What I really want to achieve: Introduce a global alias name for object.
As there are no global aliases in C# I want to workaround that by providing another class myclass to which all objects are implicitly convertable, e.g.:
myclass foo () { return new object(); } // should be ok
myclass bar () { return "bla"; } // should be ok
How to?
(a conversion operator:
public static implicit operator myclass(object o)
{
return new given();
}
just outputs compiler error cs0553)
Well, you can't do that. From section 10.10.3 of the C# 4 specification:
A class or struct is permitted to declare a conversion from a source type S to a target type T only if all of the following are true:
...
Exclusing user-defined conversions, a conversion does not exist from S to T or from T to S
That's not true in your case, hence the error.
You haven't said why you want to do this (you mention "no global aliases" but it's not clear what you're trying to achieve), but you just can't do this. You could create a constructor or a static method to create an instance of your class, but you can't do it with an operator.
Related
I have a generic class that I'm trying to implement implicit type casting for. While it mostly works, it won't work for interface casting. Upon further investigation, I found that there is a compiler error: "User-defined conversion from interface" that applies. While I understand that this should be enforced in some cases, what I'm trying to do does seem like a legitimate case.
Here's an example:
public class Foo<T> where T : IBar
{
private readonly T instance;
public Foo(T instance)
{
this.instance = instance;
}
public T Instance
{
get { return instance; }
}
public static implicit operator Foo<T>(T instance)
{
return new Foo<T>(instance);
}
}
Code to use it:
var concreteReferenceToBar = new ConcreteBar();
IBar intefaceReferenceToBar = concreteReferenceToBar;
Foo<ConcreteBar> concreteFooFromConcreteBar = concreteReferenceToBar;
Foo<IBar> fooFromConcreteBar = concreteReferenceToBar;
Foo<IBar> fooFromInterfaceBar = intefaceReferenceToBar; // doesn't work
Does anyone know a workaround, or can anyone explain in a satisfactory way why I shuouldn't be able to cast interfaceReferenceToBar implicitly to Foo<IBar>, since in my case it is not being converted, but only contained within Foo?
EDIT:
It looks like covariance might offer salvation. Let's hope the C# 4.0 specification allows for implicit casting of interface types using covariance.
The reason you can't do this is because it is specifically forbidden in the C# language specification:
Source: ECMA-334 Section 15.10.4
A class or struct is permitted to
declare a conversion from a source
type S to a target type T provided all
of the following are true:
...
Neither S nor T is object or an interface-type.
and
User-defined conversions are not
allowed to convert from or to
interface-types. In particular, this
restriction ensures that no
user-defined transformations occur
when converting to an interface-type,
and that a conversion to an
interface-type succeeds only if the
object being converted actually
implements the specified
interface-type.
How Force type cast between classes of different namespaces.
Both namespaces have same class.
You can't cast an object to a type it is not. If it belongs to a different namespace then it is not the same class. You will have to create a converter:
public static Namespace1.SomeClass Convert(Namespace2.SomeClass someClass) {
Namespace1.SomeClass rtn = new Namespace1.SomeClass();
rtn.SomeProp = someClass.SomeProp;
rtn.SomeOtherProp = someClass.SomeOtherProp;
return rtn;
}
you could even use reflection to set all the properties on Namespace1.SomeClass that have the same name as Namespace2.SomeClass.
Also, if you own the code to one of the classes, you can check into overloading explicit and implicit on your class.
You can create generic Converter so you don't have to do this each time you need to cast a different type of objects,
T ConvertObject<T>(object M) where T : class
{
// Serialize the original object to json
// Desarialize the json object to the new type
var obj = JsonConvert.DeserializeObject<T>(JsonConvert.SerializeObject(M));
return obj;
}
// Test ObjectToCast is type Namespace1.Class, obj is Namespace2
Namespace2.Class obj = ConvertObject<Namespace2.Class>(ObjectToCast);
Assuming that both classes are the same this will work.
You can't cast from a Type to a different Type, even if the code of the class is exactly the same.
You can create a Converter capable to convert between the two types, or provide implicit/explicit casts inside both classes implementations or eventually you can try Automapper.
