I have very long class inheritance hierarchy. For example:
-MyAbstractObject
--MyAbstractUiObject
---MyAbstractTable
-----MyAbstractPageableTable
-------MyAbstractScrollableTable
---------MyAbstractStateblaTable
etc...
I read at Code complete that ideal inheritance deep is 3. And sometimes it allowable to make inheritance deep 7-9. But I have inheritance deep 11!
How I can change my architecture? What design pattern is applicable to my case? And what is bad is that I can change places of MyAbstractPageableTable and MyAbstractScrollableTable in inheritance hierarchy. This 2 classes not mixed into one because my goal is single responsibility. Also I want to provide for users different interfaces (APIs)
Often it is better to use a Strategy-Pattern and not create an Subclass for each use case. But it is hard to give any hard advice because it depends on the circumstances.
In your example I would guess you could do a Table Implementation and give it an strategy-object that handles for example the Pagenation or any other display strategy the table should support.
According to Joshua Bloch's "Effective Java" it is often better to use composition over inheritence. I don't think larger inheritence depths are bad, as long as they stay understandable, with 11 levels I would guess thats not the case.
Composition. You get two smaller inheritance hierarchies:
class MyAbstractObject
class MyAbstractUIObject : MyAbstractObject
class MyAbstractTable : MyAbstractUIObject
interface IMyAbstractTableBehaviour { void Perform(); }
class MyAbstractTablePageableBehaviour : IMyAbstractTableBehaviour
class MyAbstractTableScrollableBehaviour : IMyAbstractTableBehaviour
class MyAbstractTableStateableBehaviour : IMyAbstractTableBehaviour
You can instantiate a subclass of MyAbstractTable with any combination of the three behaviours, and implementing additional behaviours is trivial.
I don't know what code complete is but the ideal inheritance is probably just a signal in the right direction (guidance), it doesn't apply to every situation (maybe your case is one of them). The inheritance hierarchy for UI controls usually has this phenomenon such as Controls in WPF (Windows Presentation Foundation). So if you're building a UI framework you may encounter this. It Depends on the Context (Your Specific Situation), but overall inheritance increase coupling in your code and as #Casey said you should favor Composition if that is possible.
Without more details in the question, it's hard to give a specific answer.
With UI frameworks (which your class seems to be a part of) you do tend to have deeper than average inheritance hierarchies. The classes at the top tend to deal with layout and such, so you get several deep before you get to add your rendering and custom behavior classes.
But, are there any classes that you could change? For instance, does it really make sense for ScrollableTable to derive from PageableTable, or could you make interfaces IScrollableTable and IPageableTable?
Related
When i try to create good object hierarchy which will help to write less code and avoid to use unnecessary fields ,i feel myself free to create many base classes for good grouping which is usually abstract.
What can be disadvantage of doing it like that ? Many times inherited class can be slower ?
To see many unnecessary abstract classes which hasn't enough good naming can cause confusing when encounter it in intelli-sense(auto-complete) ? What can be other else ?
Many times inherited class can be slower?
There's only one way to answer performance questions: try it both ways, and measure the results. Then you'll know.
What can be disadvantage of doing it like that?
The disadvantage of overly complex object hierarchies are:
1) they are confusing because they represent concepts that are not in the business domain
For example, you might want to have a storage system that can store information about employees, computers and conference rooms. So you have classes StorableObject, Employee, Room, Computer, where Employee, Room and Computer inherit from StorableObject. You mean "StorableObject" to represent something about your implementation of your database. Someone naively reading your code would ask "Why is a person a "storable object?" Surely a Computer is a storable object, and a Room is where it is stored. When you mix up the mechanisms of the shared code with the meaning of the "is a kind of" relationship in the business domain, things get confusing.
2) you only get one "inheritance pivot" in C#; it's a single inheritance language. When you make a choice to use inheritance for one thing, that means you've chosen to NOT use inheritance for something else. If you make a base class Vehicle, and derived classes MilitaryVehicle and CivilianVehicle, then you have just chosen to not have a base class Aircraft, because an aircraft can be either civilian or military.
