the original URL. A better idea would be to return the result and url together, eg using tuples :
public static (bool ok,string url) CheckThatService(string serviceUrl)
{
....
return (true,url);
}
The code wouldn't change a lot:
var tasks=urls.Select(url=>Task.Run(()=>CheckThatService(url));
var responses=await Task.WhenAll(tasks);
foreach(var response in responses.Where(resp=>!resp.ok))
{
///Check the value, due something
}
What if we wanted to store the results from all the calls? We can't use a List or Queue because they aren't thread safe. We can use a ConcurrentQueue instead:
ConcurrentQueue<string> _results=new ConcurrentQueue<string>();
public static (bool ok,string url) CheckThatService(string serviceUrl)
{
....
_results.Enqueue(someresult);
return (true,url);
}
If we want to report progress regularly we can use IProgress<T> as shown in Enabling Progress and Cancellation in Async APIs.
We could put all the monitoring code in a separate method/class that accepts an IProgress< T> parameter with a progress object that can report success, error messages and the URL that caused them, eg :
class MonitorDTO
{
public string Url{get;set;}
public bool Success{get;set;}
public string Message{get;set;}
public MonitorDTO(string ulr,bool success,string msg)
{
//...
}
}
class MyMonitor
{
string[] _urls=url;
public MyMonitor(string[] urls)
{
_urls=url;
}
public Task Run(IProgress<MonitorDTO> progress)
{
while(true)
{
var ok=Task.Run(()=>CheckThatService(url));
if(!ok)
{
_progress.Report(new MonitorDTO(ok,url,"some message");
}
await Task.Delay(1000);
}
}
}
This class could be used in this way:
public static async Task Maim()
{
var ulrs=new[]{....};
var monitor=new MyMonitor(urls);
var progress=new Progress<MonitorDTO>(pg=>{
Console.WriteLine($"{pg.Success} for {pg.Url}: {pg.Message}");
});
await monitor.Run(progress);
}
Enabling Progress and Cancellation in Async APIs shows how to use the CancellationTokenSource to implement another important part of a monitoring class - cancelling it. The monitoring method could check the status of a cancellation token periodically and stop monitoring when it's raised:
public Task Run(IProgress<MonitorDTO> progress,CancellationToken ct)
{
while(!ct.IsCancellationRequested)
{
//...
}
}
public static async Task Maim()
{
var ulrs=new[]{....};
var monitor=new MyMonitor(urls);
var progress=new Progress<MonitorDTO>(pg=>{
Console.WriteLine($"{pg.Success} for {pg.Url}: {pg.Message}");
});
var cts = new CancellationTokenSource();
//Not awaiting yet!
var monitorTask=monitor.Run(progress,cts.Token);
//Keep running until the first keypress
Console.ReadKey();
//Cancel and wait for the monitoring class to gracefully stop
cts.Cancel();
await monitorTask;
In this case the loop will exit when the CancellationToken is raised. By not awaiting on MyMonitor.Run() we can keep working on the main thread until an event occurs that signals monitoring should stop.
The getVar method is executed before the process method.
Make sure that you wait until your task is finished before you call the getVar method.
Logic p = new Logic();
Task t = new Task(p.process);
t.Start();
t.Wait(); // Add this line!
Console.WriteLine(p.getVar());
If you want to learn more about the Wait method, please check this link.

Rewriting code to take advantage of C# async feature

How to transform such code:
public void Do2()
{
Console.WriteLine("Do2::Before");
Latent(() => Console.WriteLine("Do2::After"));
}
public void Latent(Action a)
{
registeredActions.Add(a);
}
public void TriggerActions()
{
foreach (Action a in registeredActions)
{
a();
}
}
To be usable like this:
public async void Do1()
{
Console.WriteLine("Do1::Before");
await Latent();
Console.WriteLine("Do1::After");
}
Note that I do not want Tasks to be executed on ThreadPool or on other threads or magically behind my back, just when I want them to, i.e. decide by myself when Task is "completed" and call whatever code is after await Latent(), most likely in the same thread as Do1 is called. Sample usage:
Console.WriteLine("Before Do");
ts.Do2();
Console.WriteLine("After Do, before triggering actions");
// ... do some other stuff and when it is the right time to "complete pending tasks"
ts.TriggerActions();
Console.WriteLine("After triggering actions");
I couldn't find any solution for this, all C# async samples talk about await client.GetStringAsync(.. or Thread.Sleep(... or Task.Delay(...
