find set bits positions in a byte - c#

I was tyring to create a sparse octree implementation like the people at nVidia ("Efficient Sparse Voxel Octrees") were doing for their voxel things when I came across this issue:
I have a bitfield of type byte (so 8 bits only) that tells me where the leafs of the octree are (1 says leaf, 0 means no leaf, 8 nodes attached --> 8 bit). What I want to do now is returning an array of the leaf positions. My current implementation is using a while loop to find out if the LSB is set. The input is shifted by 1 afterwards. So here's how I do that:
int leafposition = _leafmask & _validmask;
int[] result = new int[8];
int arrayPosition = 0;
int iteration = 0;
while ( leafposition > 0 )
{
iteration++; //nodes are not zero-indexed ... ?
if ( (leafposition & 1) == 1 ) // LSB set?
{
result.SetValue( iteration, arrayPosition );
arrayPosition++;
};
leafposition = leafposition >> 1;
}
return result;
This is not looking elegant and has two things that are disturbing:
This while loop mimics a for loop
the result array will most likely be smaller that 8 values, but resizing is costly
I expect the result to be like [2,4,6] for 42 (0010 1010).
Can anyone provide a more elegant solution that is still readable?
Result
I am using a function for the octree leaf count I implemented earlier to set the array to an appropriate size.

If you're going after code conciseness, I would use this:
int[] result = new int[8];
byte leafposition = 42;
int arrayPosition = 0;
for (int iteration = 0; iteration < 8; ++iteration)
if ((leafposition & (1 << iteration)) != 0)
result[arrayPosition++] = iteration + 1; // one-indexed
If you're going after performance, I would use a pre-populated array (of 256 entries). You can either generate this statically (at compile-time) or lazily (before calling your method the first time).
int[][] leaves =
{
/* 00000000 */ new int[] { },
/* 00000001 */ new int[] { 1 },
/* 00000010 */ new int[] { 2 },
/* 00000011 */ new int[] { 1, 2 },
/* 00000100 */ new int[] { 3 },
/* 00000101 */ new int[] { 1, 3 },
/* 00000110 */ new int[] { 2, 3 },
/* 00000111 */ new int[] { 1, 2, 3 },
/* 00001000 */ new int[] { 4 },
/* 00001001 */ new int[] { 1, 4 },
/* ... */
};
byte leafposition = 42;
int[] result = leaves[leafposition];
Edit: If you're using the lookup table and can afford a one-time initialization (that will be amortized through many subsequent uses), I would suggest creating it dynamically (rather than bloating your source code). Here's some sample code in LINQ; you can use the loop version instead.
int[][] leaves = new int[256][];
for (int i = 0; i < 256; ++i)
leaves[i] = Enumerable.Range(0, 8)
.Where(b => (i & (1 << b)) != 0)
.Select(b => b + 1)
.ToArray();

Here's a C-style solution that uses __builtin_ffs
int arrayPosition = 0;
unsigned int tmp_bitmap = original_bitfield;
while (tmp_bitmap > 0) {
int leafposition = __builtin_ffs(tmp_bitmap) - 1;
tmp_bitmap &= (tmp_bitmap-1);
result[arrayPosition++] = leafposition;
}

how about,
public static IEnumerable<int> LeafPositions(byte octet)
{
for (var i = 1; octet > 0; octet >>= 1, i++)
{
if ((octet & 1) == 1)
{
yield return i;
}
}
}
or, easier to read in my opinion.
IEnumerable<int> LeafPositions(byte octet)
{
if ((octet & 1) == 1) yield return 1;
if ((octet & 2) == 2) yield return 2;
if ((octet & 4) == 4) yield return 3;
if ((octet & 8) == 8) yield return 4;
if ((octet & 16) == 16) yield return 5;
if ((octet & 32) == 32) yield return 6;
if ((octet & 64) == 64) yield return 7;
if ((octet & 128) == 128) yield return 8;
}
Or, going to extremes
IEnumerable<int> LeafPositions(byte octet)
{
switch (octet)
{
case 1:
yield return 1;
break;
case 2:
yield return 2;
break;
case 3:
yield return 1;
yield return 2;
break;
...
case 255:
yield return 1;
yield return 2;
yield return 3;
yield return 4;
yield return 5;
yield return 6;
yield return 7;
yield return 8;
break;
}
yield break;
}