You've got to choose your inheritance pivot very carefully; you only have one chance to get it right. The more complicated your code sharing mechanism is, the more likely you are to paint yourself into a corner where you're stuck with a bunch of code shared, but cannot use inheritance to represent concepts that you want to model.
There are lots of ways to share code without inheritance. Try to save the inheritance mechanism for things that really need it.
I have just made a very simple practical test (unscientific though) where I created empty classes named A, B, C ... Q, where B inherited from A, C from B and so on to Q inheriting from P.
When attempting to retrieve some metrics on this I created some loops in which I simply created x number of A object, x number of B objects and so on.
These classes where empty and contained only the default constructor.
Based on this I could see that if it took 1 second (scaled) to create an object of type A then it took 7-8 seconds to create an object of type Q.
So the answer must be YES a too deep hierarchy will impact performance. If it is noticable depends on many things though, and how many objects you are creating.
Consider composition over inheritance, but I don't think you'll experience performance issues with this.
Unless you're doing reflection, or something like that where your code has to walk the inheritance tree at runtime, you shouldn't see any speed differences, no matter how many levels of inheritance a class has, or no matter how many classes implement your particular class.
The biggest drawback is going to be making your code unnecessarily brittle.
If class B is implementing/inheriting A just because B is going to need similar fields, you will find yourself in a world of hurt six months later when you decide that they need to behave differently from A to B. To that regard, I'll echo k_b in suggesting you'll want to look at the Composition pattern.
I am making sims like game and right now I am trying to figure out how I will structure my objects.
Right now I am thinking to create a class called GameObject, the psuedo is below
public class GameObject {
name:String
width:int
height:int
}
This way I could create objects like bushes, trees, and buildings. But then I began to think. what if I wanted to create multiple buildings and trees of the same type ?? I would have to keep making instances of GameObject and giving it a new name and height and width. The properties would have to be the same values in order for me to duplicate one object. That seems a little tedious. Then I figure , maybe that isnt the right way to go. So I was thinking, I would have to extend GameObject like below
public class Tree extends GameObject{
birdHouse:Boolean
}
public class Building extends GameObject{
packingGarage:Boolean
stories:Number
}
public class House extends GameObject{
garage:Boolean
stories:Number
}
Now this way, I can just create multiple instances of house, or tree, without creating properties that specify that it is indeed a house or tree. This seems more logical, but at the same time it seems it allocates more memory because I am creating more classes.
I just need to know what the best practices for dealing with objects like this. If anyone can help me out with this. also if you know any resources for best practices of reducing loading on games or any application at that. I also want to use Interfaces. the second concept seems more reasonable and I was thinking about having the parent implement a interface like below
public class GameObject implement IGameObject {
name:String
width:int
height:int
}
Now this way I can create a class that has a method that loosely accept accepts any type that inherits GameObject.
Selector.loadObject(gObject:IGameObject);
Depending on what type it is (i.e tree, building, house) I can use a case statement to figure out which type it is and evaluate it accordingly.
I also created a Tile Class that will pass through the loadObject method. It also will be a child of the GameOject class. if the case statement finds that it is type Tile, it will highlight whatever Tile depending on what tile my mouse is over.
My second question is if a class inherits a class that implements a interface, is that class child class considered to be a IGameObject as well. or does it have to implement that interface directly.
does all this sound like I am going in the right directions lol, as far as organization is concerned.
Thanks for all of your help, thanks guys!
One thing you could think about is using Composition of objects over inheritance. This sort of goes along with the Flyweight answer. Rather than having all your GameObjects inherit properties from GameObject; instead, have each game object just have a reference or pointer to an object or interface that has the properties it needs. For example, all your game objects probably have some sort of "size" property - rather than inheriting this from a base class, just have each game object reference or point to a "Size" class, so that the size object can potentially be shared among similar objects.
You should look into the Flyweight pattern
From wikipedia:
Flyweight is a software design
pattern. A flyweight is an object that
minimizes memory use by sharing as
much data as possible with other
similar objects; it is a way to use
objects in large numbers when a simple
repeated representation would use an
unacceptable amount of memory.
As for your second question, the answer is yes. All Subclasses of a Class can be said to implement all interfaces that the parent class implements.
This seems more logical, but at the
same time it seems it allocates more
memory because I am creating more
classes.
