Chaining Parallel Tasks to an End Condition or Error Condition - c#

I'm trying to wrap my head around some of the syntax and structure for parallel tasks in C#, specifically around chaining multiple tasks and handling errors.
The specific sequence of steps I'm looking to create are:
Spawn a parallel task and immediately return to the UI.
In the parallel task:
Do Process1()
If Process1() completes without error, do Process2()
If Process2() completes without error, do Process3()
If all tasks complete without error, do SuccessCondition()
If any task resulted in an error, do ErrorCondition()
It's my understanding that I would create a Task and call ContinueWith() to chain more tasks, passing in a TaskContinuationOptions flag to determine when to do that continuation. Additionally, that success/error conditions would fall through all of the continuations to the end. So I'm currently trying this:
var task = new Task(() => Process1());
var task2 = task.ContinueWith(t => Process2(), TaskContinuationOptions.OnlyOnRanToCompletion);
var task3 = task2.ContinueWith(t => Process3(), TaskContinuationOptions.OnlyOnRanToCompletion);
var task4 = task3.ContinueWith(t => SuccessCondition(t), TaskContinuationOptions.OnlyOnRanToCompletion);
var task5 = task4.ContinueWith(t => ErrorCondition(t), TaskContinuationOptions.NotOnRanToCompletion);
task.Start();
It appears to be behaving as expected, except that within ErrorCondition() the instance of t doesn't appear to have an exception, even if I manually threw one from within, say, Process2(). Looking at the MSDN article for handling exceptions, it says to do this:
try
{
task.Wait();
}
catch (AggregateException ex)
{
// Handle exceptions from a collection on ex
}
However, I tried that and it doesn't seem to have the exceptions there either. Also, by calling .Wait() in the main thread like that, am I negating the parallelism and just blocking? It appears that way in my tests.
So I guess my question is... What's the correct way to chain dependent tasks and handle an overall success/error condition here? Or, how should exceptions thrown from within these tasks be properly caught, while still returning immediately to the UI?

Note that if you're using .NET 4.5 and can use async/await, you can do this much more cleanly:
public async Task DoProcess()
{
try
{
await Task.Run(Process1);
await Task.Run(Process2);
await Task.Run(Process3);
SuccessCondition();
}
catch (Exception ex)
{
ErrorCondition(ex);
}
}
If you launch this from the UI thread, SuccessCondition and ErrorCondition will occur on the UI Thread as well. One functional difference here is that the exception you catch will not be an AggregateException; it will instead be the actual exception thrown during the awaited call that failed.

You would need to add a continuation to all of the tasks, 1-4, with the error handling case to allow an error in any of them to call that function.
For convenience you could create a method to add the same continuation to a collection of tasks. Here's one (feel free to add others for the other overloads of ContinueWith as needed):
public static IEnumerable<Task> ContinueWith(this IEnumerable<Task> tasks
, Action<Task> continuation, TaskContinuationOptions options)
{
return tasks.Select(task => task.ContinueWith(continuation, options))
.ToList();//important for this ToList to be here;
//we want the continuations to be added now, not when the result is iterated
}
This allows you to write:
var errorTasks = new[]{task, task2, task3, task4}
.ContinueWith(ErrorCondition, TaskContinuationOptions.NotOnRanToCompletion);
Error handling for tasks is made so much easier in C# 5.0 with async methods though. It would allow you to transform your code into this:
public static async Task Foo()
{
try
{
await Task.Run(Process1())
await Task.Run(Process2())
await Task.Run(Process3())
SuccessCondition();
}
catch (SomeExceptionType ex)
{
HandleException(ex);
}
}
This functions just as you would think it does as per your requirements, which is awesome.

Related

Is there a ContinueWith for ValueTask?