Related

Optimal solution for "Bitwise AND" problem in C#

Problem statement:
Given an array of non-negative integers, count the number of unordered pairs of array elements, such that their bitwise AND is a power of 2.
Example:
arr = [10, 7, 2, 8, 3]
Answer: 6 (10&7, 10&2, 10&8, 10&3, 7&2, 2&3)
Constraints:
1 <= arr.Count <= 2*10^5
0 <= arr[i] <= 2^12
Here's my brute-force solution that I've come up with:
private static Dictionary<int, bool> _dictionary = new Dictionary<int, bool>();
public static long CountPairs(List<int> arr)
{
long result = 0;
for (var i = 0; i < arr.Count - 1; ++i)
{
for (var j = i + 1; j < arr.Count; ++j)
{
if (IsPowerOfTwo(arr[i] & arr[j])) ++result;
}
}
return result;
}
public static bool IsPowerOfTwo(int number)
{
if (_dictionary.TryGetValue(number, out bool value)) return value;
var result = (number != 0) && ((number & (number - 1)) == 0);
_dictionary[number] = result;
return result;
}
For small inputs this works fine, but for big inputs this works slow.
My question is: what is the optimal (or at least more optimal) solution for the problem? Please provide a graceful solution in C#. 😊
One way to accelerate your approach is to compute the histogram of your data values before counting.
This will reduce the number of computations for long arrays because there are fewer options for value (4096) than the length of your array (200000).
Be careful when counting bins that are powers of 2 to make sure you do not overcount the number of pairs by including cases when you are comparing a number with itself.
We can adapt the bit-subset dynamic programming idea to have a solution with O(2^N * N^2 + n * N) complexity, where N is the number of bits in the range, and n is the number of elements in the list. (So if the integers were restricted to [1, 4096] or 2^12, with n at 100,000, we would have on the order of 2^12 * 12^2 + 100000*12 = 1,789,824 iterations.)
The idea is that we want to count instances for which we have overlapping bit subsets, with the twist of adding a fixed set bit. Given Ai -- for simplicity, take 6 = b110 -- if we were to find all partners that AND to zero, we'd take Ai's negation,
110 -> ~110 -> 001
Now we can build a dynamic program that takes a diminishing mask, starting with the full number and diminishing the mask towards the left
001
^^^
001
^^
001
^
Each set bit on the negation of Ai represents a zero, which can be ANDed with either 1 or 0 to the same effect. Each unset bit on the negation of Ai represents a set bit in Ai, which we'd like to pair only with zeros, except for a single set bit.
We construct this set bit by examining each possibility separately. So where to count pairs that would AND with Ai to zero, we'd do something like
001 ->
001
000
we now want to enumerate
011 ->
011
010
101 ->
101
100
fixing a single bit each time.
We can achieve this by adding a dimension to the inner iteration. When the mask does have a set bit at the end, we "fix" the relevant bit by counting only the result for the previous DP cell that would have the bit set, and not the usual union of subsets that could either have that bit set or not.
Here is some JavaScript code (sorry, I do not know C#) to demonstrate with testing at the end comparing to the brute-force solution.
var debug = 0;
function bruteForce(a){
let answer = 0;
for (let i = 0; i < a.length; i++) {
for (let j = i + 1; j < a.length; j++) {
let and = a[i] & a[j];
if ((and & (and - 1)) == 0 && and != 0){
answer++;
if (debug)
console.log(a[i], a[j], a[i].toString(2), a[j].toString(2))
}
}
}
return answer;
}
function f(A, N){
const n = A.length;
const hash = {};
const dp = new Array(1 << N);
for (let i=0; i<1<<N; i++){
dp[i] = new Array(N + 1);
for (let j=0; j<N+1; j++)
dp[i][j] = new Array(N + 1).fill(0);
}
for (let i=0; i<n; i++){
if (hash.hasOwnProperty(A[i]))
hash[A[i]] = hash[A[i]] + 1;
else
hash[A[i]] = 1;
}
for (let mask=0; mask<1<<N; mask++){
// j is an index where we fix a 1
for (let j=0; j<=N; j++){
if (mask & 1){
if (j == 0)
dp[mask][j][0] = hash[mask] || 0;
else
dp[mask][j][0] = (hash[mask] || 0) + (hash[mask ^ 1] || 0);
} else {
dp[mask][j][0] = hash[mask] || 0;
}
for (let i=1; i<=N; i++){
if (mask & (1 << i)){
if (j == i)
dp[mask][j][i] = dp[mask][j][i-1];
else
dp[mask][j][i] = dp[mask][j][i-1] + dp[mask ^ (1 << i)][j][i - 1];
} else {
dp[mask][j][i] = dp[mask][j][i-1];
}
}
}
}
let answer = 0;
for (let i=0; i<n; i++){
for (let j=0; j<N; j++)
if (A[i] & (1 << j))
answer += dp[((1 << N) - 1) ^ A[i] | (1 << j)][j][N];
}
for (let i=0; i<N + 1; i++)
if (hash[1 << i])
answer = answer - hash[1 << i];
return answer / 2;
}
var As = [
[10, 7, 2, 8, 3] // 6
];
for (let A of As){
console.log(JSON.stringify(A));
console.log(`DP, brute force: ${ f(A, 4) }, ${ bruteForce(A) }`);
console.log('');
}
var numTests = 1000;
for (let i=0; i<numTests; i++){
const N = 6;
const A = [];
const n = 10;
for (let j=0; j<n; j++){
const num = Math.floor(Math.random() * (1 << N));
A.push(num);
}
const fA = f(A, N);
const brute = bruteForce(A);
if (fA != brute){
console.log('Mismatch:');
console.log(A);
console.log(fA, brute);
console.log('');
}
}
console.log("Done testing.");
int[] numbers = new[] { 10, 7, 2, 8, 3 };
static bool IsPowerOfTwo(int n) => (n != 0) && ((n & (n - 1)) == 0);
long result = numbers.AsParallel()
.Select((a, i) => numbers
.Skip(i + 1)
.Select(b => a & b)
.Count(IsPowerOfTwo))
.Sum();
If I understand the problem correctly, this should work and should be faster.
First, for each number in the array we grab all elements in the array after it to get a collection of numbers to pair with.
Then we transform each pair number with a bitwise AND, then counting the number that satisfy our 'IsPowerOfTwo;' predicate (implementation here).
Finally we simply get the sum of all the counts - our output from this case is 6.
I think this should be more performant than your dictionary based solution - it avoids having to perform a lookup each time you wish to check power of 2.
I think also given the numerical constraints of your inputs it is fine to use int data types.