You need to qualify the type:
namespace Foo
{
class Bar {}
}
namespace Baz
{
class Bar {}
}
Foo.Bar x = new Foo.Bar();
Baz.Bar y = (Baz.Bar)x;
Of course, this will fail unless there is a conversion defined.
This is not possible. A type include its namespace as part of its full name.
Its like the town of Springfield: same name but from different states. They are all different.
A possible approach would be to overload the cast operator of one of the type so that they can be cast into another type. It won't be a real cast, as the result will be to create a new object with the same value.
public static explicit operator Massachusetts.Springfield(Illinois.Springfield town)
{
return new Massachusetts.Springfield(town); // or any other code to copy the fields from one type to the other
}
If both classes are serializable, you can serialize the first object to XML, change the "namespace" in the xml and deserialize it again.
The fact that the two classes have the same name doesn't mean anything to the compiler. You may have Foo.Orange and Bar.Orange, but to the compiler it may as well be Apple and Orange. To convert:
namespace Foo
{
public class Orange{}
public static explicit operator Foo.Orange(Bar.Orange) { // conversion code }
}
namespace Bar
{
public class Orange{}
public static explicit operator Bar.Orange(Foo.Orange) { // conversion code }
}
// somewhere else
Foo.Orange o = new Foo.Orange();
Bar.Orange bar = (Bar.Orange)o; // and vice-versa
This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
Is it safe for structs to implement interfaces?
Take this code:
interface ISomeInterface
{
public int SomeProperty { get; }
}
struct SomeStruct : ISomeInterface
{
int someValue;
public int SomeProperty { get { return someValue; } }
public SomeStruct(int value)
{
someValue = value;
}
}
and then I do this somewhere:
ISomeInterface someVariable = new SomeStruct(2);
is the SomeStruct boxed in this case?
Jon's point is true, but as a side note there is one slight exception to the rule; generics. If you have where T : ISomeInterface, then this is constrained, and uses a special opcode. This means the interface can be used without boxing. For example:
public static void Foo<T>(T obj) where T : ISomeInterface {
obj.Bar(); // Bar defined on ISomeInterface
}
This does not involve boxing, even for value-type T. However, if (in the same Foo) you do:
ISomeInterface asInterface = obj;
asInterface.Bar();
then that boxes as before. The constrained only applies directly to T.
Yes, it is. Basically whenever you need a reference and you've only got a value type value, the value is boxed.
Here, ISomeInterface is an interface, which is a reference type. Therefore the value of someVariable is always a reference, so the newly created struct value has to be boxed.
I'm adding this to hopefully shed a little more light on the answers offered by Jon and Marc.
Consider this non-generic method:
public static void SetToNull(ref ISomeInterface obj) {
obj = null;
}
Hmm... setting a ref parameter to null. That's only possibly for a reference type, correct? (Well, or for a Nullable<T>; but let's ignore that case to keep things simple.) So the fact that this method compiles tells us that a variable declared to be of some interface type must be treated as a reference type.
The key phrase here is "declared as": consider this attempt to call the above method:
var x = new SomeStruct();
// This line does not compile:
// "Cannot convert from ref SomeStruct to ref ISomeInterface" --
// since x is declared to be of type SomeStruct, it cannot be passed
// to a method that wants a parameter of type ref ISomeInterface.
SetToNull(ref x);
Granted, the reason you can't pass x in the above code to SetToNull is that x would need to be declared as an ISomeInterface for you to be able to pass ref x -- and not because the compiler magically knows that SetToNull includes the line obj = null. But in a way that just reinforces my point: the obj = null line is legal precisely because it would be illegal to pass a variable not declared as an ISomeInterface to the method.
In other words, if a variable is declared as an ISomeInterface, it can be set to null, pure and simple. And that's because interfaces are reference types -- hence, declaring an object as an interface and assigning it to a value type object boxes that value.
Now, on the other hand, consider this hypothetical generic method:
// This method does not compile:
// "Cannot convert null to type parameter 'T' because it could be
// a non-nullable value type. Consider using 'default(T)' instead." --
// since this method could take a variable declared as, e.g., a SomeStruct,
// the compiler cannot assume a null assignment is legal.
public static void SetToNull<T>(ref T obj) where T : ISomeInterface {
obj = null;
}
The MSDN documentation tells us that structs are value, not reference types. They are boxed when converting to/from a variable of type object. But the central question here is: what about a variable of an interface type? Since the interface can also be implemented by a class, then this must be tantamount to converting from a value to a reference type, as Jon Skeet already said, therefore yes boxing would occur. More discussion on an msdn blog.
