C# Invoking members from string expression e.g. ""DateTime.Today"" - c#

While codeing for a project. i got in a situation where i need to call the method or the member of a type via string expresssion. for example i want to get the result of DateTime.Today value into a result box or a variable..
Is there any way to call the function or a member of a class from the string expression.?
Here are some of the examples what i am looking for.
DateTime.Now
DateTime.Today.ToString("dd-MM-yyyy")
Environment.SpecialFolder.ApplicationData
Above are some of the expression user may pass into a textbox and get the result by invoking them thru any button.

Here you can find an Valid solution with on the fly compiling link here:
execute c# code at runtime from code file
this should solve your Problem, but it is not really secure.
Depence on the Range of Code execution or "inspection", i would create own commands/rules, to be on the "Save" Side, and prevent the possibility of injecting (evil) Code.
I hope this helps.

If the first part of the expression is always the type, you can use reflection to create the type. Something like this, for example:
string theType = "System.DateTime";
Type t = Type.GetType(theType);
Object o = Activator.CreateInstance(t);
But to invoke the method/property, you would have to cast the object to the type, but you don't know the type until runtime, so that will be problematic.
I think you may want to reconsider your approach. Maybe you can give the user an interface where they can choose some options from a list in order to build their expression. For example, let them choose DateTime, Environment, etc. and then based on that selection you give them other options to choose (e.g. Now if they selected DateTime, etc.).
Free form parsing an expression like you're trying to do is going to be difficult and hackish at best.

Related

Casting to arbitrary non-generic return type at runtime, C#

I'm trying to make a user-friendly debug framework where users can create more debug variables as easily as possible.
I need to cast an object to the return type of my property/method (bool, int, whatever), without knowing what that return type is.
tldr: How can I return a non-generic type (in this example bool) from
public bool MyGetSetProperty {
get {
object obj = new object();
return (bool)obj;
}
}
WITHOUT specifying "return (bool)"? So something like
return (GenericThingHereThatPassesAsBool)obj;
or
return obj as MyGetSetPropertyReturnType;
----------
Detail:
I want users to be able to create new properties in this class as easily as possible - basically copying+pasting the whole code block below, and only replacing "SerializeAll" with their variable name, and the type declaration "bool" with the type they want on the field/property declarations.
In my getter, I have a couple separate checks to see if the entire debug system is enabled. If not, it returns a default value for the given variable.
[Tooltip ("Serialize ALL XML output fields?"), SerializeField]
private bool debugSerializeAll = false;
/// <summary>
/// Serialize ALL XML output fields?
/// </summary>
[DebugValue, DebugDefault (true)]
public bool SerializeAll {
get {
if (!classEnabled || !debug.debugEnabled)
return (bool)GetDefaultValue (MethodBase.GetCurrentMethod ());
return debugSerializeAll;
}
set { debugSerializeAll = value; }
}
The thing is, I can't return "default" because the default value can be overridden - see the "DebugDefault" attribute where the "default" value for this bool is actually "true", at least as far as my debug system is concerned. The method "GetDefaultValue" accommodates for that, and it returns an object that could be a string, int, bool, anything.
I'm already doing funky reflection stuff to access the MethodInfo, PropertyInfo, etc of the getter and property SerializeAll. I just can't figure out how to not have to also specify the (bool) cast on the return. Again, the goal is as little human editing as possible.
Thank you!
You should be able to do this with a cast to dynamic.
return (dynamic)GetDefaultValue (MethodBase.GetCurrentMethod ());
Bear in mind that the compiler isn't actually making this into a cast to bool. Rather, this makes the compiler ignore compile-time type-safety, and instead the program will use reflection at runtime to figure out the best way to take the value returned from GetDefaultValue and turn it into what it needs to be.
I want users to be able to create new properties in this class as easily as possible...
This is a good principle.
... basically copying+pasting the whole code block below, and only replacing "SerializeAll" with their variable name, and the type declaration "bool" with the type they want on the field/property declarations.
That totally breaks the principle you just mentioned, and results in a bunch of boilerplate code and other code smells.
In theory, you could probably create a Fody Weaver or something to add this boilerplate code upon compilation. But that's probably more work than it's worth.
I would hazard a guess that this is an "XY Problem", where you're asking how to achieve the solution that you've imagined, rather than asking how to solve the problem you're actually facing.
Why should every property in your class return a completely different value if certain private fields are set a certain way? This sounds like a big Separation of Concerns problem, where you're tasking your class with doing two completely different things. I strongly suggest you find another way to solve the problem you're trying to solve. For example, when code tries to get an instance of your class, it could go through a method that checks the classEnabled and debug.debugEnabled concepts (which probably belong in a different class), and returns an instance with the properties all set to their defaults.
Please Link click here -> How to cast Object to boolean?
or
I think you need to study for Generic class
Check if a class is derived from a generic class

Access <AnonymousType> fields

I have an AnonymousType object that contacts two fields with their values. How can I access the value of these fields?
Ex:
SourceTypeObject { Source_Type_Id = 1, Source_Type_Name = "bibliography" }
I need to do something like : SourceTypeObject.Source_Type_Id
Is that possible?
EDIT:
Here's what I get if I tried to access the property directly:
Yes, this is the exact purpose of anonymous types. The only thing that might prevent you from doing so is if you passed the anonymous type around as a parameter with type "object". This would hide information about the anonymous type, and it would look like just any old object then.
The only recourse if this is the case is to use reflection, which is slow and awkward. Anonymous types are a meant to be a very "local" phenomenon, and if you find yourself wanting to use them elsewhere in the program, it's worth the time to promote it to a real type.
EDIT: In response to the image you posted, assuming the array is declared locally just outside of view, try to replace the object SourceTypeObject with var SourceTypeObject. This allows it to infer the anonymous type instead of being told that it's an object.