c# - left shift an entire byte array

In C#, is there a way to right/left shift an entire byte array (and subsequently adding a byte to a particular side for the last bit isn't lost)?
I know this sounds like a weird request, but I'd still like to know if its possible and/or how to begin doing it.
Just for grins. shifting and rotating bytes in a byte array. (not bitshifting)
shift left, zero fill:
mybytes.Skip(1).Concat(new byte[] { 0 }).ToArray();
shift right, zero fill:
(new byte[] {0}).Concat(mybytes.Take(mybytes.Length - 1)).ToArray();
rotate left:
mybytes.Skip(1).Concat(mybytes.Take(1)).ToArray();
rotate right:
mybytes.Skip(mbytes.Length - 1).Concat(mbytes.Take(mbytes.Length - 1)).ToArray();
Yes, you can. See the following methods I wrote:
/// <summary>
/// Rotates the bits in an array of bytes to the left.
/// </summary>
/// <param name="bytes">The byte array to rotate.</param>
public static void RotateLeft(byte[] bytes)
{
bool carryFlag = ShiftLeft(bytes);
if (carryFlag == true)
{
bytes[bytes.Length - 1] = (byte)(bytes[bytes.Length - 1] | 0x01);
}
}
/// <summary>
/// Rotates the bits in an array of bytes to the right.
/// </summary>
/// <param name="bytes">The byte array to rotate.</param>
public static void RotateRight(byte[] bytes)
{
bool carryFlag = ShiftRight(bytes);
if (carryFlag == true)
{
bytes[0] = (byte)(bytes[0] | 0x80);
}
}
/// <summary>
/// Shifts the bits in an array of bytes to the left.
/// </summary>
/// <param name="bytes">The byte array to shift.</param>
public static bool ShiftLeft(byte[] bytes)
{
bool leftMostCarryFlag = false;
// Iterate through the elements of the array from left to right.
for (int index = 0; index < bytes.Length; index++)
{
// If the leftmost bit of the current byte is 1 then we have a carry.
bool carryFlag = (bytes[index] & 0x80) > 0;
if (index > 0)
{
if (carryFlag == true)
{
// Apply the carry to the rightmost bit of the current bytes neighbor to the left.
bytes[index - 1] = (byte)(bytes[index - 1] | 0x01);
}
}
else
{
leftMostCarryFlag = carryFlag;
}
bytes[index] = (byte)(bytes[index] << 1);
}
return leftMostCarryFlag;
}
/// <summary>
/// Shifts the bits in an array of bytes to the right.
/// </summary>
/// <param name="bytes">The byte array to shift.</param>
public static bool ShiftRight(byte[] bytes)
{
bool rightMostCarryFlag = false;
int rightEnd = bytes.Length - 1;
// Iterate through the elements of the array right to left.
for (int index = rightEnd; index >= 0; index--)
{
// If the rightmost bit of the current byte is 1 then we have a carry.
bool carryFlag = (bytes[index] & 0x01) > 0;
if (index < rightEnd)
{
if (carryFlag == true)
{
// Apply the carry to the leftmost bit of the current bytes neighbor to the right.
bytes[index + 1] = (byte)(bytes[index + 1] | 0x80);
}
}
else
{
rightMostCarryFlag = carryFlag;
}
bytes[index] = (byte)(bytes[index] >> 1);
}
return rightMostCarryFlag;
}
It seems you are performing bit operations on large amount of bits storing them in a byte array. Consider using BitArray class and BitVector32 Structure. Depending on what you are doing with bits you can create a class like this. Note that shifting works in O(1) instead of O(n).
public class BitRing : IEnumerable<bool>
{
private readonly BitArray m_InnerBitArray;
private int m_StarIndex;
public BitRing(byte[] bytes)
{
m_InnerBitArray = new BitArray(bytes);
m_StarIndex = 0;
}
public void ShiftLeft()
{
m_StarIndex++;
}
public void ShiftRight()
{
m_StarIndex--;
}
public bool this[int i]
{
get
{
int index = GetIndex(i);
return m_InnerBitArray[index];
}
set
{
int index = GetIndex(i);
m_InnerBitArray[index] = value;
}
}
private int GetIndex(int i)
{
return i - m_StarIndex%m_InnerBitArray.Count;
}
public IEnumerator<bool> GetEnumerator()
{
for (int i = m_StarIndex; i < m_InnerBitArray.Count; i++)
{
yield return m_InnerBitArray[i];
}
for (int i = 0; i < m_StarIndex; i++)
{
yield return m_InnerBitArray[i];
}
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
}
I've given it some more thought and realized that this probably fits the question better:
public static void Main()
{
byte[] bytes = new byte[] { 0xFF, 0x01, 0x80, 0x81 };
Stack<bool> bitStack = CreateBitStack(bytes);
ShiftLeftExpand(bitStack, 1);
byte[] newBytes = CreateByteArray(bitStack);
}
public static void ShiftLeftExpand(Stack<bool> bitStack, int count)
{
while (count-- > 0)
{
bitStack.Push(false);
}
}
public static Stack<bool> CreateBitStack(byte[] bytes)
{
Stack<bool> bitStack = new Stack<bool>(bytes.Length * 8);
for (int bytePosition = 0; bytePosition < bytes.Length; bytePosition++)
{
for (int bitPosition = 7; bitPosition >= 0; bitPosition--)
{
int bitMask = 0x01 << bitPosition;
bitStack.Push((bytes[bytePosition] & bitMask) > 0);
}
}
return bitStack;
}
public static byte[] CreateByteArray(Stack<bool> bitStack)
{
int newArrayLength = (int)Math.Ceiling(bitStack.Count / 8.0);
byte[] bytes = new byte[newArrayLength];
int bitCounter = 0;
while (bitStack.Count > 0)
{
bool? bitValue = bitStack.Pop();
int bitPosition = bitCounter % 8;
int bytePosition = newArrayLength - 1 - bitCounter / 8;
if (bitValue == true)
{
bytes[bytePosition] = (byte)(bytes[bytePosition] | (0x01 << bitPosition));
}
bitCounter++;
}
return bytes;
}
A similar technique can be applied to perform the right shift.
Linq way:
static class Shifter
{
public static byte[] ShiftLeft(this byte[] array, int n)
{
var a = array.Select(x => (byte)(x >> 8 - n % 8)).Concat(new byte[(7 + n) / 8]).Select((x, i) => new Tuple<int, byte>(i - (n % 8 == 0 ? 0 : 1), x));
var b = array.Select(x => (byte)(x << n % 8)).Concat(new byte[n / 8]).Select((x, i) => new Tuple<int, byte>(i, x));
return (from x in a
join y in b on x.Item1 equals y.Item1 into yy
from y in yy.DefaultIfEmpty()
select (byte)(x.Item2 | (y == null ? 0 : y.Item2))).ToArray();
}
public static byte[] ShiftRight(this byte[] array, int n)
{
return (new byte[n/8]).Concat(ShiftLeft(array, (8 - (n%8))%8)).ToArray();
}
}
I don't think there's a built-in way. I implemented the shift-left operation you described below (assuming little endian). It's not quite as elegant as you can do with x86 assembly (shift with carry instructions), but pretty close to what you could do with C.
Alternately, you can almost use the BigInteger struct (.NET 4 and above) which has a constructor that takes a byte array and a ToByteArray method. But its shift left operation sign-extends the high byte and its shift right operation truncates. So you'd need to compensate for both to get the exact behavior you described.
// Left-shifts a byte array in place. Assumes little-endian. Throws on overflow.
static public void ShiftByteArrayLeft(byte[] array)
{
if (array == null)
throw new ArgumentNullException("array");
if (array[array.Length - 1] >= 0x80)
throw new OverflowException();
// move left-to-right, left-shifting each byte
for (int i = array.Length - 1; i >= 1; --i)
{
// left-shift current byte
array[i] <<= 1;
// carry the bit from the next/right byte if needed
if (array[i - 1] >= 0x80)
++array[i];
}
// finally shift the left-shift the right-most byte
array[0] <<= 1;
}
// Left-shifts a byte array in place. Assumes little-endian. Grows array as needed.
static public void ShiftByteArrayLeftAutoGrow(ref byte[] array)
{
if (array == null)
throw new ArgumentNullException("array");
if (array[array.Length - 1] >= 0x80)
{
// allocate a bigger array and do the left-shift on it
byte[] oldArray = array;
array = new byte[oldArray.Length + 1];
Array.Copy(oldArray, 0, array, 0, oldArray.Length);
}
ShiftByteArrayLeft(array);
}
Shift left:
for (int i = byteArray.Length - 1; i >= 0; i--) byteArray[i] = (byte)((byteArray[i] << 1) | ((i == 0) ? 0 : byteArray[i - 1] >> 7));
Shift right:
for (int i = 0; i <= byteArray.Length - 1; i++) byteArray[i] = (byte)((byteArray[i] >> 1) | ((i == byteArray.Length - 1) ? 0 : byteArray[i + 1] << 7));
These two functions will shift the bits in an array of bytes the specified amount, shifting them into neighboring bytes as needed. Optionally, they can wrap the bits from one end of the array to the other. Note that they create a new array, but the code can be easily changed to modify the passed 'array' instead...
public static byte[] ShiftRight(byte[] array, int shift, bool wrap = false) {
if(shift < 0) {
throw new ArgumentOutOfRangeException("shift");
} else if(shift == 0) {
return (byte[])array.Clone();
} else {
if(wrap) shift %= (array.Length * 8);
if(shift >= (array.Length * 8)) return new byte[array.Length];
var offset = (shift / 8);
shift %= 8;
var ʀ = new byte[array.Length];
for(var ɪ = 0; ɪ < ʀ.Length; ɪ++) {
var indexL_ɪ = (ɪ + offset);
var indexH_ɪ = (ɪ + offset + 1);
if(wrap) {
if(indexL_ɪ >= array.Length) indexL_ɪ -= array.Length;
if(indexH_ɪ >= array.Length) indexH_ɪ -= array.Length;
}
if(indexL_ɪ < array.Length) ʀ[ɪ] = (byte)(array[indexL_ɪ] >> shift);
if(indexH_ɪ < array.Length) ʀ[ɪ] |= (byte)(array[indexH_ɪ] << (8 - shift));
}
return ʀ;
}
}
public static byte[] ShiftLeft(byte[] array, int shift, bool wrap = false) {
if(shift < 0) {
throw new ArgumentOutOfRangeException("shift");
} else if(shift == 0) {
return (byte[])array.Clone();
} else {
if(wrap) shift %= (array.Length * 8);
if(shift >= (array.Length * 8)) return new byte[array.Length];
var offset = (shift / 8);
shift %= 8;
for(var ɪ = 0; ɪ < ʀ.Length; ɪ++) {
var indexL_ɪ = (ɪ - offset - 1);
var indexH_ɪ = (ɪ - offset);
if(wrap) {
if(indexL_ɪ < 0) indexL_ɪ += array.Length;
if(indexH_ɪ < 0) indexH_ɪ += array.Length;
}
if(indexL_ɪ >= 0) ʀ[ɪ] = (byte)(array[indexL_ɪ] >> (8 - shift));
if(indexH_ɪ >= 0) ʀ[ɪ] |= (byte)(array[indexH_ɪ] << shift);
}
return ʀ;
}
}