I've got a problem with inheritance and generics.
This is the code that illustrates my problem:
namespace TestApplication
{
public class MyClass<T>
{
private T field;
public MyClass(T field)
{
this.field = field;
}
}
public class MyIntClass : MyClass<int>
{
public MyIntClass(int field)
: base(field)
{
}
}
}
And when I try to do something like this:
MyClass<int> sth = new MyClass<int>(10);
MyIntClass intsth = (MyIntClass) sth;
I receive cast exception: Invalid cast exception. Unable to cast 'TestApplication.MyClass`1[System.Int32]' to 'TestApplication.MyIntClass'.
What is more I cannot create cast operator:
public static implicit operator MyIntClass(MyClass<int> myClass)
because: 'TestApplication.MyIntClass.implicit operator TestApplication.MyIntClass(TestApplication.MyClass)': user-defined conversions to or from a base class are not allowed
I need to create casts as described above. I don't know why I cannot cast from a type that is the base class. How can I solve this problem?
Thanks in advance.
Edit
Thanks for Your answers.
Now I see that i cannot convert from a base class to derived class and i see that it doesn't have anything to do with generics.
But why i cannot create user-defined conversions from a base class? I have a method that returns the base class. I am able to define a conversion method but creating a cast operator imho would be a better solution.
You can only cast from a base class to a derived class if the object is actually of type derived class. I mean, you can't cast an instance of base (MyClass<int>) to MyIntClass. You can, however cast it if it was actually of type MyIntClass stored as an MyClass<int> instance.
MyClass<int> foo = new MyIntClass();
MyIntClass bar = (MyIntClass)foo; // this works.
Assume:
class Base {
int x;
}
class Derived : Base {
int y;
}
Base foo = new Base();
Derived bar = (Derived)foo;
if it was allowed, what would the value of bar.y be?
In fact, converting from Derived to Base is not a conversion at all. It's just telling the compiler to let the variable of type Base to point to an object of type Derived. It is possible since derived has more or equal features than Base which is not the case in the other way around.
If you were able to create a conversion operator between base and derived classes, the C# compiler would be unable to distinguish it from the built in relationships defined for them. This is why you cannot create cast operators along inheritance hierarchies.
The other answers so far are correct, but I'd like to point out that your example has nothing to do with generics. It's the equivalent of:
using System;
class Base {}
class Child : Base {}
class Test
{
static void Main()
{
Base b = new Base();
// This will throw an exception
Child c = (Child) b;
}
}
In the comments you asked:
But why conversion from a base class is not allowed?
Simple - it would make no sense. Consider the example:
class BaseClass
{
public int x;
public BaseClass(int StartX)
{
this.x = StartX;
}
}
class ChildClass: BaseClass
{
public int Y;
public BaseClass(int StartX, StartY): base(StartX)
{
this.y = StartY;
}
}
class Program
{
public static void Main()
{
BaseClass B = new BaseClass(3);
ChildClass C = (ChildClass)B;
Console.WriteLine(C.y);
}
}
What do you suppose this program would output, assuming the cast worked? Even worse - imagine that BaseClass has two child classes - ChildClassA and ChildClassB. Do you want this to work?
ChildClassA A = new ChildClassA();
BaseClass bc = (BaseClass)A;
ChildClassB B = (ChildClassB)bc;
This would effectively allow to cast ChildClassA instances to ChildClassB - completely wrong.
As Mehrdad stated, you cannot downcast an object. Upcasting is implicit, therefore you cannot overwrite it.
As for the implicit operator, you can still create a constructor in the derived class which receives a parameter of type baseclass.
If you need to cast freely, define the variable as baseclass, but instantiate derived classes.