List<dynamic> elements have fields but I cannot access them. Why?

I need to loop over a List<dynamic> objects.
The list's objects all have values, but for some reason, I am not able to access any of the dynamic object fields. Below is a screenshot of my debug window:
There you can see the object contains fields (such Alias, Id, Name, etc).
I tried both casting it to a IDictionary<string, object> and ExpandoObject, to no avail. I did not face such a thing before: failing to access existing fields in a dynamic object when they exist.
What is wrong here?
The code is throwing a Microsoft.CSharp.RuntimeBinder.RuntimeBinderException with a message stating {"'object' does not contain a definition for 'Name'"}.
The list was created adding anonymously-typed objects, like this:
return new List<dynamic>(fields.Select(field => new
{
Id = field.Id,
Alias = field.Alias,
Name = field.Name,
Type = field.Type,
Value = field.Value,
SortOrder = field.SortOrder
}));
where fields is an ICollection<Field>, a strongly-typed collection.
The telling part is the exception:
{"'object' does not contain a definition for 'Name'"}.
This indicates that the runtime binder was not actually capable of accessing the type you're passing in dynamic (since dynamic does actually enforce visibility rules).
The most likely cause of this is that you're creating the anonymous type in a different assembly from the one where you're subsequently reading it - since anonymous types are declared internal, the consuming assembly cannot access it, causing the error message above.
Contrast with the usual case of runtime binder exceptions:
'<>f__AnonymousType0< string >' does not contain a definition for 'Name'
EDIT:
A possible solution to the problem is to use the InternalsVisibleToAttribute on the assembly containing the anonymous type. However, this is code smell - just like any other use of InternalsVisibleToAttribute or internal itself.
A better way would be to make sure you don't actually pass anonymous types over assembly boundaries - after all, they shouldn't even be used outside of the method they originated from; the fact that they are is basically an implementation detail of .NET - they didn't have another way to do the same thing. This could change in future versions, making the InternalsVisibleToAttribute solution doubly unreliable.
The way your code is using dynamic suggests that your team has flawed assumptions about how dynamic works and how it's supposed to be used. Note how the actual runtime type of List<dynamic> is actually List<object>. The same goes for arguments of type dynamic (which are again just object, albeit marked with DynamicAttribute). And in fact, that really is what dynamic is - it's a way to handle runtime dynamic dispatch - it's not a property of the type or anything, it's just the way you actually invoke whatever you're trying to invoke. For C#, dynamic allows you to skip most of the compiler checks when working with those dynamic types, and it generates some code to handle the dispatch for you automatically, but all of that only happens inside the method where you actually use the dynamic keyword - if you used List<object>, the end result would be exactly the same.
In your code, there's no reason not to use simple static types. Dynamic typing doesn't really give you any benefits, apart from the effort to code the types themselves. If your co-workers don't like that, well, they should present a better solution - the problem is quite obvious, and it's something you need to deal with.
Much worse, it explicitly hides all context, all the type information. That's not something you want in an API, internal or not! If you want to hide the concrete types being used, why not - but you should still expose an interface instead. I suspect this is the reason why anonymous types can't implement interfaces - it would encourage you to go entirely the wrong way.

C# alternative to tuple

I have a dbf file (dBase) that I want to read, put each row into a single list (since a row represents data about one shapefile object), and then be able to modify the list (e.g., convert fields which represent the name to a string). This means that the datatype need to be able to hold both Ints, strings, bool and so on, and add items to, it. In python I could do this with lists, but since sets cant be modified, I cant use them.
This sounds like a (exact) duplicate to Alternative to Tuples,
but it isn't. These questions are based on the assumption that you know which objects you want beforehand; I don't.
I'm on .NET 4.5, btw.
Use dynamic - it is a perfect use case for it:
Visual C# 2010 introduces a new type, dynamic. The type is a static type, but an object of type dynamic bypasses static type checking. In most cases, it functions like it has type object. At compile time, an element that is typed as dynamic is assumed to support any operation. Therefore, you do not have to be concerned about whether the object gets its value from a COM API, from a dynamic language such as IronPython, from the HTML Document Object Model (DOM), from reflection, or from somewhere else in the program. However, if the code is not valid, errors are caught at run time.
If you want to be able to easily add properties at runtime and change their types, you can use ExpandoObject with dynamic, for example:
dynamic expando = new ExpandoObject();
expando.SomeProperty = "1234";
Console.WriteLine(expando.SomeProperty);
Console.WriteLine(expando.SomeProperty.GetType().FullName); // string
expando.SomeProperty = int.Parse(expando.SomeProperty);
Console.WriteLine(expando.SomeProperty);
Console.WriteLine(expando.SomeProperty.GetType().FullName); // int
Have you tried using the dynamic type?