Split 8 bit byte

So Say I have an array of bytes that is 16 long, with each 8 bits representing my data and an array that is 8 long with each 4 bits (so 2 per byte) representing my data.
If I wanted to loop over these and get the values, what would be the easiest way of doing so?
My poor attempt would be something like this, but this doesn't appear to be working as I expect.
for(int i = 0; i < bigByteArray.Length; i++)
{
byte BigByteInfo = bigByteArray[i];
byte SmallByteInfo;
if(i % 2 == 0)
{
SmallByteInfo = smallByteArray[i / 2] % 16;
}
else
{
SmallByteInfo = smallByteArray[i / 2] / 16;
}
//Use of data Here.
}
you can use this class as helper class
public class FoutBitsArrayEnumerator : IEnumeable<byte>
{
FoutBitsArrayEnumerator(byte[] array)
{
this.array = array;
}
public IEnumerator<byte> GetEnumerator
{
foreach (byte i in array)
{
yield return i & 15;
yield return (i >> 4) & 15;
}
}
byte[] array;
}
If I understand right (bigByteArray is 16 long, smallByteArray is 8 long, packed):
for(int i = 0; i < bigByteArray.Length; i++)
{
bigByteArray[i] = (byte)((smallByteArray[i / 2] >> (i % 2 == 0 ? 4 : 0)) & 0xF);
}