If an API returns a ValueTask or ValueTask<T>, is there a way to perform a ContinueWith on it, like I'm able to do with Task? Is there a Microsoft-provided NuGet library for doing so with .NET Standard 2.0?
Use valueTask.AsTask(). AsTask() is an escape hatch for just such use cases as yours. The purpose of ValueTask is to avoid allocations whenever possible, but if you're going to invoke a continuation on another thread, you will need to allocate something and it might as well be a Task<T>.
Here you are:
public static async ValueTask ContinueWith<TResult>(this ValueTask<TResult> source,
Action<ValueTask<TResult>> continuationAction)
{
// The source task is consumed after the await, and cannot be used further.
ValueTask<TResult> completed;
try
{
completed = new(await source.ConfigureAwait(false));
}
catch (OperationCanceledException oce)
{
var tcs = new TaskCompletionSource<TResult>();
tcs.SetCanceled(oce.CancellationToken);
completed = new(tcs.Task);
}
catch (Exception ex)
{
completed = new(Task.FromException<TResult>(ex));
}
continuationAction(completed);
}
A simpler implementation would be to Preserve the ValueTask<TResult> before the await, and then invoke the continuationAction passing the preserved task as argument. This would cause invariably an allocation though, even in the case of the successful completion of the task.
The reason that I am avoiding the one-line Task.FromCanceled method in the cancellation case, is because this method requires that the supplied CancellationToken is canceled, otherwise it throws an ArgumentOutOfRangeException.
I know I am posting it too late. However wanted to share the approach I used...
ValueTask<T> vt = ValueTaskTReturningMethod();
var awt = vt.GetAwaiter();
awt.OnCompleted(() => {
T val = awt.GetResult();
//code you want to execute after async operation completes
}

Best way to return from an async void method if an awaited task is canceled [duplicate]

In our application we work a lot with async / await and Tasks. Therefore it does use Task.Run a lot, sometimes with cancellation support using the built in CancellationToken.
public Task DoSomethingAsync(CancellationToken cancellationToken)
{
return Task.Run(() =>
{
while (true)
{
if (cancellationToken.IsCancellationRequested) break;
//do some work
}
}, cancellationToken);
}
If i do now cancel the execution using the CancellationToken the execution does stop at the beginning of the next loop, or if the Task did not start at all it throws an exception (TaskCanceledException inside Task.Run). The question is now why does Task.Run use an Exception to control successful cancellation instead of just returning a completed Task. Is there any specific reason MS did not stick to the "Do NOT use exceptions to control execution flow" rule?.
And how can i avoid Boxing every method that supports cancellation (which are a lot) in an completely useless try catch (TaskCancelledException) block?
Well, you can't really see the difference in your very simple scenario - you're not actually using the result of the Task, and you don't need to propagate the cancellation through a complex call stack.
First, your Task might return a value. What do you return when the operation was cancelled?
Second, there may be other tasks that follow your cancelled task. You probably want to propagate the cancellation through the other tasks at your convenience.
Exceptions propagate. Task cancellation is pretty much identical to Thread.Abort in this usage - when you issue a Thread.Abort, a ThreadAbortException is used to make sure you unwind all the way back to the top. Otherwise, all of your methods would have to check the result of every method they call, check if they were cancelled, and return themselves if needed - and we've already seen that people will ignore error return values in old-school C :)
In the end, task cancellation, just like thread aborts, is an exceptional scenario. It already involves synchronization, stack unwinding etc.
However, this doesn't mean you necessarily have to use try-catch to catch the exception - you can use task states. For example, you can use a helper function like this:
public static Task<T> DefaultIfCanceled<T>(this Task<T> #this, T defaultValue = default(T))
{
return
#this.ContinueWith
(
t =>
{
if (t.IsCanceled) return defaultValue;
return t.Result;
}
);
}
Which you can use as
await SomeAsync().DefaultIfCanceled();
Of course, it should be noted that noöne is forcing you to use this method of cancellation - it's simply provided as a convenience. For example, you could use your own amplified type to preserve the cancellation information, and handle the cancellation manually. But when you start doing that, you'll find the reason why cancellation is handled using exceptions - doing this in imperative code is a pain, so you'll either waste a lot of effort for no gain, or you'll switch to a more functional way of programming (come, we have cookies!*).
(*) Disclaimer: We don't actually have cookies. But you can make your own!
The exception is thrown for a purpose as others in the community have already pointed it out.
However, if you would like to have more control over TaskCanceledException behaviour and still have the logic isolated to one place you may implement an Extension method to extend Task which handles cancellation, something like this -
public async Task DoSomethingAsync(CancellationToken cancellationToken)
{
await Task.Run(() =>
{
while (true)
{
if (cancellationToken.IsCancellationRequested) break;
//do some work
}
}).
WithCancellation(cancellationToken,false); // pass the cancellation token to extension funciton instead to run
}
static class TaskCacellationHelper
{
private struct Void { } // just to support TaskCompletionSource class.
public static async Task WithCancellation(this Task originalTask, CancellationToken ct, bool suppressCancellationExcetion)
{
// Create a Task that completes when the CancellationToken is canceled
var cancelTask = new TaskCompletionSource<Void>();
// When the CancellationToken is canceled, complete the Task
using (ct.Register(
t => ((TaskCompletionSource<Void>)t).TrySetResult(new Void()), cancelTask))
{
// Create a Task that completes when either the original or
// CancellationToken Task completes
Task any = await Task.WhenAny(originalTask, cancelTask.Task);
// If any Task completes due to CancellationToken, throw OperationCanceledException
if (any == cancelTask.Task)
{
//
if (suppressCancellationExcetion == false)
{
ct.ThrowIfCancellationRequested();
}
else
{
Console.WriteLine("Cancelled but exception supressed");
}
}
}
// await original task. Incase of cancellation your logic will break the while loop
await originalTask;
}
}