Creating new classes doesn't use a significant amount of memory. It's creating instances that uses memory - but again, the amount will be negligible compared to the memory used by loading in your graphics etc. Don't worry about memory. Your only concern at this stage should be good code organisation.
You should have separate classes when they have different behaviour. If they have the same behaviour but different properties, then you use the same class and set the properties accordingly.
In this case, you don't appear to have significantly different behaviour, but if separating it into Tree, Building, and House makes life easier for you when managing which items can be included in others etc, do it.
I have for some time tried to anthropomorphise (meaning human readable) the names I give to interfaces, to me this is the same as give an interface a role based name – trying to capture the purpose of the interface in the name.
I was having a discussion with other developers who think this is a little strange and childish.
What do the folks of SO think?
Examples (C# syntax):
public interface IShowMessages
{
void Show(string message);
void Show(string title, string message);
}
public class TraceMessenger : IShowMessages
{
}
public interface IHaveMessageParameters
{
IList<string> Parameters { get; }
}
public class SomeClass : IHaveMessageParameters
{
}
IThinkItsATerribleIdea
Of course you should always choose identifiers which are human readable. As in: transport the meaning which they convey even to somebody who is not as familiar with the problem to be solved by the code as you are.
However, using long identifiers does not make your identifiers more 'readable'. To any reasonably experienced programmer, 'tmp' conveys as much information as 'temporaryVariable' does. Same goes for 'i' vs. 'dummyCounter' etc..
In your particular example, the interface names are actually quite annoying since somebody who's used to developing object oriented systems will read the inheritance as 'is a'. And 'SomeClass is a IHaveMessageParameters' sounds silly.
Try using IMessagePrinter and IMessageParameterProvider instead.
Yes, that sounds like a good idea.
What's the alternative?
Code should be human-readable. Any fool can write code a computer can understand. The difficult part is writing code a human can understand.
Humans have to maintain the code, so it's pretty darn important that it is as easy to maintain as possible - that includes that the code should be as readable as possible.
Interfaces describe behavior, and so I name them so as to to communicate the behavior they are mandating. This 'generally' means that the name is a verb, (or adverb) or some form of action-describing phrase. Combined with the "I" for interface, this looks like what you are doing...
ICanMove, IControllable, ICanPrint, ISendMesssages, etc...
using adverbs as in IControllable, IDisposable, IEnumerable, etc. communicates the same thought as a verb form and is terser, so I use this form as well...
Finally, more important (or at least equally important) than what you name the interface, is to keep the interfaces you design as small and logically contained as possible. You should strive to have each interface represent as small and logically connected a set of methods/properties as possible. When an interface has so much in it that there is no obvious name that would describe all the behavior it mandates, it's a sign that there is too much in it, and that it needs to be refactored into two or more smaller interfaces. So, maming interfaces in the way you are proposing helps to enforce this type of organizational design, which is a good thing.
There's nothing strange about using simple human-readable names. But using the I for interface to also stand for the first-person I as though it's talking about itself... is a little unusual, yes.
But the bottom line is, whatever works for you and is understood by you and your team is fine. You gotta go with what works.
In my opinion this approach just adds a greater burden on the developers to come up with such names since it intergrates the I as part of a sentence. I don't find IDisposable for example to be more difficult to read than ICanBeDisposed.
In the OP's examples, the anthropomorphic way compares well against alternatives - eg: IShowMessages vs. something like IMessageShower. But - this is not always the case. Interfaces I have used when programming game objects include: IOpenClosable and ILockable. Alternatives like ICanBeOpenedAndClosed and ICanBeLocked would be more verbose. Or you could simply do IAmOpenClosable and IAmLockable - but then you'd be adding the "Am" just for the anthropomorphic effect with no real information benefit. I am all for minimizing verbosity if the same amount of information is conveyed.
So long as the semantics of what is trying to be achieved aren't lost and terseness isn't irreparably compromised (IDoLotsOfThingsWhichIncludesTheFollowingColonSpace...). I wouldn't generally mind somebody other than myself doing it. Still, there are plenty of contexts in which terseness is paramount, in which this would be unacceptable.