Prime Number Formula

I am trying to write a prime number function in C# and I am wondering if the follow code will work. It "appears" to work with the first 50 numbers or so. I just want to make sure it will work no matter how big the number is:
static bool IsPrime(int number)
{
if ((number == 2) || (number == 3) || (number == 5) || (number == 7) || (number == 9))
return true;
if ((number % 2 != 0) && (number % 3 != 0) && (number % 5 != 0) &&
(number % 7 != 0) && (number % 9 != 0) && (number % 4 != 0) &&
(number % 6 != 0))
return true;
return false;
}
No it won't work! Try 121 = 11 * 11 for example which obviously isn't a prime.
For any number given to your function, that is a product of the prime numbers X1, X2, ..., Xn(where n >= 2) with all of them being greater or equal to 11, your function will return true. (And also, as already said, 9 isn't a prime).
From wikipedia you can see that:
In mathematics, a prime number (or a prime) is a natural number that has exactly two distinct natural number divisors: 1 and itself.
so a very simple and naive algorithm on checking whether a number is prime could be:
public bool CalcIsPrime(int number) {
if (number == 1) return false;
if (number == 2) return true;
if (number % 2 == 0) return false; // Even number
for (int i = 2; i < number; i++) { // Advance from two to include correct calculation for '4'
if (number % i == 0) return false;
}
return true;
}
For better algorithms check here: Primality Test
If you want to check your code, do inlcude a test, here's a test case written in xunit.
[Theory]
[MemberData(nameof(PrimeNumberTestData))]
public void CalcIsPrimeTest(int number, bool expected) {
Assert.Equal(expected, CalcIsPrime(number));
}
public static IEnumerable<object[]> PrimeNumberTestData() {
yield return new object[] { 0, false };
yield return new object[] { 1, false };
yield return new object[] { 2, true };
yield return new object[] { 3, true };
yield return new object[] { 4, false };
yield return new object[] { 5, true };
yield return new object[] { 6, false };
yield return new object[] { 7, true };
yield return new object[] { 8, false };
yield return new object[] { 9, false };
yield return new object[] { 10, false };
yield return new object[] { 11, true };
yield return new object[] { 23, true };
yield return new object[] { 31, true };
yield return new object[] { 571, true };
yield return new object[] { 853, true };
yield return new object[] { 854, false };
yield return new object[] { 997, true };
yield return new object[] { 999, false };
}
It had to be done...
public static bool IsPrime(this int number)
{
return (Enumerable.Range(1,number).Where(x => number % x == 0).Count() == 2);
}
This approach definitely won't work, unless your if statement explicitly enumerates all the prime numbers between 0 and sqrt(INT_MAX) (or the C# equivalent).
To properly check for primality, you basically need to attempt to divide your number by every prime number less than its square root. The Sieve of Eratosthenes algorithm is your best bet.
You are apparently writing from a contrafactual dimension where 9 is a prime number, so I guess that our answers might not work for you. Two things though:
Prime number generating functions are a non-trivial but exiting matter, the Wikipedia page is a good starter (http://en.wikipedia.org/wiki/Formula_for_primes)
from (number%2!=0) it follows (number%4!=0). If you can't divide by 10, then you can't divide by 100 either.
Primality testing is the way to go, but in case you want a quick and dirty hack, here's something.
If it's not working fast enough, you can build a class around it and store the PrimeNumbers collection from call to call, rather than repopulating it for each call.
public bool IsPrime(int val)
{
Collection<int> PrimeNumbers = new Collection<int>();
int CheckNumber = 5;
bool divisible = true;
PrimeNumbers.Add(2);
PrimeNumbers.Add(3);
// Populating the Prime Number Collection
while (CheckNumber < val)
{
foreach (int i in PrimeNumbers)
{
if (CheckNumber % i == 0)
{
divisible = false;
break;
}
if (i * i > CheckNumber) { break; }
}
if (divisible == true) { PrimeNumbers.Add(CheckNumber); }
else { divisible = true; }
CheckNumber += 2;
}
foreach (int i in PrimeNumbers)
{
if (CheckNumber % i == 0)
{
divisible = false;
break;
}
if (i * i > CheckNumber) { break; }
}
if (divisible == true) { PrimeNumbers.Add(CheckNumber); }
else { divisible = true; }
// Use the Prime Number Collection to determine if val is prime
foreach (int i in PrimeNumbers)
{
if (val % i == 0) { return false; }
if (i * i > val) { return true; }
}
// Shouldn't ever get here, but needed to build properly.
return true;
}
There are some basic rules you can follow to check if a number is prime
Even numbers are out. If x % 2 = 0, then it is not prime
All non-prime numbers have prime factors. Therefore, you only need test a number against primes to see if it factors
The highest possible factor any number has is it's square root. You only need to check if values <= sqrt(number_to_check) are even divisible.
Using that set of logic, the following formula calculates 1,000,000 Primes Generated in: 134.4164416 secs in C# in a single thread.
public IEnumerable<long> GetPrimes(int numberPrimes)
{
List<long> primes = new List<long> { 1, 2, 3 };
long startTest = 3;
while (primes.Count() < numberPrimes)
{
startTest += 2;
bool prime = true;
for (int pos = 2; pos < primes.Count() && primes[pos] <= Math.Sqrt(startTest); pos++)
{
if (startTest % primes[pos] == 0)
{
prime = false;
}
}
if (prime)
primes.Add(startTest);
}
return primes;
}
Bear in mind, there is lots of room for optimization in the algorithm. For example, the algorithm could be parallelized. If you have a prime number (let's say 51), you can test all the numbers up to it's square (2601) for primeness in seperate threads as all it's possible prime factors are stored in the list.
static List<long> PrimeNumbers = new List<long>();
static void Main(string[] args)
{
PrimeNumbers.Add(2);
PrimeNumbers.Add(3);
PrimeNumbers.Add(5);
PrimeNumbers.Add(7);
for (long i = 11; i < 10000000; i += 2)
{
if (i % 5 != 0)
if (IsPrime(i))
PrimeNumbers.Add(i);
}
}
static bool IsPrime(long number)
{
foreach (long i in PrimeNumbers)
{
if (i <= Math.Sqrt(number))
{
if (number % i == 0)
return false;
}
else
break;
}
return true;
}
this is a simple one
only odd numbers are prime....so
static bool IsPrime(int number)
{
int i;
if(number==2)
return true; //if number is 2 then it will return prime
for(i=3,i<number/2;i=i+2) //i<number/2 since a number cannot be
{ //divided by more then its half
if(number%i==0) //if number is divisible by i, then its not a prime
return false;
}
return true; //the code will only reach here if control
} //is not returned false in the for loop