How to wait the result of async operations without await?

void A()
{
foreach (var document in documents)
{
var res = records.BulkWriteAsync(operationList, writeOptions); // res is Task<BulkWriteResult<JobInfoRecord>>
}
}
After foreach I would like to wait the result of all BulkWriteAsync, how to do this? I don't want to mark A() as async and do the following
await records.BulkWriteAsync(operationList, writeOptions);
Is it good solution?
void A()
{
var tasks = new List<Task<BulkWriteResult<JobInfoRecord>>>();
foreach (var document in documents)
{
var task = records.BulkWriteAsync(operationList, writeOptions);
tasks.Add(task);
}
Task.WaitAll(tasks.ToArray());
}
I call A() in try catch if I will mark public async void A() as async I never be in catch
Well, first you want a Task that represents all the operations. The simplest way to do this is with a bit of LINQ:
Task.WhenAll(documents.Select(i => records.BulkWriteAsync(...)));
Then, you ideally want to await that task. If that isn't possible, you can try
task.GetAwaiter().GetResult();
However, make sure that none of the tasks have thread affinity - that's a great way to get a deadlock. Waiting for a task on the UI thread while the task itself needs the UI thread is a typical example.
The whole point of await is that it allows you to handle asynchronous code as if it were synchronous. So from the outside, it appears as if you never left the method until you actually get to a return (or the end of the method). For this to work, however, your method must return a Task (or Task<T>), and the callee must await your method in turn.
So a code like this:
try
{
tasks = Task.WhenAll(documents.Select(i => ...));
await tasks;
}
catch (Exception ex)
{
// Handle the exception
}
will appear to run completely synchronously, and all exceptions will be handled as usual (though since we're using Task.WhenAll, some will be wrapped in AggregateException).
However, this isn't actually possible to handle with the way .NET and C# is built, so the C# compiler cheats - await is basically a return that gives you a promise of the result you'll get in the future. And when that happens, the control returns back to where the await left the last time. Task is that promise - if you use async void, there's no way for the callee to know what's happening, and it has no option but to continue as if the asynchronous method was a run-and-forget method. If you use async Task, you can await the async method and everything "feels" synchronous again. Don't break the chain, and the illusion is perfect :)

TaskCancellationException how to avoid the exception on success control flow?