You use a TaskCompletionSource<T>:
Task Latent()
{
var tcs = new TaskCompletionSource<object>();
... // Apply some logic here to eventually call "tcs.TrySetResult".
return tcs.Task;
}
This can be used as such:
public async Task Do1()
{
Console.WriteLine("Do1::Before");
await Latent();
Console.WriteLine("Do1::After");
}

How to run a Task on a custom TaskScheduler using await?

I have some methods returning Task<T> on which I can await at will. I'd like to have those Tasks executed on a custom TaskScheduler instead of the default one.
var task = GetTaskAsync ();
await task;
I know I can create a new TaskFactory (new CustomScheduler ()) and do a StartNew () from it, but StartNew () takes an action and create the Task, and I already have the Task (returned behind the scenes by a TaskCompletionSource)
How can I specify my own TaskScheduler for await ?
I think what you really want is to do a Task.Run, but with a custom scheduler. StartNew doesn't work intuitively with asynchronous methods; Stephen Toub has a great blog post about the differences between Task.Run and TaskFactory.StartNew.
So, to create your own custom Run, you can do something like this:
private static readonly TaskFactory myTaskFactory = new TaskFactory(
CancellationToken.None, TaskCreationOptions.DenyChildAttach,
TaskContinuationOptions.None, new MyTaskScheduler());
private static Task RunOnMyScheduler(Func<Task> func)
{
return myTaskFactory.StartNew(func).Unwrap();
}
private static Task<T> RunOnMyScheduler<T>(Func<Task<T>> func)
{
return myTaskFactory.StartNew(func).Unwrap();
}
private static Task RunOnMyScheduler(Action func)
{
return myTaskFactory.StartNew(func);
}
private static Task<T> RunOnMyScheduler<T>(Func<T> func)
{
return myTaskFactory.StartNew(func);
}
Then you can execute synchronous or asynchronous methods on your custom scheduler.
The TaskCompletionSource<T>.Task is constructed without any action and the scheduler
is assigned on the first call to ContinueWith(...) (from Asynchronous Programming with the Reactive Framework and the Task Parallel Library — Part 3).
Thankfully you can customize the await behavior slightly by implementing your own class deriving from INotifyCompletion and then using it in a pattern similar to await SomeTask.ConfigureAwait(false) to configure the scheduler that the task should start using in the OnCompleted(Action continuation) method (from await anything;).
Here is the usage:
TaskCompletionSource<object> source = new TaskCompletionSource<object>();
public async Task Foo() {
// Force await to schedule the task on the supplied scheduler
await SomeAsyncTask().ConfigureScheduler(scheduler);
}
public Task SomeAsyncTask() { return source.Task; }
Here is a simple implementation of ConfigureScheduler using a Task extension method with the important part in OnCompleted:
public static class TaskExtension {
public static CustomTaskAwaitable ConfigureScheduler(this Task task, TaskScheduler scheduler) {
return new CustomTaskAwaitable(task, scheduler);
}
}
public struct CustomTaskAwaitable {
CustomTaskAwaiter awaitable;
public CustomTaskAwaitable(Task task, TaskScheduler scheduler) {
awaitable = new CustomTaskAwaiter(task, scheduler);
}
public CustomTaskAwaiter GetAwaiter() { return awaitable; }
public struct CustomTaskAwaiter : INotifyCompletion {
Task task;
TaskScheduler scheduler;
public CustomTaskAwaiter(Task task, TaskScheduler scheduler) {
this.task = task;
this.scheduler = scheduler;
}
public void OnCompleted(Action continuation) {
// ContinueWith sets the scheduler to use for the continuation action
task.ContinueWith(x => continuation(), scheduler);
}
public bool IsCompleted { get { return task.IsCompleted; } }
public void GetResult() { }
}
}
Here's a working sample that will compile as a console application:
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Threading.Tasks;
namespace Example {
class Program {
static TaskCompletionSource<object> source = new TaskCompletionSource<object>();
static TaskScheduler scheduler = new CustomTaskScheduler();
static void Main(string[] args) {
Console.WriteLine("Main Started");
var task = Foo();
Console.WriteLine("Main Continue ");
// Continue Foo() using CustomTaskScheduler
source.SetResult(null);