Intentionally using the 'I for Interface' convention in the first person seems a bit silly to be honest. What starts out as a cute pun becomes impossible to follow consistently, and ends up clouding meaning later on. That said, your standalone example reads clearly enough and I wouldn't have a problem with it.
This question already has answers here:
Order of items in classes: Fields, Properties, Constructors, Methods
(16 answers)
Closed 9 years ago.
Is there a standard way of laying out a C# file? As in, Fields, then Properties, then Constructors, etc?
Here's what I normally do, but I'm wondering if there's a standard way?
Nested Classes or Enums
Fields
Properties
Events
Constructors
Public Methods
Private Methods
Do people group their fields together, or do they put them with the properties? Or do people not worry about an order? Visual Studio seems to make it so hard to do.
Edit: Moved other part about ReSharper here: Make Resharper respect your preference for code order.
I tend to use Microsoft StyleCop, which has a set order according to rule SA1201:
Cause An element within a C# code
file is out of order in relation to
the other elements in the code.
Rule Description A violation of this
rule occurs when the code elements
within a file do not follow a standard
ordering scheme.
To comply with this rule, elements at
the file root level or within a
namespace must be positioned in the
following order:
Extern Alias Directives
Using Directives
Namespaces
Delegates
Enums
Interfaces
Structs
Classes
Within a class, struct, or interface,
elements must be positioned in the
following order:
Fields
Constructors
Finalizers (Destructors)
Delegates
Events
Enums
Interfaces
Properties
Indexers
Methods
Structs
Classes
Complying with a standard ordering
scheme based on element type can
increase the readability and
maintainability of the file and
encourage code reuse.
When implementing an interface, it is
sometimes desirable to group all
members of the interface next to one
another. This will sometimes require
violating this rule, if the interface
contains elements of different types.
This problem can be solved through the
use of partial classes.
Add the partial attribute to the class, if the class is not already
partial.
Add a second partial class with the same name. It is possible to place
this in the same file, just below the
original class, or within a second
file.
Move the interface inheritance and all members of the interface
implementation to the second part of
the class.
I think there's no best way. There are two important things to consider when it comes to layout. The first most important thing is consistency. Pick an approach and make sure that the entire team agrees and applies the layout. Secondly, if your class gets big enough that you are searching for where those pesky properties live (or have to implement regions to make them easier to find), then your class is probably too large. Consider sniffing it, and refactoring based on what you smell.
To answer the reshaper question, check under Type Members Layout in Options (under the C# node). It's not simple, but it is possible to change the layout order.
I don't believe regions are necessarily a sign of bad code. But to determine that you will have to review what you have. As I've stated here this is how I regionize my code.
Enumerations
Declarations
Constructors
Methods
Event Handlers
Properties
But the main thing is keeping it consistent and purposeful.
I tend to clump private data and tend to clump related methods/properties in functional groups.
public class Whatever {
// private data here
int _someVal = kSomeConstant;
// constructor(s)
public Whatever() { }
#region FabulousTrick // sometimes regionize it
// fabulous trick code
private int SupportMethodOne() { }
private double SupportMethodTwo() { }
public void PerformFabulousTrick(Dog spot) {
int herrings = SupportMethodOne();
double pieces = SupportMethodTwo();
// etc
}
#endregion FabulousTrick
// etc
}
You can try Regionerate to help with this. I really like it and it's a Scott Hanselman pick.
As said, I don't think there is a best way as such. But some organisation does help you the programmer.
How often in a long project have you spent time going up and down one or more source files trying to find one of your functions.
So I make use of the #region a lot to in this sort of way -
region Events : All of the event references that this class uses (at least in this particular partial class).
region Controls : All functions that directly interact with controls on a form.
region MDI : set the mdi up
Then there will be some to do with functionality rather than interface,
region Regex searches
I sort of make it up as I go along, but using the same pattern I always use. I must say I have been told by some programmers picking up my work that it is easy to follow and others that its messy.
You can please half the people half the time and the other half a quarter of the time and the other quarter of the time you confuse everyone including yourself. I think Winston Chrchil said that.
Whatever makes your more productive. Some like private fields next to property accessors, some like fields together above the constructors. The biggest thing that can help is grouping "like," elements. I personally like bringing together private methods, private properties, etc.