In our application we work a lot with async / await and Tasks. Therefore it does use Task.Run a lot, sometimes with cancellation support using the built in CancellationToken.
public Task DoSomethingAsync(CancellationToken cancellationToken)
{
return Task.Run(() =>
{
while (true)
{
if (cancellationToken.IsCancellationRequested) break;
//do some work
}
}, cancellationToken);
}
If i do now cancel the execution using the CancellationToken the execution does stop at the beginning of the next loop, or if the Task did not start at all it throws an exception (TaskCanceledException inside Task.Run). The question is now why does Task.Run use an Exception to control successful cancellation instead of just returning a completed Task. Is there any specific reason MS did not stick to the "Do NOT use exceptions to control execution flow" rule?.
And how can i avoid Boxing every method that supports cancellation (which are a lot) in an completely useless try catch (TaskCancelledException) block?
Well, you can't really see the difference in your very simple scenario - you're not actually using the result of the Task, and you don't need to propagate the cancellation through a complex call stack.
First, your Task might return a value. What do you return when the operation was cancelled?
Second, there may be other tasks that follow your cancelled task. You probably want to propagate the cancellation through the other tasks at your convenience.
Exceptions propagate. Task cancellation is pretty much identical to Thread.Abort in this usage - when you issue a Thread.Abort, a ThreadAbortException is used to make sure you unwind all the way back to the top. Otherwise, all of your methods would have to check the result of every method they call, check if they were cancelled, and return themselves if needed - and we've already seen that people will ignore error return values in old-school C :)
In the end, task cancellation, just like thread aborts, is an exceptional scenario. It already involves synchronization, stack unwinding etc.
However, this doesn't mean you necessarily have to use try-catch to catch the exception - you can use task states. For example, you can use a helper function like this:
public static Task<T> DefaultIfCanceled<T>(this Task<T> #this, T defaultValue = default(T))
{
return
#this.ContinueWith
(
t =>
{
if (t.IsCanceled) return defaultValue;
return t.Result;
}
);
}
Which you can use as
await SomeAsync().DefaultIfCanceled();
Of course, it should be noted that noöne is forcing you to use this method of cancellation - it's simply provided as a convenience. For example, you could use your own amplified type to preserve the cancellation information, and handle the cancellation manually. But when you start doing that, you'll find the reason why cancellation is handled using exceptions - doing this in imperative code is a pain, so you'll either waste a lot of effort for no gain, or you'll switch to a more functional way of programming (come, we have cookies!*).
(*) Disclaimer: We don't actually have cookies. But you can make your own!
The exception is thrown for a purpose as others in the community have already pointed it out.
However, if you would like to have more control over TaskCanceledException behaviour and still have the logic isolated to one place you may implement an Extension method to extend Task which handles cancellation, something like this -
public async Task DoSomethingAsync(CancellationToken cancellationToken)
{
await Task.Run(() =>
{
while (true)
{
if (cancellationToken.IsCancellationRequested) break;
//do some work
}
}).
WithCancellation(cancellationToken,false); // pass the cancellation token to extension funciton instead to run
}
static class TaskCacellationHelper
{
private struct Void { } // just to support TaskCompletionSource class.
public static async Task WithCancellation(this Task originalTask, CancellationToken ct, bool suppressCancellationExcetion)
{
// Create a Task that completes when the CancellationToken is canceled
var cancelTask = new TaskCompletionSource<Void>();
// When the CancellationToken is canceled, complete the Task
using (ct.Register(
t => ((TaskCompletionSource<Void>)t).TrySetResult(new Void()), cancelTask))
{
// Create a Task that completes when either the original or
// CancellationToken Task completes
Task any = await Task.WhenAny(originalTask, cancelTask.Task);
// If any Task completes due to CancellationToken, throw OperationCanceledException
if (any == cancelTask.Task)
{
//
if (suppressCancellationExcetion == false)
{
ct.ThrowIfCancellationRequested();
}
else
{
Console.WriteLine("Cancelled but exception supressed");
}
}
}
// await original task. Incase of cancellation your logic will break the while loop
await originalTask;
}
}

is it possible to catch when any Task terminates due exception and log?