This is a simple code for find prime number depend on your input.
static void Main(string[] args)
{
String input = Console.ReadLine();
long num = Convert.ToInt32(input);
long a, b, c;
c = 2;
for(long i=3; i<=num; i++){
b = 0;
for (long j = 2; j < i ; j++) {
a = i % j;
if (a != 0) {
b = b+1;
}
else {
break;
}
}
if(b == i-2){
Console.WriteLine("{0}",i);
}
}
Console.ReadLine();
}
ExchangeCore Forums have a good bit of code that will pretty much let you generate any ulong number for primes. But basically here's the gist:
int primesToFind = 1000;
int[] primes = new int[primesToFind];
int primesFound = 1;
primes[0] = 2;
for(int i = 3; i < int.MaxValue() && primesFound < primesToFind; i++)
{
bool isPrime = true;
double sqrt = Math.sqrt(i);
for(int j = 0; j<primesFound && primes[j] <= sqrt; j++)
{
if(i%primes[j] == 0)
{
isPrime = false;
break;
}
}
if(isPrime)
primes[primesFound++] = i;
}
Once this code has finished running your primes will all be found in the primes array variable.
https://www.khanacademy.org/computing/computer-science/cryptography/comp-number-theory/a/trial-division
public static bool isPrime(int number)
{
for (int k = 2; k <= Math.Ceiling(Math.Sqrt(number)); k++)
{
if (number > k && number % k == 0)
break;
if (k >= Math.Ceiling(Math.Sqrt(number)) || number == k)
{
return true;
}
}
return false;
}
Prime Numbers from 0 - 1 Million in less than two tenths of a second
Just finished it. Last test was 0.017 seconds.
Regular HP Laptop. 2.1 GHz
It takes longer when it gets larger. For primes 1 - 1 billion , my last test was 28.6897 seconds. It might be faster in your program because I was casting class objects to get parameter values in mine.
Method Info
Uses the Sieve of Eratosthenes
Accepts floor and ceiling as arguments
Uses arrays instead of lists for fast performance
Size of array is initialized according to Rosser-Schoenfeld upper bound
Skips multiples of 2, 5, and 7 when assigning values
Max range is between 0 and 2,147,483,646 (1 min 44.499 s)
Heavily commented
Using
using System;
using System.Diagnostics;
using System.Collections;
Method
private static int[] GetPrimeArray(int floor, int ceiling)
{
// Validate arguments.
if (floor > int.MaxValue - 1)
throw new ArgumentException("Floor is too high. Max: 2,147,483,646");
else if (ceiling > int.MaxValue - 1)
throw new ArgumentException("Ceiling is too high. Max: 2,147,483,646");
else if (floor < 0)
throw new ArgumentException("Floor must be a positive integer.");
else if (ceiling < 0)
throw new ArgumentException("Ceiling must be a positve integer.");
else if (ceiling < floor)
throw new ArgumentException("Ceiling cannot be less than floor.");
// This region is only useful when testing performance.
#region Performance
Stopwatch sw = new Stopwatch();
sw.Start();
#endregion
// Variables:
int stoppingPoint = (int)Math.Sqrt(ceiling);
double rosserBound = (1.25506 * (ceiling + 1)) / Math.Log(ceiling + 1, Math.E);
int[] primeArray = new int[(int)rosserBound];
int primeIndex = 0;
int bitIndex = 4;
int innerIndex = 3;
// Handle single digit prime ranges.
if (ceiling < 11)
{
if (floor <= 2 && ceiling >= 2) // Range includes 2.
primeArray[primeIndex++] = 2;
if (floor <= 3 && ceiling >= 3) // Range includes 3.
primeArray[primeIndex++] = 3;
if (floor <= 5 && ceiling >= 5) // Range includes 5.
primeArray[primeIndex++] = 5;
return primeArray;
}
// Begin Sieve of Eratosthenes. All values initialized as true.
BitArray primeBits = new BitArray(ceiling + 1, true);
primeBits.Set(0, false); // Zero is not prime.
primeBits.Set(1, false); // One is not prime.
checked // Check overflow.
{
try
{
// Set even numbers, excluding 2, to false.
for (bitIndex = 4; bitIndex < ceiling; bitIndex += 2)
primeBits[bitIndex] = false;
}
catch { } // Break for() if overflow occurs.
}
// Iterate by steps of two in order to skip even values.
for (bitIndex = 3; bitIndex <= stoppingPoint; bitIndex += 2)
{
if (primeBits[bitIndex] == true) // Is prime.
{
// First position to unset is always the squared value.
innerIndex = bitIndex * bitIndex;
primeBits[innerIndex] = false;
checked // Check overflow.
{
try
{
// Set multiples of i, which are odd, to false.
innerIndex += bitIndex + bitIndex;
while (innerIndex <= ceiling)
{
primeBits[innerIndex] = false;
innerIndex += bitIndex + bitIndex;
}
}
catch { continue; } // Break while() if overflow occurs.
}
}
}
// Set initial array values.
if (floor <= 2)
{
// Range includes 2 - 5.
primeArray[primeIndex++] = 2;
primeArray[primeIndex++] = 3;
primeArray[primeIndex++] = 5;
}
else if (floor <= 3)
{
// Range includes 3 - 5.
primeArray[primeIndex++] = 3;
primeArray[primeIndex++] = 5;
}
else if (floor <= 5)
{
// Range includes 5.
primeArray[primeIndex++] = 5;
}
// Increment values that skip multiples of 2, 3, and 5.
int[] increment = { 6, 4, 2, 4, 2, 4, 6, 2 };
int indexModulus = -1;
int moduloSkipAmount = (int)Math.Floor((double)(floor / 30));
// Set bit index to increment range which includes the floor.
bitIndex = moduloSkipAmount * 30 + 1;
// Increase bit and increment indicies until the floor is reached.
for (int i = 0; i < increment.Length; i++)
{
if (bitIndex >= floor)
break; // Floor reached.
// Increment, skipping multiples of 2, 3, and 5.
bitIndex += increment[++indexModulus];
}
// Initialize values of return array.
while (bitIndex <= ceiling)
{
// Add bit index to prime array, if true.
if (primeBits[bitIndex])
primeArray[primeIndex++] = bitIndex;
checked // Check overflow.
{
try
{
// Increment. Skip multiples of 2, 3, and 5.
indexModulus = ++indexModulus % 8;
bitIndex += increment[indexModulus];
}
catch { break; } // Break if overflow occurs.
}
}
// Resize array. Rosser-Schoenfeld upper bound of π(x) is not an equality.
Array.Resize(ref primeArray, primeIndex);
// This region is only useful when testing performance.
#region Performance
sw.Stop();
if (primeArray.Length == 0)
Console.WriteLine("There are no prime numbers between {0} and {1}",
floor, ceiling);
else
{
Console.WriteLine(Environment.NewLine);
for (int i = 0; i < primeArray.Length; i++)
Console.WriteLine("{0,10}:\t\t{1,15:#,###,###,###}", i + 1, primeArray[i]);
}
Console.WriteLine();
Console.WriteLine("Calculation time:\t{0}", sw.Elapsed.ToString());
#endregion
return primeArray;
}
Comments are welcome! Especially improvements.
Here we must have to consider the square root factor. A prime number can be verified if it is not divisible by any number less than the value of square root of any near number.
static bool isPrime(long number)
{
if (number == 1) return false;
if (number == 2) return true;
if (number % 2 == 0) return false; //Even number
long nn= (long) Math.Abs(Math.Sqrt(number));
for (long i = 3; i < nn; i += 2) {
if (number % i == 0) return false;
}
return true;
}