Try some things out and again, whatever you feel makes you more productive and helps you keep your code maintained.
Each to their own, but I tend to follow the same order that the MSDN help follows.
I also don't like to nest classes or enums, instead create separate files for them, that also makes writing unit tests easier (since it's easy to find the associated test file when you need to add/fix/refactor a test).
IMHO the order isn't that important because VS makes it very easy to find all members (especially if you follow the one class/interface/enum per file approach), and Sandcastle will group them if you want to build docs, so I'd be more concerned about giving them meaningful names.
On top of keeping a consistent set of regions in your class files, I keep all components of a region in alphabetical order. I tend to have a bit of "visual memory" when it comes to reading code and it drives me crazy having to use the navigation dropdown to find code in a file because it's all over the place.
I use the following layout:
events
globals/class-wide fields
private/internal
properties
methods
public/protected
properties
methods
nested classes (although I try to avoid these whenever possible)
I also firmly believe in 1 code "thing" (class, interface, or enum) per file, with the file name the same as the "thing" name. Yes, it makes a larger project but it makes it infinately easier to find things.
I was recently watching a webcast about how to create a fluent DSL and I have to admit, I don't understand the reasons why one would use such an approach (at least for the given example).
The webcast presented an image resizing class, that allows you to specify an input-image, resize it and save it to an output-file using the following syntax (using C#):
Sizer sizer = new Sizer();
sizer.FromImage(inputImage)
.ToLocation(outputImage)
.ReduceByPercent(50)
.OutputImageFormat(ImageFormat.Jpeg)
.Save();
I don't understand how this is better than a "conventional" method that takes some parameters:
sizer.ResizeImage(inputImage, outputImage, 0.5, ImageFormat.Jpeg);
From a usability point of view, this seems a lot easier to use, since it clearly tells you what the method expects as input. In contrast, with the fluent interface, nothing stops you from omitting/forgetting a parameter/method-call, for example:
sizer.ToLocation(outputImage).Save();
So on to my questions:
1 - Is there some way to improve the usability of a fluent interface (i.e. tell the user what he is expected to do)?
2 - Is this fluent interface approach just a replacement for the non existing named method parameters in C#? Would named parameters make fluent interfaces obsolete, e.g. something similar objective-C offers:
sizer.Resize(from:input, to:output, resizeBy:0.5, ..)
3 - Are fluent interfaces over-used simply because they are currently popular?
4 - Or was it just a bad example that was chosen for the webcast? In that case, tell me what the advantages of such an approach are, where does it make sense to use it.
BTW: I know about jquery, and see how easy it makes things, so I'm not looking for comments about that or other existing examples.
I'm more looking for some (general) comments to help me understand (for example) when to implement a fluent interface (instead of a classical class-library), and what to watch out for when implementing one.
2 - Is this fluent interface approach
just a replacement for the non
existing named method parameters in
C#? Would named parameters make fluent
interfaces obsolete, e.g. something
similar objective-C offers:
Well yes and no. The fluent interface gives you a larger amount of flexibility. Something that could not be achieved with named params is:
sizer.FromImage(i)
.ReduceByPercent(x)
.Pixalize()
.ReduceByPercent(x)
.OutputImageFormat(ImageFormat.Jpeg)
.ToLocation(o)
.Save();
The FromImage, ToLocation and OutputImageFormat in the fluid interface, smell a bit to me. Instead I would have done something along these lines, which I think is much clearer.
new Sizer("bob.jpeg")
.ReduceByPercent(x)
.Pixalize()
.ReduceByPercent(x)
.Save("file.jpeg",ImageFormat.Jpeg);
Fluent interfaces have the same problems many programming techniques have, they can be misused, overused or underused. I think that when this technique is used effectively it can create a richer and more concise programming model. Even StringBuilder supports it.
var sb = new StringBuilder();
sb.AppendLine("Hello")
.AppendLine("World");
I would say that fluent interfaces are slightly overdone and I would think that you have picked just one such example.
I find fluent interfaces particularly strong when you are constructing a complex model with it. With model I mean e.g. a complex relationship of instantiated objects. The fluent interface is then a way to guide the developer to correctly construct instances of the semantic model. Such a fluent interface is then an excellent way to separate the mechanics and relationships of a model from the "grammar" that you use to construct the model, essentially shielding details from the end user and reducing the available verbs to maybe just those relevant in a particular scenario.