TypeConverter vs. Convert vs. TargetType.Parse

As far as I know, there are at least 3 ways to convert data types in .NET:
using System.ComponentModel.TypeConverter
var conv = System.ComponentModel.TypeDescriptor.GetConverter(typeof(int));
var i1 = (int)conv.ConvertFrom("123");
using System.Convert.ChangeType():
var i2 = (int) Convert.ChangeType("123", typeof (int));
using the Parse/TryParse methods of the destination type:
var i3 = int.Parse("123"); // or TryParse
Are there any guidelines or rules-of-thumb when to use which method to convert between the .NET base data types (especially from string to some other data type)?
I'm going to post here 6 years late, because I think this is a good question and I am not satisfied with the existing answers.
The static Parse/TryParse methods can be used only when you want to convert from string to the type that has those methods. (use TryParse when you expect that the conversion may fail).
The point of System.Convert is, as its documentation says, to convert from a base data type to another base data type. Note that with Convert you also have methods that take an Object and figure out by themselves how to convert it.
As to System.ComponentModel.TypeConverter, as the "typeconverter" stack overflow tag's documentation, they are used primarily to convert to and from string, when you want to provide a text representation of a class instance for use by designer serialization or for display in property grids
Convert
Convert class uses the IConvertible methods implemented in the target type.
Unfortunately, implementing IConvertible means writing lots of boilerplate code and Convert.ChangeType causes boxing if the target type is a struct.
TypeConverterAttribute
TypeDescriptor.GetConverter uses the TypeConverterAttribute and IMHO offers both a better API to convert a type and a more elegant way to make a type convertible. But it suffers the same performance issues with the Convert class, caused by the methods not being generic.
Parse/TryParse
Using T.Parse/T.TryParse methods is the de facto way of creating an object from a string since it doesn't involve unnecessary boxing. They also usually have overloads that provide greater control of how to parse the string.
TryParse methods allow you to handle cases where the string you want to parse is obtained from user input or another mean that doesn't guarantee a properly formatted string, without throwing exceptions.
So you should call the type's Parse/TryParse methods when you can and fallback to the other ways only when you don't know the target type in the compile time, i.e. when you only have a Type object that represents your target type.
You can also have look at my little library called ValueString that finds the most suitable parsing method of a type and uses it to parse the string.
According to my personal preference and coding standards I choose between the following:
Convert. I use this when I am absolutely sure that the values will be what I expect.
int i = Convert.ToInt32("123");
TryParse. I use this when I am handling user input. This also has the benefit to be able to use localized formatting when parsing.
int i = 0;
bool parsed = Int32.TryParse("123", out i);
There is also the possibility to use TryParseExact, where a certain pattern can be parsed. It can be useful in certain cases.
Just found out a case that TypeConvert.ConvertFrom(object) throws exception.
If you want to convert an Integer 0/1 to a Boolean. You will get exception using TypeConvert.ConvertFrom(1) or (0). In this case, Convert.ChangeType(1, System.Boolean) works.
As a general rule of thumb, you should be avoiding the Convert class altogether. There are reasons to use it (e.g, you do not know the source type), but if you already know your source type is a string then Parse (or, more correctly, TryParse) is always the right method to use.
As for type converters, they are more often than not used when a framework (such as WPF) uses reflection to determine the right sort of type converter.
You forgot another way of converting, that is the direct cast. Take this code for example
object i = 1;
int myInt = (int)i;
This is a bit of a contrived example, but I already know that i is an int, its just that its boxed into an object. In this case I do not need to convert i, I just need to directly cast it to the type which I know it already is.
I pretty much always use the int/double/etc.Parse() methods, when I'm certain it's a number. In any case of doubt, I us the .TryParse() methods, as an all-in-one solution including parsing and checking. I have this feeling that checking and parsing combined is slightly more performant than doing them separately.
TypeConverter is probably only useful when you don't really know the types at compile time.
Another late answer. I have an application where I was using some code that looks like this:
var finalValue = Convert.ChangeType(sourceValue, targetProperty.PropertyType);
sourceValue would be a string representation of what I wanted which normally would be a primitive under a wrapper class. This way would work with regular data types. Even with entire classes. However, one day I stupidly decided to change the datatype of a property that was a double to a nullable one double? guess what? boom!
invalid cast from string to nullable double
This is the perfect scenario where you should use the TypeConverter class as follows:
void Main()
{
var ss = new[] {"2.01", "3.99", ""};
var conv = TypeDescriptor.GetConverter(typeof(A).GetProperties().First().PropertyType);
Console.WriteLine(string.Join(",", ss.Select(s => conv.ConvertFrom(s))));
}
class A {
public double? b {get; set;}
}
//2.01,3.99,

Categories

Resources