Console.WriteLine("Main Finished");
}
public static async Task Foo() {
Console.WriteLine("Foo Started");
// Force await to schedule the task on the supplied scheduler
await SomeAsyncTask().ConfigureScheduler(scheduler);
Console.WriteLine("Foo Finished");
}
public static Task SomeAsyncTask() { return source.Task; }
}
public struct CustomTaskAwaitable {
CustomTaskAwaiter awaitable;
public CustomTaskAwaitable(Task task, TaskScheduler scheduler) {
awaitable = new CustomTaskAwaiter(task, scheduler);
}
public CustomTaskAwaiter GetAwaiter() { return awaitable; }
public struct CustomTaskAwaiter : INotifyCompletion {
Task task;
TaskScheduler scheduler;
public CustomTaskAwaiter(Task task, TaskScheduler scheduler) {
this.task = task;
this.scheduler = scheduler;
}
public void OnCompleted(Action continuation) {
// ContinueWith sets the scheduler to use for the continuation action
task.ContinueWith(x => continuation(), scheduler);
}
public bool IsCompleted { get { return task.IsCompleted; } }
public void GetResult() { }
}
}
public static class TaskExtension {
public static CustomTaskAwaitable ConfigureScheduler(this Task task, TaskScheduler scheduler) {
return new CustomTaskAwaitable(task, scheduler);
}
}
public class CustomTaskScheduler : TaskScheduler {
protected override IEnumerable<Task> GetScheduledTasks() { yield break; }
protected override bool TryExecuteTaskInline(Task task, bool taskWasPreviouslyQueued) { return false; }
protected override void QueueTask(Task task) {
TryExecuteTask(task);
}
}
}
There is no way to embed rich async features into a custom TaskScheduler. This class was not designed with async/await in mind. The standard way to use a custom TaskScheduler is as an argument to the Task.Factory.StartNew method. This method does not understand async delegates. It is possible to provide an async delegate, but it is treated as any other delegate that returns some result. To get the actual awaited result of the async delegate one must call Unwrap() to the task returned.
This is not the problem though. The problem is that the TaskScheduler infrastructure does not treat the async delegate as a single unit of work. Each task is split into multiple mini-tasks (using every await as a separator), and each mini-task is processed individually. This severely restricts the asynchronous functionality that can be implemented on top of this class. As an example here is a custom TaskScheduler that is intended to queue the supplied tasks one at a time (to limit the concurrency in other words):
public class MyTaskScheduler : TaskScheduler
{
private readonly SemaphoreSlim _semaphore = new SemaphoreSlim(1);
protected async override void QueueTask(Task task)
{
await _semaphore.WaitAsync();
try
{
await Task.Run(() => base.TryExecuteTask(task));
await task;
}
finally
{
_semaphore.Release();
}
}
protected override bool TryExecuteTaskInline(Task task,
bool taskWasPreviouslyQueued) => false;
protected override IEnumerable<Task> GetScheduledTasks() { yield break; }
}
The SemaphoreSlim should ensure that only one Task would run at a time. Unfortunately it doesn't work. The semaphore is released prematurely, because the Task passed in the call QueueTask(task) is not the task that represents the whole work of the async delegate, but only the part until the first await. The other parts are passed to the TryExecuteTaskInline method. There is no way to correlate these task-parts, because no identifier or other mechanism is provided. Here is what happens in practice:
var taskScheduler = new MyTaskScheduler();
var tasks = Enumerable.Range(1, 5).Select(n => Task.Factory.StartNew(async () =>
{
Console.WriteLine($"{DateTime.Now:HH:mm:ss.fff} Item {n} Started");
await Task.Delay(1000);
Console.WriteLine($"{DateTime.Now:HH:mm:ss.fff} Item {n} Finished");
}, default, TaskCreationOptions.None, taskScheduler))
.Select(t => t.Unwrap())
.ToArray();
Task.WaitAll(tasks);
Output:
05:29:58.346 Item 1 Started
05:29:58.358 Item 2 Started
05:29:58.358 Item 3 Started
05:29:58.358 Item 4 Started
05:29:58.358 Item 5 Started
05:29:59.358 Item 1 Finished
05:29:59.374 Item 5 Finished
05:29:59.374 Item 4 Finished
05:29:59.374 Item 2 Finished
05:29:59.374 Item 3 Finished
Disaster, all tasks are queued at once.