Find duplicates between arrays

Assume you are given two arrays of integers of constant length which is 3, and you are always sure that two elements of the given two arrray will have same values.
so assume array A has three values: a, b, c.
and array B has three values: d, e, f.
we are sure that two of the values will be same. we are asked to put these four different values in an array of size 4, such that output array C, should have in indices 1 and 2 the same values from arrays A and B. and at indices 0 and 3 it should have the different values of array A and B. i have implemented it, but really not satisfied with this solution... does anyone has better solution idea? except the one that would put my counters in array... :)
int[] a = { 1, 201, 354 };
int[] b = { 404, 201, 354 };
int[] c = new int[4];
for (int i = 0; i < c.Length; i++)
{
Console.WriteLine(c[i]);
}
I'm sorry, I re-read more closely and I think this is what you want. Please advise. :)
int[] same = a.Intersect(b).ToArray(); ;
int[] diff = a.Union(b).Except(same).ToArray();
int[] c = new int[] { diff[0], same[0], same[1], diff[1] };
What you are looking for is just a set of the two arrays (set contains every element once at most). The solution in c++:
#include <set>
int main () {
int a[] = { 1,2,3 };
int b[] = { 4,2,3 };
std::set<int> s(a, a+3);
s.insert(b, b+3);
}
If you have LINQ at your disposal, the following code will suffice:
int[] c = a.Union(b).ToArray();
Union checks for duplicates, so no further checking is necessary:
Returns: An
System.Collections.Generic.IEnumerable
that contains the elements from both
input sequences, excluding duplicates.
Replace
// IRQ. 20100211. Deleted unncessary code
with
var c = a.Concat(b).Distinct().ToArray();
Update:
New one:
var same = a.Intersect(b);
var c = a.Except(same).Concat(same).Concat(b.Except(same)).ToArray();
or these
var c = a.Except(b).Concat(a.Intersect(b)).Concat(b.Except(a));
var c = a.Except(b).Concat(a).Concat(b).Distinct();
Here a cool solution in C(++)
int a[3], b[3]; /* the two arrays */
int c[4]; /* target */
int s=0, t=0, k;
int i;
for (i=0;i<3;i++) { k = a[i]-b[i]; s += k; t += k*(a[i]+b[i]); }
/* At this point s is the difference of the two distinct elements
and t is the difference of their squares, i.e. s = x - y and t = x^2 - y^2
because (x-y)(x+y) = x^2-yx+yx-y^2 = x^2-y^2
Because the two elements are distinct, s != 0 and we can easily divide t
by s to get (x + y), from which then we have
s == x - y
t == x + y
i.e. x = (s+t)/2 and y=(t-s)/2 */
t /= s;
int x = (s + t) / 2;
int y = (t - s) / 2;
/* Now x, y are the distinct elements, x from array a and y from array b */
/* Fill in the results */
c[0] = x;
c[3] = y;
/* If a[0] is non-shared, then a[1] must be the first shared element; otherwise a[0] */
c[1] = (a[0] == x ? a[1] : a[0]);
/* If a[2] is non-shared, then a[1] must be the last shared element; otherwise a[2] */
c[2] = (a[2] == x ? a[1] : a[2]);
Example: a = {1, 3, 5}, b = {3, 5, 2}
s = (1-3)+(3-5)+(5-2) = -2-2+3 = -1
t = (1-3)*(1+3)+(3-5)*(3+5)+(5-2)*(5+2) = -8-16+21 = -3
t / s = 3
x = (-1 + 3) / 2 = 1
y = (3 - (-1)) / 2 = 2
c[0] = 1
c[3] = 2
c[1] = 3
c[2] = 5
so c gets the value {1,3,5,2}, as desired!
For fun, here a compacter version:
/* Declarations */
int a[3], b[3], c[4];
int s = 0, t = 0, k, i;
/* Actual algorithm */
for (i = 0; i < 3; i++) { s += (k = a[i]-b[i]); t += k * (a[i]+b[i]); }
t /= s;
c[0] = (s + t) >> 1;
c[3] = (t - s) >> 1;
c[1] = (a[0] == x ? a[1] : a[0]);
c[2] = (a[2] == x ? a[1] : a[2]);
Note that coolly enough if the problem is generalized so that n-1 elements are shared and there is one unique element in both arrays, this is an O(n) algorithm, whereas set intersection and/or union based algorithms in general are O(n log n) :)
Instead of counter1, counter2, counter3:
counter[3];
A lot of things get easier from there. You can refer to everything in loops, to start with.
I'm pretty sure I don't understand the question.
You say:
we are sure that two of the values will be same. we are asked to put these four different values
Which four different values are you referring to? The two that are the same? Because that's what the word "these" refers to.
Do you mean: Take the 4 unique values and put them into an array?
So that:
1, 2, 3
2, 3, 4
Becomes:
1, 2, 3, 4?
That's easy:
int[] c = a.Concat(b).Distinct().ToArray();
This uses the Linq extension methods of .NET 3.5. If you're not on .NET 3.5, you can do this:
Dictionary<int, int> c1 = new Dictionary<int, int>();
foreach (var x in a)
c1[x] = 1;
foreach (var x in b)
c1[x] = 1;
int[] c = new List<int>(c1.Keys).ToArray();
Now, if you need the order to be this:
The first value that only occured once
The first value that occured twice
The second value that occured twice
The second value that only occured once
Then I'm afraid I don't have a one-liner for you, will have to think about it some more.
Might I ask what the context is? Why this requirement?
I came up with this as a first draft, but I think it can need some improvement. It also doesn't fulfill the requirement of having the duplicates at position 1 and 2 and the unique numbers at 0 and 3 in the array. I thought I'd post it anyway, so you can get an idea of how this can look like:
int[] a = { 1, 201, 354 };
int[] b = { 404, 201, 354 };
int[] c = new int[ 4 ];
// Start by just copying over one of the arrays completely.
a.CopyTo( c, 0 );
// Loop through b and compare each number against each
// each number in a.
foreach( int i in b )
{
// Assume that you're not dealing with a duplicate
bool found = true;