Is it possible to catch when any Task terminates due exception and log? I've added CurrentDomain_UnhandledException handling but this doesn't help.
I create tasks using Task.Factory.StartNew() as usual. When somewhere inside such task exception occurs it crashes silently (but it supposed to work forever, i'm also using LongRunning option). So I want to be notified about such behavior.
Ideallly I want to set some option somewhere to be notified when any Task crashes due exception.
If it is not possible then likely I should add something to each Task I create? Of course I can just add big try{} finally{} block inside each Task, but probably there are better solutions?
Assuming you have a Test as Task to run:
static int Test()
{
throw new Exception();
}
First Approach - Process exception in the caller's thread:
Task<int> task = new Task<int>(Test);
task.Start();
try
{
task.Wait();
}
catch (AggregateException ex)
{
Console.WriteLine(ex);
}
Note: The exception will be of type AggregateException. All actual exceptions are available through ex.InnerExceptions property.
Second Approach - Process exception in some task's thread:
Define the ExceptionHandler this way:
static void ExceptionHandler(Task<int> task)
{
var ex = task.Exception;
Console.WriteLine(ex);
}
Usage:
Task<int> task = new Task<int>(Test);
task.ContinueWith(ExceptionHandler, TaskContinuationOptions.OnlyOnFaulted);
task.Start();
Reference: How to: Handle Exceptions Thrown by Tasks
For tasks that you create yourself, it's reasonably simple: create your own methods which call Task.Factory.StartNew(), but then also call Task.ContinueWith(loggingDelegate, TaskContinuationOptions.OnlyOnFaulted before returning the task.
The problem is that that won't add a fault handler for tasks created by other bits of infrastructure - including by async methods in C# 5. It still might be useful to you though.
You can also use TaskScheduler.UnobservedTaskException, but as per the name that will only be called for exceptions which aren't already observed by something else. (Again, that may be fine for you...)
You can use an extension method that performs an operation when an exception has ocurred.
This happens when the Task gets Faulted. So if it has another tasks to continue with, the next one can check if the previous task was faulted and Log the exception.
I usually use this methods:
//If you want to chain more tasks..
public static Task<T> Continue<T>(this Task<T> task, Action<T> action)
{
if (!task.IsFaulted)
{
task.ContinueWith((t) => action(t.Result), TaskContinuationOptions.ExecuteSynchronously | TaskContinuationOptions.OnlyOnRanToCompletion);
}
return task;
}
public static Task OnException(this Task task, Action<Exception> onFaulted)
{
task.ContinueWith(c =>
{
var excetion = c.Exception;
onFaulted(excetion);
},
TaskContinuationOptions.OnlyOnFaulted |
TaskContinuationOptions.ExecuteSynchronously);
return task;
}
So you can use:
Task.Factory.StartNew(...).OnException(ex => Log(ex));
Hope it helps.
Wrap your task.Wait() in a try/catch block and catch AggregateException. Something like this -
Task<string[]> task1 = Task<string[]>.Factory.StartNew(() => GetAllFiles(path));
// Use this line to throw an exception that is not handled.
try
{
task1.Wait();
}
catch (AggregateException ae)
{
ae.Handle((x) =>
{
if (x is UnauthorizedAccessException) // This we know how to handle.
{
Console.WriteLine("You do not have permission to access all folders
in this path.");
Console.WriteLine("See your network administrator or try
another path.");
return true;
}
return false; // Let anything else stop the application.
});
}
Details can be found here - Handle exceptions thrown by Task.
You can create a OnlyOnFaulted continuation on your Task which observes the exception and logs/reports the problem.
t.ContinueWith(task =>
{
// Report and log error
}, System.Threading.CancellationToken.None, TaskContinuationOptions.OnlyOnFaulted, TaskScheduler.FromCurrentSynchronizationContext());
The above code will run the task on the UI thread because of TaskScheduler.FromCurrentSynchronizationContext(). This may be necessary if you are using winforms and need to notify the user.

Categories

Resources