Conclusion: Customizing the TaskScheduler class is not the way to go when advanced async features are required.
Update: Here is another observation, regarding custom TaskSchedulers in the presence of an ambient SynchronizationContext. The await mechanism by default captures the current SynchronizationContext, or the current TaskScheduler, and invokes the continuation on either the captured context
or the scheduler. If both are present, the current SynchronizationContext is preferred, and the current TaskScheduler is ignored. Below is a demonstration of this behavior, in a WinForms application¹:
private async void Button1_Click(object sender, EventArgs e)
{
await Task.Factory.StartNew(async () =>
{
MessageBox.Show($"{Thread.CurrentThread.ManagedThreadId}, {TaskScheduler.Current}");
await Task.Delay(1000);
MessageBox.Show($"{Thread.CurrentThread.ManagedThreadId}, {TaskScheduler.Current}");
}, default, TaskCreationOptions.None,
TaskScheduler.FromCurrentSynchronizationContext()).Unwrap();
}
Clicking the button causes two messages to popup sequentially, with this information:
1, System.Threading.Tasks.SynchronizationContextTaskScheduler
1, System.Threading.Tasks.ThreadPoolTaskScheduler
This experiment shows that only the first part of the asynchronous delegate, the part before the first await, was scheduled on the non-default scheduler.
This behavior limits even further the practical usefulness of custom TaskSchedulers in an async/await-enabled environment.
¹ Windows Forms applications have a WindowsFormsSynchronizationContext installed automatically, when the Application.Run method is called.
Can you fit for this method call:
await Task.Factory.StartNew(
() => { /* to do what you need */ },
CancellationToken.None, /* you can change as you need */
TaskCreationOptions.None, /* you can change as you need */
customScheduler);
After the comments it looks like you want to control the scheduler on which the code after the await is run.
The compile creates a continuation from the await that runs on the current SynchronizationContext by default. So your best shot is to set up the SynchronizationContext before calling await.
There are some ways to await a specific context. See Configure Await from Jon Skeet, especially the part about SwitchTo, for more information on how to implement something like this.
EDIT:
The SwitchTo method from TaskEx has been removed, as it was too easy to misuse. See the MSDN Forum for reasons.
Faced with same issue, tried to use LimitedConcurrencyLevelTaskScheduler, but it does not support async tasks. So...
Just wrote my own small simple Scheduler, that allow to run async Tasks based on global ThreadPool (and Task.Run method) with ability to limit current max degree of parallelism. It is enough for my exact purposes, maybe will also help you, guys.
Main demo code (console app, dotnet core 3.1) :
static async Task Main(string[] args)
{
//5 tasks to run per time
int concurrentLimit = 5;
var scheduler = new ThreadPoolConcurrentScheduler(concurrentLimit);
//catch all errors in separate event handler
scheduler.OnError += Scheduler_OnError;
// just monitor "live" state and output to console
RunTaskStateMonitor(scheduler);
// simulate adding new tasks "on the fly"
SimulateAddingTasksInParallel(scheduler);
Console.WriteLine("start adding 50 tasks");
//add 50 tasks
for (var i = 1; i <= 50; i++)
{
scheduler.StartNew(myAsyncTask);
}
Console.WriteLine("50 tasks added to scheduler");
Thread.Sleep(1000000);
}
Supporting code (place it in the same place) :
private static void Scheduler_OnError(Exception ex)
{
Console.WriteLine(ex.ToString());
}
private static int currentTaskFinished = 0;
//your sample of async task
static async Task myAsyncTask()
{
Console.WriteLine("task started ");
using (HttpClient httpClient = new HttpClient())
{
//just make http request to ... wikipedia!