As has been said, you're trying to cast an object into a type that it doesn't derive from. Did you perhaps want to do this:
MyClass<int> sth = new MyIntClass(10);
MyIntClass intsth = (MyIntClass) sth;
Instead of creating an MyIntClass, try an alias:
using MyClass<int> = What.Ever.Namespace.MyIntClass;
This is now valid:
MyClass<int> foo = new MyClass<int>();
MyIntClass bar = (MyIntClass)foo;
Just understand that when doing the using alias, you have to qualify your namespace on the alias type name (What.Ever.Namespace).
Regarding your second question:
But why i cannot create user-defined conversions from a base class?
Well, suppose you have this scenario
class Base {
}
class Derived {
public static operator Derived(Base b) { ... }
}
and you tried to do this
Base x = new Derived();
Derived y = (Derived)x;
should the conversion be called? Of course not! The value inside x is actually of type Derived, so the cast is direct, without conversion. But if the value was not of type Derived, but a concrete Base, then the user-defined conversion has to happen because otherwise we'd have a compiler error. This all makes no sense; user-defined conversions are found in compile-time, and the type of the value of x is only known in runtime. Therefore, the compiler would not know what to do - call the user-defined conversion or simply cast the value...
Hope this makes a bit of sense to you.
Answering to your last edit.
This code does already compile, it only fails at runtime:
MyIntClass intsth = (MyIntClass) sth;
So, the following cast operator would be redundant if left explicit:
public static implicit operator MyIntClass(MyClass myClass)
So, the compiler should prevent you from adding that conversion. I think the error might be confusing, but I think it just forbids converting class B to class A if B is derived from A (the warning seemed to me to prevent any conversion to A, at first).
If the operator is made implicit, it is also dangerous, because a downcasting can always fail, so you have to:
show the compiler that you know that, by adding an explicit cast;
show the reader (which includes yourself, minutes later) that the operation might fail.
Assignment/conversion of a base class to a derived class makes sense if you consider assignment or conversion to be a value by value copy. What's confusing about c# for
newbies is the inconsistent way it does things:
'int' is a 'simple' type:
int i = 5; // <- this creates an int.
int j = i; // <- this creates another int and copies the value of i into j.
'Object' is not a simple type:
Object a; // <- this does not create a copy of 'Object', only a reference to one
Object b = new Object(); // <- this actually creates an Object
a = b; // <- this sets the reference to an object a to the reference to an object b.
// both of them reference the same Object. No values were copied.
If it were doing a copy of values then copying to base class to a derived class would
work. C# doesn't work like other languages.
I think that might be what's confusing you.
I have a generic class that I'm trying to implement implicit type casting for. While it mostly works, it won't work for interface casting. Upon further investigation, I found that there is a compiler error: "User-defined conversion from interface" that applies. While I understand that this should be enforced in some cases, what I'm trying to do does seem like a legitimate case.
Here's an example:
public class Foo<T> where T : IBar
{
private readonly T instance;
public Foo(T instance)
{
this.instance = instance;
}
public T Instance
{
get { return instance; }
}
public static implicit operator Foo<T>(T instance)
{
return new Foo<T>(instance);
}
}
Code to use it:
var concreteReferenceToBar = new ConcreteBar();
IBar intefaceReferenceToBar = concreteReferenceToBar;
Foo<ConcreteBar> concreteFooFromConcreteBar = concreteReferenceToBar;
Foo<IBar> fooFromConcreteBar = concreteReferenceToBar;
Foo<IBar> fooFromInterfaceBar = intefaceReferenceToBar; // doesn't work
Does anyone know a workaround, or can anyone explain in a satisfactory way why I shuouldn't be able to cast interfaceReferenceToBar implicitly to Foo<IBar>, since in my case it is not being converted, but only contained within Foo?
EDIT:
It looks like covariance might offer salvation. Let's hope the C# 4.0 specification allows for implicit casting of interface types using covariance.
The reason you can't do this is because it is specifically forbidden in the C# language specification:
Source: ECMA-334 Section 15.10.4
A class or struct is permitted to
declare a conversion from a source
type S to a target type T provided all
of the following are true:
...
Neither S nor T is object or an interface-type.
and
User-defined conversions are not
allowed to convert from or to
interface-types. In particular, this
restriction ensures that no
user-defined transformations occur
when converting to an interface-type,
and that a conversion to an
interface-type succeeds only if the
object being converted actually
implements the specified
interface-type.