foreach( int j in a )
{
// If you find a duplicate, set found to false
if( i == j )
{
found = false;
}
}
// If you haven't found a duplicate this is the
// number you want - add it to the array.
if (found == true)
{
c[3] = i;
}
}
bool isUsed[6]={true, true, true, true, true, true};
int values[6];
int valuesCount = 0;
int i,j;
for( i = 0 ; i < 3 ; i++)
{
bool goodValue = true;
for ( j = 0; j < valuesCount; j++)
{
if(values[j] == a[i])
{
isUsed[j] = false;
goodValue = false;
break;
}
}
if(goodValue)
{
values[valuesCount++]=a[i];
}
}
//same for b[i]
for( i = 0 ; i < valuesCount; i++)
{
if( isUsed[i] ) printf("%i ", values[i]);
}
This part
if (a[0] == b[0]) { counter0++; }
if (a[0] == b[1]) { counter0++; }
if (a[0] == b[2]) { counter0++; }
if (a[1] == b[0]) { counter1++; }
if (a[1] == b[1]) { counter1++; }
if (a[1] == b[2]) { counter1++; }
if (a[2] == b[0]) { counter2++; }
if (a[2] == b[1]) { counter2++; }
if (a[2] == b[2]) { counter2++; }
Could probably be rewritten as
for (i=0; i<3; i++)
{
for (j=0; j<3; j++)
{
switch(i)
{
case 0:
if (a[i] == b[j]) { counter0++; }
break;
case 1:
if (a[i] == b[j]) { counter1++; }
break;
case 2:
if (a[i] == b[j]) { counter2++; }
break;
}
}
}
The other part with the other counters should be written similarly. Then you could maybe refactor this into a separate method and just pass the arrays and counters to it.
Another option could be LINQ, but I'm not sure exactly how to write something like this.
(Haven't tried compiling this, but is the idea clear?)
UPDATE:
If you could put the counters in an array, this might work:
for (i=0; i<3; i++)
{
for (j=0; j<3; j++)
{
if (a[i] == b[j]) { counters[i]++; }
}
}
I am trying to give a short answer. However it assumes that input will be correct.
int c1, c2, i;
c1 = a[0] == b[0] ? 0
: (a[0] == b[1] ? 1 : 2); // index of a[0] in array 'b'
c2 = a[1] == b[0] ? 0
: (a[1] == b[1] ? 1 : 2); // index of a[1] in array 'b'
for(i=0; i<2; i++)
Console.WriteLine(a[i]);
Console.WriteLine(b[3-c1-c2]); // looks quite hacky but it is actually element of 'b' not in array 'a'
Here's some simple code, but it assumes that the values in a and b are always positive.
int[] a = { 1, 201, 354 };
int[] b = { 404, 201, 354 };
int[] c = { -1, -1, -1, -1};
for(int i = 0; i < 3; i++){
int notfound = 1;
for(int j = 0; j < 3; j++){
if(b[j] == -1) continue;
if(a[i] == b[j]){
b[j] = -1;
if(c[1] == -1)
c[1] = a[i];
else
c[2] = a[i];
notfound = 0;
break;
}
}
if(notfound)
c[0] = a[i];
}
int k = 0;
while(b[k++] == -1);
c[3] = b[k];
I haven't tested it, but hopefully you get the idea. This uses very little extra space (just the space for notfound, which could be made a boolean, and the index variables) and should be quite fast.
int[] a = { 204, 534, 1 };
int[] b = { 204, 534, 401 };
int[] c = new int[4];
int x = 3, y = 3, k = 1;
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
if (a[i] == b[j]) {
c[k++] = a[i];
x -= i;
y -= j;
break;
}
c[0] = a[x];
c[3] = b[y];
Sapph provided an answer that is about as clean as it gets, but here is one if performance is extremely important. The .NET array bounds checking will probably add some overhead, but in C this compiles down to 64 instructions with no branches.
int[] a = { 204, 534, 1 };
int[] b = { 204, 534, 401 };
int[] c = new int[4];
// pick the value from a that is not in b for c[0]
// a[0] not in b is implied by a[1] in b and a[2] in b
int a1_not_in_b = Convert.ToInt32(a[1] != b[0] & a[1] != b[1] & a[1] != b[2]);
int a2_not_in_b = Convert.ToInt32(a[2] != b[0] & a[2] != b[1] & a[2] != b[2]);
// bitfield of 2 bit values equivalent to the array {0,1,2,0,1}
int idxs = 0 | 1 << 2 | 2 << 4 | 0 << 6 | 1 << 8;
// if a[1] not in b start at 1, if a[2] not in b start at 2, else start at 0
idxs >>= 2*a1_not_in_b | 4*a2_not_in_b;
c[0] = a[(idxs >> 0) & 3];
c[1] = a[(idxs >> 2) & 3];
c[2] = a[(idxs >> 4) & 3];
// pick the value from b that is not in a
// b[0] not in a is implied by b[1] in a and b[2] in a
int b1_not_in_a = Convert.ToInt32(a[0] != b[1] & a[1] != b[1] & a[2] != b[1]);
int b2_not_in_a = Convert.ToInt32(a[0] != b[2] & a[1] != b[2] & a[2] != b[2]);
c[3] = b[b1_not_in_a | 2*b2_not_in_a];
Faster?
using System;
using System.Linq;
using sw = System.Diagnostics.Stopwatch;
class Program
{
static void Main()
{
int[] a = new int[] { 1, 2, 3 }, // try: a={1,2,2} b={2,2,3}
b = new int[] { 4, 2, 3 }, c = new int[4];
sw sw = sw.StartNew();
for (int i = 5000000; i > 0; i--) { dssd1(a, b, c); dssd1(b, a, c); }
Console.Write(sw.ElapsedMilliseconds);
Console.Read();
}
static void dssd0(int[] a, int[] b, int[] c) // 6710 ms.
{
int[] s = a.Intersect(b).ToArray(); // same
int[] d = a.Union(b).Except(s).ToArray(); // diff
c[0] = d[0]; c[1] = s[0]; c[2] = s[1]; c[3] = d[1];
}
static void dssd1(int[] a, int[] b, int[] c) // 61 ms.
{
if (a[0] != b[0] && a[0] != b[1] && a[0] != b[2])
{ c[0] = a[0]; c[1] = a[1]; c[2] = a[2]; goto L0; }
if (a[1] != b[0] && a[1] != b[1] && a[1] != b[2])
{ c[0] = a[1]; c[1] = a[0]; c[2] = a[2]; goto L0; }
c[0] = a[2]; c[1] = a[0]; c[2] = a[1];
L0: if (b[0] != c[1] && b[0] != c[2]) { c[3] = b[0]; return; }
if (b[1] != c[1] && b[1] != c[2]) { c[3] = b[1]; return; }
c[3] = b[2];
}
}
Fastest?
L0: c[3] = b[0] != c[1] && b[0] != c[2] ? b[0] : // 49 ms.
b[1] != c[1] && b[1] != c[2] ? b[1] : b[2];
How about this?
private static int[] FindDuplicates(int[] arrA,int[] arrB)
{
var aList=new List<int>();
Array.Sort(arrA);
Array.Sort(arrB);
for(int i=0;i<arrA.Length;i++)
{
if(arrB.Contains(arrA[i]))
{
aList.Add(arrA[i]);
}
}
return aList.ToArray();
}

Categories

Resources