//sorry, Jimmy Wales! assume,guys, you will not DDOS wiki :)
var uri = new Uri("https://wikipedia.org/");
var response = await httpClient.GetAsync(uri);
string result = await response.Content.ReadAsStringAsync();
if (string.IsNullOrEmpty(result))
Console.WriteLine("error, await is not working");
else
Console.WriteLine($"task result : site length is {result.Length}");
}
//or simulate it using by sync sleep
//Thread.Sleep(1000);
//and for tesing exception :
//throw new Exception("my custom error");
Console.WriteLine("task finished ");
//just incrementing total ran tasks to output in console
Interlocked.Increment(ref currentTaskFinished);
}
static void SimulateAddingTasksInParallel(ThreadPoolConcurrentScheduler taskScheduler)
{
int runCount = 0;
Task.Factory.StartNew(() =>
{
while (true)
{
runCount++;
if (runCount > 5)
break;
//every 10 sec 5 times
Thread.Sleep(10000);
//adding new 5 tasks from outer task
Console.WriteLine("start adding new 5 tasks!");
for (var i = 1; i <= 5; i++)
{
taskScheduler.StartNew(myAsyncTask);
}
Console.WriteLine("new 5 tasks added!");
}
}, TaskCreationOptions.LongRunning);
}
static void RunTaskStateMonitor(ThreadPoolConcurrentScheduler taskScheduler)
{
int prev = -1;
int prevQueueSize = -1;
int prevFinished = -1;
Task.Factory.StartNew(() =>
{
while (true)
{
// getting current thread count in working state
var currCount = taskScheduler.GetCurrentWorkingThreadCount();
// getting inner queue state
var queueSize = taskScheduler.GetQueueTaskCount();
//just output overall state if something changed
if (prev != currCount || queueSize != prevQueueSize || prevFinished != currentTaskFinished)
{
Console.WriteLine($"Monitor : running tasks:{currCount}, queueLength:{queueSize}. total Finished tasks : " + currentTaskFinished);
prev = currCount;
prevQueueSize = queueSize;
prevFinished = currentTaskFinished;
}
// check it every 10 ms
Thread.Sleep(10);
}
}
, TaskCreationOptions.LongRunning);
}
Scheduler :
public class ThreadPoolConcurrentScheduler
{
private readonly int _limitParallelThreadsCount;
private int _threadInProgressCount = 0;
public delegate void onErrorDelegate(Exception ex);
public event onErrorDelegate OnError;
private ConcurrentQueue<Func<Task>> _taskQueue;
private readonly object _queueLocker = new object();
public ThreadPoolConcurrentScheduler(int limitParallelThreadsCount)
{
//set maximum parallel tasks to run
_limitParallelThreadsCount = limitParallelThreadsCount;
// thread-safe queue to store tasks
_taskQueue = new ConcurrentQueue<Func<Task>>();
}
//main method to start async task
public void StartNew(Func<Task> task)
{
lock (_queueLocker)
{
// checking limit
if (_threadInProgressCount >= _limitParallelThreadsCount)
{
//waiting new "free" threads in queue
_scheduleTask(task);
}
else
{
_startNewTask(task);
}
}
}
private void _startNewTask(Func<Task> task)
{
Interlocked.Increment(ref _threadInProgressCount);
Task.Run(async () =>
{
try
{
await task();
}
catch (Exception e)
{
//Console.WriteLine(e);
OnError?.Invoke(e);
}
}).ContinueWith(_onTaskEnded);
}
//will be called on task end
private void _onTaskEnded(Task task)
{
lock (_queueLocker)
{
Interlocked.Decrement(ref _threadInProgressCount);
//queue has more priority, so if thread is free - let's check queue first
if (!_taskQueue.IsEmpty)
{
if (_taskQueue.TryDequeue(out var result))
{
_startNewTask(result);
}
}
}
}
private void _scheduleTask(Func<Task> task)
{
_taskQueue.Enqueue(task);
}
//returning in progress task count
public int GetCurrentWorkingThreadCount()
{
return _threadInProgressCount;
}
//return number of tasks waiting to run
public int GetQueueTaskCount()
{
lock (_queueLocker) return _taskQueue.Count;
}
}
Few notes :
First - check comments to it, maybe it is the worst code ever!