Your example seems a bit like overkill.
I have lately done some fluent interface on top of the SplitterContainer from Windows Forms. Arguably, the semantic model of a hierarchy of controls is somewhat complex to correctly construct. By providing a small fluent API a developer can now declaratively express how his SplitterContainer should work. Usage goes like
var s = new SplitBoxSetup();
s.AddVerticalSplit()
.PanelOne().PlaceControl(()=> new Label())
.PanelTwo()
.AddHorizontalSplit()
.PanelOne().PlaceControl(()=> new Label())
.PanelTwo().PlaceControl(()=> new Panel());
form.Controls.Add(s.TopControl);
I have now reduced the complex mechanics of the control hierarchy to a couple of verbs that are relevant for the issue at hand.
Hope this helps
Consider:
sizer.ResizeImage(inputImage, outputImage, 0.5, ImageFormat.Jpeg);
What if you used less clear variable names:
sizer.ResizeImage(i, o, x, ImageFormat.Jpeg);
Imagine you've printed this code out. It's harder to infer what these arguments are, as you don't have access to the method signature.
With the fluent interface, this is clearer:
sizer.FromImage(i)
.ToLocation(o)
.ReduceByPercent(x)
.OutputImageFormat(ImageFormat.Jpeg)
.Save();
Also, the order of methods is not important. This is equivalent:
sizer.FromImage(i)
.ReduceByPercent(x)
.OutputImageFormat(ImageFormat.Jpeg)
.ToLocation(o)
.Save();
In addition, perhaps you might have defaults for the output image format, and the reduction, so this could become:
sizer.FromImage(i)
.ToLocation(o)
.Save();
This would require overloaded constructors to achieve the same effect.
It's one way to implement things.
For objects that do nothing but manipulate the same item over and over again, there's nothing really wrong with it. Consider C++ Streams: they're the ultimate in this interface. Every operation returns the stream again, so you can chain together another stream operation.
If you're doing LINQ, and doing manipulation of an object over and over, this makes some sense.
However, in your design, you have to be careful. What should the behavior be if you want to deviate halfway through? (IE,
var obj1 = object.Shrink(0.50); // obj1 is now 50% of obj2
var obj2 = object.Shrink(0.75); // is ojb2 now 75% of ojb1 or is it 75% of the original?
If obj2 was 75% of the original object, then that means you're making a full copy of the object every time (and has its advantages in many cases, like if you're trying to make two instances of the same thing, but slightly differently).
If the methods simply manipulate the original object, then this kind of syntax is somewhat disingenuous. Those are manipulations on the object instead of manipulations to create a changed object.
Not all classes work like this, nor does it make sense to do this kind of design. For example, this style of design would have little to no usefulness in the design of a hardware driver or the core of a GUI application. As long as the design involves nothing but manipulating some data, this pattern isn't a bad one.
You should read Domain Driven Design by Eric Evans to get some idea why is DSL considered good design choice.
Book is full of good examples, best practice advices and design patterns. Highly recommended.
It's possible to use a variation on a Fluent interface to enforce certain combinations of optional parameters (e.g. require that at least one parameter from a group is present, and require that if a certain parameter is specified, some other parameter must be omitted). For example, one could provide a functionality similar to Enumerable.Range, but with a syntax like IntRange.From(5).Upto(19) or IntRange.From(5).LessThan(10).Stepby(2) or IntRange(3).Count(19).StepBy(17). Compile-time enforcement of overly-complex parameter requirements may require the definition of an annoying number of intermediate-value structures or classes, but the approach can in some cases prove useful in simpler cases.
Further to #sam-saffron's suggestion regarding the flexibility of a Fluent Interface when adding a new operation:
If we needed to add a new operation, such as Pixalize(), then, in the 'method with multiple parameters' scenario, this would require a new parameter to be added to the method signature. This may then require a modification to every invocation of this method throughout the codebase in order to add a value for this new parameter (unless the language in use would allow an optional parameter).
Hence, one possible benefit of a Fluent Interface is limiting the impact of future change.