Did not test in prod
Did not implement cancellation tokens and any other functionality, that should be there, but i'm too lazy. Sorry

unit testing asynchronous operation

I want to unit test a method that I have that performs and async operation:
Task.Factory.StartNew(() =>
{
// method to test and return value
var result = LongRunningOperation();
});
I stub the necessary methods etc in my unit test (written in c#) but the problem is that the async operation is not finished before I assert the test.
How can I get around this? Should I create a mock of the TaskFactory or any other tips to unit testing an async operation?
You'd have to have some way of faking out the task creation.
If you moved the Task.Factory.StartNew call to some dependency (ILongRunningOperationStarter) then you could create an alternative implementation which used TaskCompletionSource to create tasks which complete exactly where you want them to.
It can get a bit hairy, but it can be done. I blogged about this a while ago - unit testing a method which received tasks to start with, which of course made things easier. It's in the context of async/await in C# 5, but the same principles apply.
If you don't want to fake out the whole of the task creation, you could replace the task factory, and control the timing that way - but I suspect that would be even hairier, to be honest.
I would propose to stub a TaskScheduler in your method with a special implementation for unit tests. You need to prepare your code to use an injected TaskScheduler:
private TaskScheduler taskScheduler;
public void OperationAsync()
{
Task.Factory.StartNew(
LongRunningOperation,
new CancellationToken(),
TaskCreationOptions.None,
taskScheduler);
}
In your unit test you can use the DeterministicTaskScheduler described in this blog post to run the new task on the current thread. Your 'async' operation will be finished before you hit your first assert statement:
[Test]
public void ShouldExecuteLongRunningOperation()
{
// Arrange: Inject task scheduler into class under test.
DeterministicTaskScheduler taskScheduler = new DeterministicTaskScheduler();
MyClass mc = new MyClass(taskScheduler);
// Act: Let async operation create new task
mc.OperationAsync();
// Act: Execute task on the current thread.
taskScheduler.RunTasksUntilIdle();
// Assert
...
}
Try something like this...
object result = null;
Task t = Task.Factory.StartNew(() => result = LongRunningThing());
Task.Factory.ContinueWhenAll(new Task[] { t }, () =>
{
Debug.Assert(result != null);
});
Set UI and background task schedulars and replace them in unit test with this one.
Below code was copied from internet, sorry for missing reference to author:
public class CurrentThreadTaskScheduler : TaskScheduler
{
protected override void QueueTask(Task task)
{
TryExecuteTask(task);
}
protected override bool TryExecuteTaskInline(
Task task,
bool taskWasPreviouslyQueued)
{
return TryExecuteTask(task);
}
protected override IEnumerable<Task> GetScheduledTasks()
{
return Enumerable.Empty<Task>();
}
public override int MaximumConcurrencyLevel => 1;
}
So to test code:
public TaskScheduler TaskScheduler
{
get { return taskScheduler ?? (taskScheduler = TaskScheduler.Current); }
set { taskScheduler = value; }
}
public TaskScheduler TaskSchedulerUI
{
get { return taskSchedulerUI ?? (taskSchedulerUI = TaskScheduler.FromCurrentSynchronizationContext()); }
set { taskSchedulerUI = value; }
}
public Task Update()
{
IsBusy = true;
return Task.Factory.StartNew( () =>
{
LongRunningTask( );
}, CancellationToken.None, TaskCreationOptions.None, TaskScheduler )
.ContinueWith( t => IsBusy = false, TaskSchedulerUI );
}
You will write following unit test:
[Test]
public void WhenUpdateThenAttributeManagerUpdateShouldBeCalled()
{
taskScheduler = new CurrentThreadTaskScheduler();
viewModel.TaskScheduler = taskScheduler;
viewModel.TaskSchedulerUI = taskScheduler;
viewModel.Update();
dataManagerMock.Verify( s => s.UpdateData( It.IsAny<DataItem>>() ) );
}

Categories

Resources